Update private master program code
This commit is contained in:
571
common/aes.c
Normal file
571
common/aes.c
Normal file
@@ -0,0 +1,571 @@
|
||||
/*
|
||||
|
||||
This is an implementation of the AES algorithm, specifically ECB, CTR and CBC mode.
|
||||
Block size can be chosen in aes.h - available choices are AES128, AES192, AES256.
|
||||
|
||||
The implementation is verified against the test vectors in:
|
||||
National Institute of Standards and Technology Special Publication 800-38A 2001 ED
|
||||
|
||||
ECB-AES128
|
||||
----------
|
||||
|
||||
plain-text:
|
||||
6bc1bee22e409f96e93d7e117393172a
|
||||
ae2d8a571e03ac9c9eb76fac45af8e51
|
||||
30c81c46a35ce411e5fbc1191a0a52ef
|
||||
f69f2445df4f9b17ad2b417be66c3710
|
||||
|
||||
key:
|
||||
2b7e151628aed2a6abf7158809cf4f3c
|
||||
|
||||
resulting cipher
|
||||
3ad77bb40d7a3660a89ecaf32466ef97
|
||||
f5d3d58503b9699de785895a96fdbaaf
|
||||
43b1cd7f598ece23881b00e3ed030688
|
||||
7b0c785e27e8ad3f8223207104725dd4
|
||||
|
||||
|
||||
NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0)
|
||||
You should pad the end of the string with zeros if this is not the case.
|
||||
For AES192/256 the key size is proportionally larger.
|
||||
|
||||
*/
|
||||
|
||||
/*****************************************************************************/
|
||||
/* Includes: */
|
||||
/*****************************************************************************/
|
||||
#include <string.h> // CBC mode, for memset
|
||||
#include "aes.h"
|
||||
|
||||
/*****************************************************************************/
|
||||
/* Defines: */
|
||||
/*****************************************************************************/
|
||||
// The number of columns comprising a state in AES. This is a constant in AES. Value=4
|
||||
#define Nb 4
|
||||
|
||||
#if defined(AES256) && (AES256 == 1)
|
||||
#define Nk 8
|
||||
#define Nr 14
|
||||
#elif defined(AES192) && (AES192 == 1)
|
||||
#define Nk 6
|
||||
#define Nr 12
|
||||
#else
|
||||
#define Nk 4 // The number of 32 bit words in a key.
|
||||
#define Nr 10 // The number of rounds in AES Cipher.
|
||||
#endif
|
||||
|
||||
// jcallan@github points out that declaring Multiply as a function
|
||||
// reduces code size considerably with the Keil ARM compiler.
|
||||
// See this link for more information: https://github.com/kokke/tiny-AES-C/pull/3
|
||||
#ifndef MULTIPLY_AS_A_FUNCTION
|
||||
#define MULTIPLY_AS_A_FUNCTION 0
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
/*****************************************************************************/
|
||||
/* Private variables: */
|
||||
/*****************************************************************************/
|
||||
// state - array holding the intermediate results during decryption.
|
||||
typedef uint8_t state_t[4][4];
|
||||
|
||||
|
||||
|
||||
// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
|
||||
// The numbers below can be computed dynamically trading ROM for RAM -
|
||||
// This can be useful in (embedded) bootloader applications, where ROM is often limited.
|
||||
static const uint8_t sbox[256] = {
|
||||
//0 1 2 3 4 5 6 7 8 9 A B C D E F
|
||||
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
|
||||
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
|
||||
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
|
||||
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
|
||||
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
|
||||
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
|
||||
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
|
||||
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
|
||||
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
|
||||
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
|
||||
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
|
||||
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
|
||||
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
|
||||
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
|
||||
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
|
||||
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
|
||||
|
||||
#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
|
||||
static const uint8_t rsbox[256] = {
|
||||
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
|
||||
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
|
||||
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
|
||||
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
|
||||
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
|
||||
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
|
||||
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
|
||||
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
|
||||
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
|
||||
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
|
||||
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
|
||||
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
|
||||
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
|
||||
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
|
||||
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
|
||||
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
|
||||
#endif
|
||||
|
||||
// The round constant word array, Rcon[i], contains the values given by
|
||||
// x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
|
||||
static const uint8_t Rcon[11] = {
|
||||
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 };
|
||||
|
||||
/*
|
||||
* Jordan Goulder points out in PR #12 (https://github.com/kokke/tiny-AES-C/pull/12),
|
||||
* that you can remove most of the elements in the Rcon array, because they are unused.
|
||||
*
|
||||
* From Wikipedia's article on the Rijndael key schedule @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon
|
||||
*
|
||||
* "Only the first some of these constants are actually used – up to rcon[10] for AES-128 (as 11 round keys are needed),
|
||||
* up to rcon[8] for AES-192, up to rcon[7] for AES-256. rcon[0] is not used in AES algorithm."
|
||||
*/
|
||||
|
||||
|
||||
/*****************************************************************************/
|
||||
/* Private functions: */
|
||||
/*****************************************************************************/
|
||||
/*
|
||||
static uint8_t getSBoxValue(uint8_t num)
|
||||
{
|
||||
return sbox[num];
|
||||
}
|
||||
*/
|
||||
#define getSBoxValue(num) (sbox[(num)])
|
||||
|
||||
// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.
