mirror of
https://github.com/h3xduck/TripleCross.git
synced 2025-12-17 23:53:06 +08:00
86 lines
7.1 KiB
Plaintext
86 lines
7.1 KiB
Plaintext
\boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax
|
|
\babel@toc {english}{}
|
|
\defcounter {refsection}{0}\relax
|
|
\addvspace {10\p@ }
|
|
\defcounter {refsection}{0}\relax
|
|
\addvspace {10\p@ }
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {2.1}{\ignorespaces Sketch of the functionality of classic BPF\relax }}{6}{figure.caption.7}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {2.2}{\ignorespaces Execution of a BPF filter.\relax }}{7}{figure.caption.8}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {2.3}{\ignorespaces Table of supported classic BPF instructions, as shown by McCanne and Jacobson\cite {bpf_bsd_origin_bpf_page7}\relax }}{8}{figure.caption.10}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {2.4}{\ignorespaces Table explaining the column address modes in Figure\ref {fig:bpf_instructions}, as shown by McCanne and Jacobson\cite {bpf_bsd_origin_bpf_page8}\relax }}{9}{figure.caption.11}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {2.5}{\ignorespaces BPF bytecode tcpdump needs to set a filter to display packets directed to port 80.\relax }}{10}{figure.caption.12}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {2.6}{\ignorespaces Shortest path in the CFG described in the example of figure \ref {fig:bpf_tcpdump_example} that a packet needs to follow to be accepted by the BPF filter set with \textit {tcpdump}.\relax }}{11}{figure.caption.13}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {2.7}{\ignorespaces Figure showing overall eBPF architecture in the Linux kernel and the process of loading an eBPF program. Based on\cite {brendan_gregg_bpf_book} and \cite {ebpf_io_arch}.\relax }}{12}{figure.caption.15}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {2.8}{\ignorespaces Figure showing how the eBPF XDP and TC modules are integrated in the network processing in the Linux kernel.\relax }}{19}{figure.caption.23}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {2.9}{\ignorespaces Sketch of the compilation and loading process of a program developed with libbpf.\relax }}{25}{figure.caption.28}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {2.10}{\ignorespaces Memory translation of virtual pages to physical pages.\relax }}{28}{figure.caption.33}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {2.11}{\ignorespaces Major page fault after a page was removed from RAM.\relax }}{29}{figure.caption.34}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {2.12}{\ignorespaces Minor page fault after a fork() in which the page table was not copied completely.\relax }}{30}{figure.caption.35}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {2.13}{\ignorespaces Virtual memory architecture of a process\cite {mem_arch_proc}.\relax }}{31}{figure.caption.36}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {2.14}{\ignorespaces Simplified stack representation showing only stack frames.\relax }}{32}{figure.caption.37}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {2.15}{\ignorespaces Representation of push and pop operations in the stack.\relax }}{33}{figure.caption.39}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {2.16}{\ignorespaces Stack representation right before starting the function call process.\relax }}{34}{figure.caption.40}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {2.17}{\ignorespaces Stack representation right after the function preamble.\relax }}{34}{figure.caption.41}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {2.18}{\ignorespaces Execution hijack overwriting saved rip value.\relax }}{36}{figure.caption.42}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {2.19}{\ignorespaces Stack buffer overflow overwriting ret value.\relax }}{37}{figure.caption.43}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {2.20}{\ignorespaces Executing arbitrary code exploiting a buffer overflow vulnerability.\relax }}{38}{figure.caption.44}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {2.21}{\ignorespaces Steps for executing code sample using ROP.\relax }}{40}{figure.caption.45}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {2.22}{\ignorespaces Ethernet frame with TCP/IP packet.\relax }}{42}{figure.caption.46}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {2.23}{\ignorespaces TCP 3-way handshake.\relax }}{44}{figure.caption.48}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {2.24}{\ignorespaces TCP packet retransmission on timeout.\relax }}{45}{figure.caption.49}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {2.25}{\ignorespaces PLT stub for timerfd\_settime, seen from gdb-peda.\relax }}{48}{figure.caption.52}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {2.26}{\ignorespaces Inspecting address stored in GOT section before dynamic linking, seen from gdb-peda.\relax }}{48}{figure.caption.53}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {2.27}{\ignorespaces Inspecting address stored in GOT section after dynamic linking, seen from gdb-peda.\relax }}{48}{figure.caption.54}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {2.28}{\ignorespaces Glibc function to which PLT jumps using address stored at GOT, seen from gdb-peda.\relax }}{48}{figure.caption.55}%
|
|
\defcounter {refsection}{0}\relax
|
|
\addvspace {10\p@ }
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {3.1}{\ignorespaces Overview of stack scanning and writing technique.\relax }}{60}{figure.caption.58}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {3.2}{\ignorespaces Technique to duplicate a packet for exfiltrating data.\relax }}{64}{figure.caption.59}%
|
|
\defcounter {refsection}{0}\relax
|
|
\addvspace {10\p@ }
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {4.1}{\ignorespaces Initial setup for the ROP with eBPF technique.\relax }}{67}{figure.caption.60}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {4.2}{\ignorespaces Process memory after syscall exits and ROP code overwrites the stack.\relax }}{68}{figure.caption.61}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {4.3}{\ignorespaces Stack data is restored and program continues its execution.\relax }}{69}{figure.caption.62}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {4.4}{\ignorespaces Two runs of the same executable using ASLR, showing a library and two symbols.\relax }}{70}{figure.caption.63}%
|
|
\defcounter {refsection}{0}\relax
|
|
\contentsline {figure}{\numberline {4.5}{\ignorespaces Call to the glibc function, using objdump\relax }}{72}{figure.caption.64}%
|
|
\defcounter {refsection}{0}\relax
|
|
\addvspace {10\p@ }
|
|
\defcounter {refsection}{0}\relax
|
|
\addvspace {10\p@ }
|
|
\contentsfinish
|