import os import tensorflow as tf import pandas as pd import numpy as np import matplotlib.pyplot as plt import functools import csv test_file_path = [ r"I:\csgoserver\steamcmd\steamapps\common\Counter-Strike Global Offensive Beta - Dedicated Server\csgo\addons\sourcemod\test_data.csv"] train_file_path = [ r"I:\csgoserver\steamcmd\steamapps\common\Counter-Strike Global Offensive Beta - Dedicated Server\csgo\addons\sourcemod\train_data.csv"] csv_data = [] csv_data_x = [] csv_data_y = [] csv_data_all_num = [] csv_data_y_avg = {} with open(train_file_path[0], 'r') as f: reader = csv.reader(f) for row in reader: csv_data.append(row) csv_data_x = csv_data[0] for index in range(1, len(csv_data)): for zeus in range(len(csv_data[index])): if csv_data_x[zeus] == 'is_cheat': continue if csv_data_x[zeus] in csv_data_y_avg.keys(): csv_data_y_avg[csv_data_x[zeus]] = float( csv_data_y_avg[csv_data_x[zeus]]) + float(csv_data[index][zeus]) else: csv_data_y_avg[csv_data_x[zeus]] = float(csv_data[index][zeus]) for key in csv_data_y_avg: csv_data_y_avg[key] = float(csv_data_y_avg[key]) / float(len(csv_data) - 1) print(csv_data_y_avg) def process_continuous_data(mean, data): data = tf.cast(data, tf.float32) * 1/(2*mean) return tf.reshape(data, [-1, 1]) def create_model(): numerical_columns = [] for feature in csv_data_y_avg.keys(): num_col = tf.feature_column.numeric_column( feature, normalizer_fn=functools.partial(process_continuous_data, csv_data_y_avg[feature])) numerical_columns.append(num_col) preprocessing_layer = tf.keras.layers.DenseFeatures(numerical_columns) model = tf.keras.models.Sequential([ preprocessing_layer, tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(1, activation='sigmoid'), ]) model.compile(optimizer='adam', loss=tf.losses.BinaryCrossentropy( from_logits=True), metrics=['accuracy']) return model def get_dataset(file_path): dataset = tf.data.experimental.make_csv_dataset( file_path, batch_size=32, label_name='is_cheat', na_value="?", num_epochs=1, ignore_errors=True) return dataset def start_predict(): test_data = get_dataset(test_file_path) print(test_data) test_loss, test_accuracy = model.evaluate(test_data) predict_data = model.predict(test_data) print("anti-aimbot model, accuracy:{:5.2f}%".format(100 * test_accuracy)) num_cheat = 0 for pre, result in zip(predict_data[:20], list(test_data)[0][1][:20]): num_access = 100 * pre[0] if num_access >= 60: num_cheat = num_cheat + 1 print("player is aimbot :{:5.2f}% ".format( num_access), " is cheat: ", ("yes" if bool(result) else "no")) print("result:", num_cheat) if len(predict_data) < 20: print("player kill must > 20") if num_cheat >= (len(predict_data) / 2) - 2: print("player is aimbot") else: print("player is not aimbot") model = create_model() model.load_weights('./save/model_weight') start_predict() while True: input("any key ...") start_predict()