|
||||
static void KeyExpansion(uint8_t* RoundKey, const uint8_t* Key)
|
||||
{
|
||||
unsigned i, j, k;
|
||||
uint8_t tempa[4]; // Used for the column/row operations
|
||||
|
||||
// The first round key is the key itself.
|
||||
for (i = 0; i < Nk; ++i)
|
||||
{
|
||||
RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
|
||||
RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
|
||||
RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
|
||||
RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
|
||||
}
|
||||
|
||||
// All other round keys are found from the previous round keys.
|
||||
for (i = Nk; i < Nb * (Nr + 1); ++i)
|
||||
{
|
||||
{
|
||||
k = (i - 1) * 4;
|
||||
tempa[0]=RoundKey[k + 0];
|
||||
tempa[1]=RoundKey[k + 1];
|
||||
tempa[2]=RoundKey[k + 2];
|
||||
tempa[3]=RoundKey[k + 3];
|
||||
|
||||
}
|
||||
|
||||
if (i % Nk == 0)
|
||||
{
|
||||
// This function shifts the 4 bytes in a word to the left once.
|
||||
// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
|
||||
|
||||
// Function RotWord()
|
||||
{
|
||||
const uint8_t u8tmp = tempa[0];
|
||||
tempa[0] = tempa[1];
|
||||
tempa[1] = tempa[2];
|
||||
tempa[2] = tempa[3];
|
||||
tempa[3] = u8tmp;
|
||||
}
|
||||
|
||||
// SubWord() is a function that takes a four-byte input word and
|
||||
// applies the S-box to each of the four bytes to produce an output word.
|
||||
|
||||
// Function Subword()
|
||||
{
|
||||
tempa[0] = getSBoxValue(tempa[0]);
|
||||
tempa[1] = getSBoxValue(tempa[1]);
|
||||
tempa[2] = getSBoxValue(tempa[2]);
|
||||
tempa[3] = getSBoxValue(tempa[3]);
|
||||
}
|
||||
|
||||
tempa[0] = tempa[0] ^ Rcon[i/Nk];
|
||||
}
|
||||
#if defined(AES256) && (AES256 == 1)
|
||||
if (i % Nk == 4)
|
||||
{
|
||||
// Function Subword()
|
||||
{
|
||||
tempa[0] = getSBoxValue(tempa[0]);
|
||||
tempa[1] = getSBoxValue(tempa[1]);
|
||||
tempa[2] = getSBoxValue(tempa[2]);
|
||||
tempa[3] = getSBoxValue(tempa[3]);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
j = i * 4; k=(i - Nk) * 4;
|
||||
RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0];
|
||||
RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1];
|
||||
RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2];
|
||||
RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3];
|
||||
}
|
||||
}
|
||||
|
||||
void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key)
|
||||
{
|
||||
KeyExpansion(ctx->RoundKey, key);
|
||||
}
|
||||
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
|
||||
void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv)
|
||||
{
|
||||
KeyExpansion(ctx->RoundKey, key);
|
||||
memcpy (ctx->Iv, iv, AES_BLOCKLEN);
|
||||
}
|
||||
void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv)
|
||||
{
|
||||
memcpy (ctx->Iv, iv, AES_BLOCKLEN);
|
||||
}
|
||||
#endif
|
||||
|
||||
// This function adds the round key to state.
|
||||
// The round key is added to the state by an XOR function.
|
||||
static void AddRoundKey(uint8_t round, state_t* state, const uint8_t* RoundKey)
|
||||
{
|
||||
uint8_t i,j;
|
||||
for (i = 0; i < 4; ++i)
|
||||
{
|
||||
for (j = 0; j < 4; ++j)
|
||||
{
|
||||
(*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// The SubBytes Function Substitutes the values in the
|
||||
// state matrix with values in an S-box.
|
||||
static void SubBytes(state_t* state)
|
||||
{
|
||||
uint8_t i, j;
|
||||
for (i = 0; i < 4; ++i)
|
||||
{
|
||||
for (j = 0; j < 4; ++j)
|
||||
{
|
||||
(*state)[j][i] = getSBoxValue((*state)[j][i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// The ShiftRows() function shifts the rows in the state to the left.
|
||||
// Each row is shifted with different offset.
|
||||
// Offset = Row number. So the first row is not shifted.
