Update project documentation and enhance malware detection engine
- Completely rewrite README.md with comprehensive project overview and technical details - Add detailed explanation of antivirus engine architecture and detection strategies - Implement multi-stage malware detection with machine learning, sandbox, and PE structure analysis - Update project configuration and add new source files for enhanced detection capabilities - Integrate XGBoost machine learning model with C++ export functionality - Improve sandbox environment with advanced module and LDR data table handling - Remove legacy Python prediction and training scripts in favor of C++ implementation
This commit is contained in:
@@ -66,6 +66,9 @@ inline BYTE* RvaToPtr(DWORD rva, BYTE* peBuffer) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// 在头文件中声明score函数(从外部导入)
|
||||
extern double score(double* input);
|
||||
|
||||
class MachineLearning {
|
||||
public:
|
||||
MachineLearning();
|
||||
@@ -86,6 +89,10 @@ class MachineLearning {
|
||||
// 读取文件到内存
|
||||
std::vector<uint8_t> ReadFileToBuffer(const std::string& filePath);
|
||||
|
||||
// 新增方法:使用XGBoost模型预测文件是否为恶意软件
|
||||
double PredictMalware(const uint8_t* buffer, size_t bufferSize);
|
||||
double PredictMalwareFromFile(const std::string& filePath);
|
||||
|
||||
private:
|
||||
// 特征提取辅助函数
|
||||
std::vector<double> EncodeProperties(
|
||||
|
||||
Reference in New Issue
Block a user