104 lines
3.5 KiB
Python
104 lines
3.5 KiB
Python
import tensorflow as tf
|
|
import pandas as pd
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import functools
|
|
import csv
|
|
import time
|
|
from tensorflow.keras.callbacks import TensorBoard
|
|
|
|
|
|
LABEL_COLUMN = 'is_cheat'
|
|
|
|
# "I:\csgoserver\steamcmd\steamapps\common\Counter-Strike Global Offensive Beta - Dedicated Server\csgo\addons\sourcemod\训练数据.csv"
|
|
train_file_path = [
|
|
r"I:\csgoserver\steamcmd\steamapps\common\Counter-Strike Global Offensive Beta - Dedicated Server\csgo\addons\sourcemod\训练数据.csv"]
|
|
test_file_path = [
|
|
r"I:\csgoserver\steamcmd\steamapps\common\Counter-Strike Global Offensive Beta - Dedicated Server\csgo\addons\sourcemod\测试数据1.csv"]
|
|
csv_data = []
|
|
csv_data_x = []
|
|
csv_data_y = []
|
|
csv_data_all_num = []
|
|
csv_data_y_avg = {}
|
|
with open(train_file_path[0], 'r') as f:
|
|
reader = csv.reader(f)
|
|
for row in reader:
|
|
csv_data.append(row)
|
|
csv_data_x = csv_data[0]
|
|
for index in range(1, len(csv_data)):
|
|
for zeus in range(len(csv_data[index])):
|
|
if csv_data_x[zeus] == 'is_cheat':
|
|
continue
|
|
if csv_data_x[zeus] in csv_data_y_avg.keys():
|
|
csv_data_y_avg[csv_data_x[zeus]] = float(
|
|
csv_data_y_avg[csv_data_x[zeus]]) + float(csv_data[index][zeus])
|
|
|
|
else:
|
|
csv_data_y_avg[csv_data_x[zeus]] = float(csv_data[index][zeus])
|
|
for key in csv_data_y_avg:
|
|
csv_data_y_avg[key] = float(csv_data_y_avg[key]) / float(len(csv_data) - 1)
|
|
|
|
print(csv_data_y_avg)
|
|
|
|
|
|
def get_dataset(file_path):
|
|
dataset = tf.data.experimental.make_csv_dataset(
|
|
file_path,
|
|
batch_size=32,
|
|
label_name=LABEL_COLUMN,
|
|
na_value="?",
|
|
num_epochs=1,
|
|
ignore_errors=True)
|
|
return dataset
|
|
|
|
|
|
def process_continuous_data(mean, data):
|
|
# 标准化数据
|
|
data = tf.cast(data, tf.float32) * 1/(2*mean)
|
|
return tf.reshape(data, [-1, 1])
|
|
|
|
|
|
raw_train_data = get_dataset(train_file_path)
|
|
raw_test_data = get_dataset(test_file_path)
|
|
examples, labels = next(iter(raw_train_data)) # 第一个批次
|
|
print("EXAMPLES: \n", examples, "\n")
|
|
print("LABELS: \n", labels)
|
|
|
|
numerical_columns = []
|
|
for feature in csv_data_y_avg.keys():
|
|
num_col = tf.feature_column.numeric_column(
|
|
feature, normalizer_fn=functools.partial(process_continuous_data, csv_data_y_avg[feature]))
|
|
numerical_columns.append(num_col)
|
|
|
|
preprocessing_layer = tf.keras.layers.DenseFeatures(numerical_columns)
|
|
model = tf.keras.Sequential([
|
|
preprocessing_layer,
|
|
tf.keras.layers.Dense(128, activation='relu'),
|
|
tf.keras.layers.Dense(128, activation='relu'),
|
|
tf.keras.layers.Dense(1, activation='sigmoid'),
|
|
])
|
|
|
|
model_name = "anti_aimbot-{}".format(int(time.time()))
|
|
TensorBoardcallback = TensorBoard(
|
|
log_dir='logs/{}'.format(model_name),
|
|
histogram_freq=1, batch_size=32,
|
|
write_graph=True, write_grads=False, write_images=True,
|
|
embeddings_freq=0, embeddings_layer_names=None,
|
|
embeddings_metadata=None, embeddings_data=None, update_freq=500
|
|
)
|
|
|
|
model.compile(
|
|
loss='binary_crossentropy',
|
|
optimizer='adam',
|
|
metrics=['accuracy'])
|
|
train_data = raw_train_data.shuffle(1500)
|
|
test_data = raw_test_data
|
|
history = model.fit(train_data, epochs=85, callbacks=[TensorBoardcallback])
|
|
test_loss, test_accuracy = model.evaluate(test_data)
|
|
predict_data = model.predict(test_data)
|
|
print('anti-aimbot: \n\nTest Loss {}, Test Accuracy {}'.format(test_loss, test_accuracy))
|
|
for pre, result in zip(predict_data[:20], list(test_data)[0][1][:20]):
|
|
print("player is aimbot :{:5.2f}% ".format(
|
|
100 * pre[0]), " is cheat: ", ("yes" if bool(result) else "no"))
|
|
model.save_weights('./save/model_weight')
|