|
||||
static void ShiftRows(state_t* state)
|
||||
{
|
||||
uint8_t temp;
|
||||
|
||||
// Rotate first row 1 columns to left
|
||||
temp = (*state)[0][1];
|
||||
(*state)[0][1] = (*state)[1][1];
|
||||
(*state)[1][1] = (*state)[2][1];
|
||||
(*state)[2][1] = (*state)[3][1];
|
||||
(*state)[3][1] = temp;
|
||||
|
||||
// Rotate second row 2 columns to left
|
||||
temp = (*state)[0][2];
|
||||
(*state)[0][2] = (*state)[2][2];
|
||||
(*state)[2][2] = temp;
|
||||
|
||||
temp = (*state)[1][2];
|
||||
(*state)[1][2] = (*state)[3][2];
|
||||
(*state)[3][2] = temp;
|
||||
|
||||
// Rotate third row 3 columns to left
|
||||
temp = (*state)[0][3];
|
||||
(*state)[0][3] = (*state)[3][3];
|
||||
(*state)[3][3] = (*state)[2][3];
|
||||
(*state)[2][3] = (*state)[1][3];
|
||||
(*state)[1][3] = temp;
|
||||
}
|
||||
|
||||
static uint8_t xtime(uint8_t x)
|
||||
{
|
||||
return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
|
||||
}
|
||||
|
||||
// MixColumns function mixes the columns of the state matrix
|
||||
static void MixColumns(state_t* state)
|
||||
{
|
||||
uint8_t i;
|
||||
uint8_t Tmp, Tm, t;
|
||||
for (i = 0; i < 4; ++i)
|
||||
{
|
||||
t = (*state)[i][0];
|
||||
Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ;
|
||||
Tm = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp ;
|
||||
Tm = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp ;
|
||||
Tm = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp ;
|
||||
Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp ;
|
||||
}
|
||||
}
|
||||
|
||||
// Multiply is used to multiply numbers in the field GF(2^8)
|
||||
// Note: The last call to xtime() is unneeded, but often ends up generating a smaller binary
|
||||
// The compiler seems to be able to vectorize the operation better this way.
|
||||
// See https://github.com/kokke/tiny-AES-c/pull/34
|
||||
#if MULTIPLY_AS_A_FUNCTION
|
||||
static uint8_t Multiply(uint8_t x, uint8_t y)
|
||||
{
|
||||
return (((y & 1) * x) ^
|
||||
((y>>1 & 1) * xtime(x)) ^
|
||||
((y>>2 & 1) * xtime(xtime(x))) ^
|
||||
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^
|
||||
((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))); /* this last call to xtime() can be omitted */
|
||||
}
|
||||
#else
|
||||
#define Multiply(x, y) \
|
||||
( ((y & 1) * x) ^ \
|
||||
((y>>1 & 1) * xtime(x)) ^ \
|
||||
((y>>2 & 1) * xtime(xtime(x))) ^ \
|
||||
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \
|
||||
((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \
|
||||
|
||||
#endif
|
||||
|
||||
#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
|
||||
/*
|
||||
static uint8_t getSBoxInvert(uint8_t num)
|
||||
{
|
||||
return rsbox[num];
|
||||
}
|
||||
*/
|
||||
#define getSBoxInvert(num) (rsbox[(num)])
|
||||
|
||||
// MixColumns function mixes the columns of the state matrix.
|
||||
// The method used to multiply may be difficult to understand for the inexperienced.
|
||||
// Please use the references to gain more information.
|
||||
static void InvMixColumns(state_t* state)
|
||||
{
|
||||
int i;
|
||||
uint8_t a, b, c, d;
|
||||
for (i = 0; i < 4; ++i)
|
||||
{
|
||||
a = (*state)[i][0];
|
||||
b = (*state)[i][1];
|
||||
c = (*state)[i][2];
|
||||
d = (*state)[i][3];
|
||||
|
||||
(*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
|
||||
(*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
|
||||
(*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
|
||||
(*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// The SubBytes Function Substitutes the values in the
|
||||
// state matrix with values in an S-box.
|
||||
static void InvSubBytes(state_t* state)
|
||||
{
|
||||
uint8_t i, j;
|
||||
for (i = 0; i < 4; ++i)
|
||||
{
|
||||
for (j = 0; j < 4; ++j)
|
||||
{
|
||||
(*state)[j][i] = getSBoxInvert((*state)[j][i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void InvShiftRows(state_t* state)
|
||||
{
|
||||
uint8_t temp;
|
||||
|
||||
// Rotate first row 1 columns to right
|
||||
temp = (*state)[3][1];
|
||||
(*state)[3][1] = (*state)[2][1];
|
||||
(*state)[2][1] = (*state)[1][1];
|
||||
(*state)[1][1] = (*state)[0][1];
|
||||
(*state)[0][1] = temp;
|
||||
|
||||
// Rotate second row 2 columns to right
|
||||
temp = (*state)[0][2];
|
||||
(*state)[0][2] = (*state)[2][2];
|
||||
(*state)[2][2] = temp;
|
||||
|
||||
temp = (*state)[1][2];
|
||||
(*state)[1][2] = (*state)[3][2];
|
||||
(*state)[3][2] = temp;
|
||||
|
||||
// Rotate third row 3 columns to right
|
||||
temp = (*state)[0][3];
|
||||
(*state)[0][3] = (*state)[1][3];
|
||||
(*state)[1][3] = (*state)[2][3];
|
||||
(*state)[2][3] = (*state)[3][3];
|
||||
(*state)[3][3] = temp;
|
||||
}
|
||||
#endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
|
||||
|
||||
// Cipher is the main function that encrypts the PlainText.
|
||||
static void Cipher(state_t* state, const uint8_t* RoundKey)
|
||||
{
|
||||
uint8_t round = 0;
|
||||
|
||||
// Add the First round key to the state before starting the rounds.
|
||||
AddRoundKey(0, state, RoundKey);
|
||||
|
||||
// There will be Nr rounds.
|
||||
// The first Nr-1 rounds are identical.
|
||||
// These Nr rounds are executed in the loop below.
|
||||
// Last one without MixColumns()
|
||||
for (round = 1; ; ++round)
|
||||
{
|
||||
SubBytes(state);
|
||||
ShiftRows(state);
|
||||
if (round == Nr) {
|
||||
break;
|
||||
}
|
||||
MixColumns(state);
|
||||
AddRoundKey(round, state, RoundKey);
|
||||
}
|
||||
// Add round key to last round
|
||||
AddRoundKey(Nr, state, RoundKey);
|
||||
}
|
||||
|
||||
#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
|
||||
static void InvCipher(state_t* state, const uint8_t* RoundKey)
|
||||
{
|
||||
uint8_t round = 0;
|
||||
|
||||
// Add the First round key to the state before starting the rounds.
|
||||
AddRoundKey(Nr, state, RoundKey);
|
||||
|
||||
// There will be Nr rounds.
|
||||
// The first Nr-1 rounds are identical.
|
||||
// These Nr rounds are executed in the loop below.
|
||||
// Last one without InvMixColumn()
|
||||
for (round = (Nr - 1); ; --round)
|
||||
{
|
||||
InvShiftRows(state);
|
||||
InvSubBytes(state);
|
||||
AddRoundKey(round, state, RoundKey);
|
||||
if (round == 0) {
|
||||
break;
|
||||
}
|
||||
InvMixColumns(state);
|
||||
}
|
||||
|
||||
}
|
||||
#endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
|
||||
|
||||
/*****************************************************************************/
|
||||
/* Public functions: */
|
||||
/*****************************************************************************/
|
||||
#if defined(ECB) && (ECB == 1)
|
||||
|
||||
|
||||
void AES_ECB_encrypt(const struct AES_ctx* ctx, uint8_t* buf)
|
||||
{
|
||||
// The next function call encrypts the PlainText with the Key using AES algorithm.
|
||||
Cipher((state_t*)buf, ctx->RoundKey);
|
||||
}
|
||||
|
||||
void AES_ECB_decrypt(const struct AES_ctx* ctx, uint8_t* buf)
|
||||
{
|
||||
// The next function call decrypts the PlainText with the Key using AES algorithm.
|
||||
InvCipher((state_t*)buf, ctx->RoundKey);
|
||||
}
|
||||
|
||||
|
||||
#endif // #if defined(ECB) && (ECB == 1)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#if defined(CBC) && (CBC == 1)
|
||||
|
||||
|
||||
static void XorWithIv(uint8_t* buf, const uint8_t* Iv)
|
||||
{
|
||||
uint8_t i;
|
||||
for (i = 0; i < AES_BLOCKLEN; ++i) // The block in AES is always 128bit no matter the key size
|
||||
{
|
||||
buf[i] ^= Iv[i];
|
||||
}
|
||||
}
|
||||
|
||||
void AES_CBC_encrypt_buffer(struct AES_ctx *ctx, uint8_t* buf, size_t length)
|
||||
{
|
||||
size_t i;
|
||||
uint8_t *Iv = ctx->Iv;
|
||||
for (i = 0; i < length; i += AES_BLOCKLEN)
|
||||
{
|
||||
XorWithIv(buf, Iv);
|
||||
Cipher((state_t*)buf, ctx->RoundKey);
|
||||
Iv = buf;
|
||||
buf += AES_BLOCKLEN;
|
||||
}
|
||||
/* store Iv in ctx for next call */
|
||||
memcpy(ctx->Iv, Iv, AES_BLOCKLEN);
|
||||
}
|
||||
|
||||
void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length)
|
||||
{
|
||||
size_t i;
|
||||
uint8_t storeNextIv[AES_BLOCKLEN];
|
||||
for (i = 0; i < length; i += AES_BLOCKLEN)
|
||||
{
|
||||
memcpy(storeNextIv, buf, AES_BLOCKLEN);
|
||||
InvCipher((state_t*)buf, ctx->RoundKey);
|
||||
XorWithIv(buf, ctx->Iv);
|
||||
memcpy(ctx->Iv, storeNextIv, AES_BLOCKLEN);
|
||||
buf += AES_BLOCKLEN;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif // #if defined(CBC) && (CBC == 1)
|
||||
|
||||
|
||||
|
||||
#if defined(CTR) && (CTR == 1)
|
||||
|
||||
/* Symmetrical operation: same function for encrypting as for decrypting. Note any IV/nonce should never be reused with the same key */
|
||||
void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length)
|
||||
{
|
||||
uint8_t buffer[AES_BLOCKLEN];
|
||||
|
||||
size_t i;
|
||||
int bi;
|
||||
for (i = 0, bi = AES_BLOCKLEN; i < length; ++i, ++bi)
|
||||
{
|
||||
if (bi == AES_BLOCKLEN) /* we need to regen xor compliment in buffer */
|
||||
{
|
||||
|
||||
memcpy(buffer, ctx->Iv, AES_BLOCKLEN);
|
||||
Cipher((state_t*)buffer,ctx->RoundKey);
|
||||
|
||||
/* Increment Iv and handle overflow */
|
||||
for (bi = (AES_BLOCKLEN - 1); bi >= 0; --bi)
|
||||
{
|
||||
/* inc will overflow */
|
||||
if (ctx->Iv[bi] == 255)
|
||||
{
|
||||
ctx->Iv[bi] = 0;
|
||||
continue;
|
||||
}
|
||||
ctx->Iv[bi] += 1;
|
||||
break;
|
||||
}
|
||||
bi = 0;
|
||||
}
|
||||
|
||||
buf[i] = (buf[i] ^ buffer[bi]);
|
||||
}
|
||||
}
|
||||
|
||||
#endif // #if defined(CTR) && (CTR == 1)
|
||||
|
||||
91
common/aes.h
Normal file
91
common/aes.h
Normal file
@@ -0,0 +1,91 @@
|
||||
#ifndef _AES_H_
|
||||
#define _AES_H_
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stddef.h>
|
||||
|
||||
// #define the macros below to 1/0 to enable/disable the mode of operation.
|
||||
//
|
||||
// CBC enables AES encryption in CBC-mode of operation.
|
||||
// CTR enables encryption in counter-mode.
|
||||
// ECB enables the basic ECB 16-byte block algorithm. All can be enabled simultaneously.
|
||||
|
||||
// The #ifndef-guard allows it to be configured before #include'ing or at compile time.
|
||||
#ifndef CBC
|
||||
#define CBC 1
|
||||
#endif
|
||||
|
||||
#ifndef ECB
|
||||
#define ECB 1
|
||||
#endif
|
||||
|
||||
#ifndef CTR
|
||||
#define CTR 1
|
||||
#endif
|
||||
|
||||
|
||||
#define AES128 1
|
||||
//#define AES192 1
|
||||
//#define AES256 1
|
||||
|
||||
#define AES_BLOCKLEN 16 // Block length in bytes - AES is 128b block only
|
||||
|
||||
#if defined(AES256) && (AES256 == 1)
|
||||
#define AES_KEYLEN 32
|
||||
#define AES_keyExpSize 240
|
||||
#elif defined(AES192) && (AES192 == 1)
|
||||
#define AES_KEYLEN 24
|
||||
#define AES_keyExpSize 208
|
||||
#else
|
||||
#define AES_KEYLEN 16 // Key length in bytes
|
||||
#define AES_keyExpSize 176
|
||||
#endif
|
||||
|
||||
struct AES_ctx
|
||||
{
|
||||
uint8_t RoundKey[AES_keyExpSize];
|
||||
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
|
||||
uint8_t Iv[AES_BLOCKLEN];
|
||||
#endif
|
||||
};
|
||||
|
||||
void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key);
|
||||
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
|
||||
void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv);
|
||||
void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv);
|
||||
#endif
|
||||
|
||||
#if defined(ECB) && (ECB == 1)
|
||||
// buffer size is exactly AES_BLOCKLEN bytes;
|
||||
// you need only AES_init_ctx as IV is not used in ECB
|
||||
// NB: ECB is considered insecure for most uses
|
||||
void AES_ECB_encrypt(const struct AES_ctx* ctx, uint8_t* buf);
|
||||
void AES_ECB_decrypt(const struct AES_ctx* ctx, uint8_t* buf);
|
||||
|
||||
#endif // #if defined(ECB) && (ECB == !)
|
||||
|
||||
|
||||
#if defined(CBC) && (CBC == 1)
|
||||
// buffer size MUST be mutile of AES_BLOCKLEN;
|
||||
// Suggest https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7 for padding scheme
|
||||
// NOTES: you need to set IV in ctx via AES_init_ctx_iv() or AES_ctx_set_iv()
|
||||
// no IV should ever be reused with the same key
|
||||
void AES_CBC_encrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length);
|
||||
void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length);
|
||||
|
||||
#endif // #if defined(CBC) && (CBC == 1)
|
||||
|
||||
|
||||
#if defined(CTR) && (CTR == 1)
|
||||
|
||||
// Same function for encrypting as for decrypting.
|
||||
// IV is incremented for every block, and used after encryption as XOR-compliment for output
|
||||
// Suggesting https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7 for padding scheme
|
||||
// NOTES: you need to set IV in ctx with AES_init_ctx_iv() or AES_ctx_set_iv()
|
||||
// no IV should ever be reused with the same key
|
||||
void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length);
|
||||
|
||||
#endif // #if defined(CTR) && (CTR == 1)
|
||||
|
||||
|
||||
#endif // _AES_H_
|
||||
124
common/encrypt.h
Normal file
124
common/encrypt.h
Normal file
@@ -0,0 +1,124 @@
|
||||
#pragma once
|
||||
// This file implements a serial of data encoding methods.
|
||||
#include <vector>
|
||||
extern "C" {
|
||||
#include "aes.h"
|
||||
}
|
||||
|
||||
#define ALIGN16(n) ( (( (n) + 15) / 16) * 16 )
|
||||
|
||||
// Encoder interface. The default encoder will do nothing.
|
||||
class Encoder {
|
||||
public:
|
||||
virtual ~Encoder() {}
|
||||
// Encode data before compress.
|
||||
virtual void Encode(unsigned char* data, int len, unsigned char* param = 0) {}
|
||||
// Decode data after uncompress.
|
||||
virtual void Decode(unsigned char* data, int len, unsigned char* param = 0) {}
|
||||
};
|
||||
|
||||
// XOR Encoder implementation.
|
||||
class XOREncoder : public Encoder {
|
||||
private:
|
||||
std::vector<char> Keys;
|
||||
|
||||
public:
|
||||
XOREncoder(const std::vector<char>& keys = { 0 }) : Keys(keys) {}
|
||||
|
||||
virtual void Encode(unsigned char* data, int len, unsigned char* param = 0) {
|
||||
XOR(data, len, Keys);
|
||||
}
|
||||
|
||||
virtual void Decode(unsigned char* data, int len, unsigned char* param = 0) {
|
||||
static std::vector<char> reversed(Keys.rbegin(), Keys.rend());
|
||||
XOR(data, len, reversed);
|
||||
}
|
||||
|
||||
protected:
|
||||
void XOR(unsigned char* data, int len, const std::vector<char>& keys) const {
|
||||
for (char key : keys) {
|
||||
for (int i = 0; i < len; ++i) {
|
||||
data[i] ^= key;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// XOREncoder16 A simple Encoder for the TCP body. It's using for `HELL` protocol.
|
||||
// This method is provided by ChatGPT. Encode data according to the 6th and 7th elem.
|
||||
class XOREncoder16 : public Encoder {
|
||||
private:
|
||||
static uint16_t pseudo_random(uint16_t seed, int index) {
|
||||
return ((seed ^ (index * 251 + 97)) * 733) ^ (seed >> 3);
|
||||
}
|
||||
|
||||
void encrypt_internal(unsigned char* data, int len, unsigned char k1, unsigned char k2) const {
|
||||
uint16_t key = ((k1 << 8) | k2);
|
||||
for (int i = 0; i < len; ++i) {
|
||||
data[i] ^= (k1 + i * 13) ^ (k2 ^ (i << 1));
|
||||
}
|
||||
|
||||
// Two rounds of pseudo-random swaps
|
||||
for (int round = 0; round < 2; ++round) {
|
||||
for (int i = 0; i < len; ++i) {
|
||||
int j = pseudo_random(key, i + round * 100) % len;
|
||||
std::swap(data[i], data[j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void decrypt_internal(unsigned char* data, int len, unsigned char k1, unsigned char k2) const {
|
||||
uint16_t key = ((k1 << 8) | k2);
|
||||
for (int round = 1; round >= 0; --round) {
|
||||
for (int i = len - 1; i >= 0; --i) {
|
||||
int j = pseudo_random(key, i + round * 100) % len;
|
||||
std::swap(data[i], data[j]);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < len; ++i) {
|
||||
data[i] ^= (k1 + i * 13) ^ (k2 ^ (i << 1));
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef NO_AES
|
||||
void aes_encrypt(unsigned char* data, int len, const unsigned char* key, const unsigned char* iv) {
|
||||
if (!data || !key || !iv || len <= 0 || len % 16 != 0) {
|
||||
return; // AES CBC requires data length to be multiple of 16
|
||||
}
|
||||
|
||||
struct AES_ctx ctx;
|
||||
AES_init_ctx_iv(&ctx, key, iv);
|
||||
AES_CBC_encrypt_buffer(&ctx, data, len);
|
||||
}
|
||||
|
||||
void aes_decrypt(unsigned char* data, int len, const unsigned char* key, const unsigned char* iv) {
|
||||
if (!data || !key || !iv || len <= 0 || len % 16 != 0)
|
||||
return;
|
||||
|
||||
struct AES_ctx ctx;
|
||||
AES_init_ctx_iv(&ctx, key, iv);
|
||||
AES_CBC_decrypt_buffer(&ctx, data, len);
|
||||
}
|
||||
#endif
|
||||
|
||||
public:
|
||||
XOREncoder16() {}
|
||||
|
||||
void Encode(unsigned char* data, int len, unsigned char* param) override {
|
||||
if (param[6] == 0 && param[7] == 0) return;
|
||||
if (param[7] == 1) {
|
||||
#ifndef NO_AES
|
||||
static const unsigned char aes_key[16] = {
|
||||
0x5A, 0xC3, 0x17, 0xF0, 0x89, 0xB6, 0x4E, 0x7D, 0x1A, 0x22, 0x9F, 0xC8, 0xD3, 0xE6, 0x73, 0xB1 };
|
||||
return aes_encrypt(data, len, aes_key, param + 8);
|
||||
#endif
|
||||
}
|
||||
encrypt_internal(data, len, param[6], param[7]);
|
||||
}
|
||||
|
||||
void Decode(unsigned char* data, int len, unsigned char* param) override {
|
||||
if (param[6] == 0 && param[7] == 0) return;
|
||||
decrypt_internal(data, len, param[6], param[7]);
|
||||
}
|
||||
};
|
||||
172
common/header.h
Normal file
172
common/header.h
Normal file
@@ -0,0 +1,172 @@
|
||||
#pragma once
|
||||
// This file implements a serial of data header encoding methods.
|
||||
#include <cstring>
|
||||
#include <common/skCrypter.h>
|
||||
|
||||
#define MSG_HEADER "HELL"
|
||||
|
||||
enum HeaderEncType {
|
||||
HeaderEncUnknown = -1,
|
||||
HeaderEncNone,
|
||||
HeaderEncV1,
|
||||
};
|
||||
|
||||
// <20><><EFBFBD>ݱ<EFBFBD><DDB1><EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD><CABD><EFBFBD><EFBFBD>ʶ<EFBFBD><CAB6> + <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>(4<>ֽ<EFBFBD>) + <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>(4<>ֽ<EFBFBD>)
|
||||
const int FLAG_COMPLEN = 4;
|
||||
const int FLAG_LENGTH = 8;
|
||||
const int HDR_LENGTH = FLAG_LENGTH + 2 * sizeof(unsigned int);
|
||||
const int MIN_COMLEN = 8;
|
||||
|
||||
typedef void (*EncFun)(unsigned char* data, size_t length, unsigned char key);
|
||||
typedef void (*DecFun)(unsigned char* data, size_t length, unsigned char key);
|
||||
inline void default_encrypt(unsigned char* data, size_t length, unsigned char key) {
|
||||
data[FLAG_LENGTH - 2] = data[FLAG_LENGTH - 1] = 0;
|
||||
}
|
||||
inline void default_decrypt(unsigned char* data, size_t length, unsigned char key) {
|
||||
}
|
||||
|
||||
// <20><><EFBFBD>ܺ<EFBFBD><DCBA><EFBFBD>
|
||||
inline void encrypt(unsigned char* data, size_t length, unsigned char key) {
|
||||
if (key == 0) return;
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
unsigned char k = static_cast<unsigned char>(key ^ (i * 31)); // <20><>̬<EFBFBD>Ŷ<EFBFBD> key
|
||||
int value = static_cast<int>(data[i]);
|
||||
switch (i % 4) {
|
||||
case 0:
|
||||
value += k;
|
||||
break;
|
||||
case 1:
|
||||
value = value ^ k;
|
||||
break;
|
||||
case 2:
|
||||
value -= k;
|
||||
break;
|
||||
case 3:
|
||||
value = ~(value ^ k); // <20>ಽ<EFBFBD>任<EFBFBD><E4BBBB><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ȡ<EFBFBD><C8A1>
|
||||
break;
|
||||
}
|
||||
data[i] = static_cast<unsigned char>(value & 0xFF);
|
||||
}
|
||||
}
|
||||
|
||||
// <20><><EFBFBD>ܺ<EFBFBD><DCBA><EFBFBD>
|
||||
inline void decrypt(unsigned char* data, size_t length, unsigned char key) {
|
||||
if (key == 0) return;
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
unsigned char k = static_cast<unsigned char>(key ^ (i * 31));
|
||||
int value = static_cast<int>(data[i]);
|
||||
switch (i % 4) {
|
||||
case 0:
|
||||
value -= k;
|
||||
break;
|
||||
case 1:
|
||||
value = value ^ k;
|
||||
break;
|
||||
case 2:
|
||||
value += k;
|
||||
break;
|
||||
case 3:
|
||||
value = ~(value) ^ k; // <20><EFBFBD><E2BFAA><EFBFBD><EFBFBD>ȡ<EFBFBD><C8A1><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
||||
break;
|
||||
}
|
||||
data[i] = static_cast<unsigned char>(value & 0xFF);
|
||||
}
|
||||
}
|
||||
|
||||
inline EncFun GetHeaderEncoder(HeaderEncType type) {
|
||||
switch (type)
|
||||
{
|
||||
case HeaderEncNone:
|
||||
return default_encrypt;
|
||||
case HeaderEncV1:
|
||||
return encrypt;
|
||||
default:
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
typedef struct HeaderFlag {
|
||||
char Data[FLAG_LENGTH + 1];
|
||||
HeaderFlag(const char header[FLAG_LENGTH + 1]) {
|
||||
memcpy(Data, header, sizeof(Data));
|
||||
}
|
||||
char& operator[](int i) {
|
||||
return Data[i];
|
||||
}
|
||||
const char operator[](int i) const {
|
||||
return Data[i];
|
||||
}
|
||||
const char* data() const {
|
||||
return Data;
|
||||
}
|
||||
}HeaderFlag;
|
||||
|
||||
// д<><D0B4><EFBFBD><EFBFBD><EFBFBD>ݰ<EFBFBD><DDB0><EFBFBD>ͷ
|
||||
inline HeaderFlag GetHead(EncFun enc) {
|
||||
char header[FLAG_LENGTH + 1] = { 'H','E','L','L', 0 };
|
||||
HeaderFlag H(header);
|
||||
unsigned char key = time(0) % 256;
|
||||
H[FLAG_LENGTH - 2] = key;
|
||||
H[FLAG_LENGTH - 1] = ~key;
|
||||
enc((unsigned char*)H.data(), FLAG_COMPLEN, H[FLAG_LENGTH - 2]);
|
||||
return H;
|
||||
}
|
||||
|
||||
enum FlagType {
|
||||
FLAG_UNKNOWN = 0,
|
||||
FLAG_SHINE = 1,
|
||||
FLAG_FUCK = 2,
|
||||
FLAG_HELLO = 3,
|
||||
FLAG_HELL = 4,
|
||||
};
|
||||
|
||||
inline int compare(const char *flag, const char *magic, int len, DecFun dec, unsigned char key){
|
||||
unsigned char buf[32] = {};
|
||||
memcpy(buf, flag, MIN_COMLEN);
|
||||
dec(buf, len, key);
|
||||
if (memcmp(buf, magic, len) == 0) {
|
||||
memcpy((void*)flag, buf, MIN_COMLEN);
|
||||
return 0;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
// <20>ȶ<EFBFBD><C8B6><EFBFBD><EFBFBD>ݰ<EFBFBD>ǰ<EFBFBD><C7B0><EFBFBD><EFBFBD><EFBFBD>ֽ<EFBFBD>
|
||||
// <20><><EFBFBD><EFBFBD>ָ<EFBFBD><D6B8><EFBFBD>Ľ<EFBFBD><C4BD>ܺ<EFBFBD><DCBA><EFBFBD><EFBFBD>ȶ<EFBFBD><C8B6><EFBFBD><EFBFBD>ݰ<EFBFBD>ͷ<EFBFBD><CDB7><EFBFBD>н<EFBFBD><D0BD>ܣ<EFBFBD><DCA3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>бȶ<D0B1>
|
||||
inline FlagType CheckHead(const char* flag, DecFun dec) {
|
||||
FlagType type = FLAG_UNKNOWN;
|
||||
if (compare(flag, skCrypt(MSG_HEADER), FLAG_COMPLEN, dec, flag[6]) == 0) {
|
||||
type = FLAG_HELL;
|
||||
}
|
||||
else if (compare(flag, skCrypt("Shine"), 5, dec, 0) == 0) {
|
||||
type = FLAG_SHINE;
|
||||
}
|
||||
else if (compare(flag, skCrypt("<<FUCK>>"), 8, dec, 0) == 0) {
|
||||
type = FLAG_FUCK;
|
||||
}
|
||||
else if (compare(flag, skCrypt("Hello?"), 6, dec, flag[6]) == 0) {
|
||||
type = FLAG_HELLO;
|
||||
}
|
||||
else {
|
||||
type = FLAG_UNKNOWN;
|
||||
}
|
||||
return type;
|
||||
}
|
||||
|
||||
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ҫ<EFBFBD><D2AA><EFBFBD>Զ<EFBFBD><D4B6>ַ<EFBFBD><D6B7><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ա<EFBFBD><D4B1>ܼ<EFBFBD><DCBC><EFBFBD><EFBFBD>ϰ汾ͨѶЭ<D1B6><D0AD>
|
||||
inline FlagType CheckHead(char* flag, HeaderEncType& funcHit) {
|
||||
static const DecFun methods[] = { default_decrypt, decrypt };
|
||||
static const int methodNum = sizeof(methods) / sizeof(DecFun);
|
||||
char buffer[FLAG_LENGTH + 1] = {};
|
||||
for (int i = 0; i < methodNum; ++i) {
|
||||
memcpy(buffer, flag, FLAG_LENGTH);
|
||||
FlagType type = CheckHead(buffer, methods[i]);
|
||||
if (type != FLAG_UNKNOWN) {
|
||||
memcpy(flag, buffer, FLAG_LENGTH);
|
||||
funcHit = HeaderEncType(i);
|
||||
return type;
|
||||
}
|
||||
}
|
||||
funcHit = HeaderEncUnknown;
|
||||
return FLAG_UNKNOWN;
|
||||
}
|
||||
42
common/md5.h
Normal file
42
common/md5.h
Normal file
@@ -0,0 +1,42 @@
|
||||
#pragma once
|
||||
|
||||
#include <wincrypt.h>
|
||||
|
||||
inline std::string CalcMD5FromBytes(const BYTE* data, DWORD length) {
|
||||
HCRYPTPROV hProv = 0;
|
||||
HCRYPTHASH hHash = 0;
|
||||
BYTE hash[16]; // MD5 <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> 16 <20>ֽ<EFBFBD>
|
||||
DWORD hashLen = sizeof(hash);
|
||||
std::ostringstream oss;
|
||||
|
||||
if (!CryptAcquireContext(&hProv, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) {
|
||||
return "";
|
||||
}
|
||||
|
||||
if (!CryptCreateHash(hProv, CALG_MD5, 0, 0, &hHash)) {
|
||||
CryptReleaseContext(hProv, 0);
|
||||
return "";
|
||||
}
|
||||
|
||||
if (!CryptHashData(hHash, data, length, 0)) {
|
||||
CryptDestroyHash(hHash);
|
||||
CryptReleaseContext(hProv, 0);
|
||||
return "";
|
||||
}
|
||||
|
||||
if (!CryptGetHashParam(hHash, HP_HASHVAL, hash, &hashLen, 0)) {
|
||||
CryptDestroyHash(hHash);
|
||||
CryptReleaseContext(hProv, 0);
|
||||
return "";
|
||||
}
|
||||
|
||||
// ת<><D7AA>Ϊʮ<CEAA><CAAE><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ַ<EFBFBD><D6B7><EFBFBD>
|
||||
for (DWORD i = 0; i < hashLen; ++i) {
|
||||
oss << std::hex << std::setw(2) << std::setfill('0') << (int)hash[i];
|
||||
}
|
||||
|
||||
CryptDestroyHash(hHash);
|
||||
CryptReleaseContext(hProv, 0);
|
||||
|
||||
return oss.str();
|
||||
}
|
||||
Reference in New Issue
Block a user