update
This commit is contained in:
@@ -29,28 +29,100 @@ auto getPeInfo(std::string inputFilePath) -> std::shared_ptr<BasicPeInfo> {
|
||||
sampleInfo->RecImageBase +
|
||||
(sampleInfo->isX64 ? sampleInfo->ntHead64->OptionalHeader.SizeOfImage
|
||||
: sampleInfo->ntHead32->OptionalHeader.SizeOfImage);
|
||||
printf("Debug - Memory mapping parameters:\n");
|
||||
printf("RecImageBase: 0x%llx\n", sampleInfo->RecImageBase);
|
||||
printf("peSize: 0x%llx\n", sampleInfo->peSize);
|
||||
printf("Page aligned base: 0x%llx\n", sampleInfo->RecImageBase & ~0xFFF);
|
||||
printf("Page aligned size: 0x%llx\n",
|
||||
(sampleInfo->peSize + 0xFFF) & ~0xFFF);
|
||||
sampleInfo->RecImageBase = sampleInfo->RecImageBase & ~0xFFF;
|
||||
sampleInfo->peSize = (sampleInfo->peSize + 0xFFF) & ~0xFFF;
|
||||
return sampleInfo;
|
||||
}
|
||||
int main() {
|
||||
auto sampleInfo = getPeInfo("z:\\Console_Test.exe");
|
||||
// auto sampleInfo = getPeInfo("C:\\ConsoleApplication1.exe");
|
||||
printf("input new file %s \n", sampleInfo->inputFilePath);
|
||||
printf("is x64: %d\n", sampleInfo->isX64);
|
||||
printf("is relocated: %d\n", sampleInfo->isRelocated);
|
||||
printf("RecImageBase: %llx\n", sampleInfo->RecImageBase);
|
||||
auto sandbox = std::make_shared<Sandbox>();
|
||||
sandbox->InitEnv(sampleInfo);
|
||||
sandbox->Run();
|
||||
auto [peBuffer, peSize] = sandbox->DumpPE();
|
||||
|
||||
if (peBuffer) {
|
||||
printf("peBuffer: %p\n", peBuffer.get());
|
||||
printf("peSize: %d\n", peSize);
|
||||
// peconv::dump_to_file("z:\\dumped_main.exe", peBuffer.get(), peSize);
|
||||
MachineLearning ml;
|
||||
ml.ExtractFeatures(peBuffer.get(), peSize, "z:\\features.txt");
|
||||
int doMl(int argc, char* argv[]) {
|
||||
// 检查命令行参数
|
||||
if (argc < 3) {
|
||||
std::cout << "用法: " << argv[0] << " <样本目录路径> <输出CSV路径>"
|
||||
<< std::endl;
|
||||
std::cout << "或者: " << argv[0]
|
||||
<< " -single <单个文件路径> <输出CSV路径>" << std::endl;
|
||||
return 1;
|
||||
}
|
||||
peBuffer.release();
|
||||
MachineLearning ml;
|
||||
|
||||
if (std::string(argv[1]) == "-single") {
|
||||
// 处理单个文件
|
||||
if (argc < 4) {
|
||||
std::cout << "处理单个文件时需要提供文件路径和输出CSV路径"
|
||||
<< std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::string filePath = argv[2];
|
||||
std::string csvPath = argv[3];
|
||||
|
||||
// 读取文件
|
||||
std::vector<uint8_t> buffer = ml.ReadFileToBuffer(filePath);
|
||||
if (buffer.empty()) {
|
||||
std::cerr << "无法读取文件: " << filePath << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
// 提取特征
|
||||
std::vector<double> features =
|
||||
ml.ExtractFeatures(buffer.data(), buffer.size());
|
||||
if (features.empty()) {
|
||||
std::cerr << "无法从文件提取特征: " << filePath << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
// 导出到CSV
|
||||
if (!ml.ExportToCSV(features, csvPath)) {
|
||||
std::cerr << "无法导出到CSV文件: " << csvPath << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::cout << "成功处理文件并导出特征到: " << csvPath << std::endl;
|
||||
} else {
|
||||
// 处理目录
|
||||
std::string dirPath = argv[1];
|
||||
std::string csvPath = argv[2];
|
||||
|
||||
std::cout << "开始处理目录: " << dirPath << std::endl;
|
||||
std::cout << "特征将导出到: " << csvPath << std::endl;
|
||||
|
||||
if (!ml.ProcessDirectory(dirPath, csvPath)) {
|
||||
std::cerr << "处理目录时发生错误" << std::endl;
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
};
|
||||
int main(int argc, char* argv[]) {
|
||||
doMl(argc, argv);
|
||||
/*
|
||||
auto sampleInfo = getPeInfo(
|
||||
"E:\\对战平台\\CrowAntiCheat\\CrowAntiCheat\\client\\Console_"
|
||||
"Test\\Release\\Console_Test.exe");
|
||||
// auto sampleInfo = getPeInfo("C:\\ConsoleApplication1.exe");
|
||||
printf("input new file %s \n", sampleInfo->inputFilePath);
|
||||
printf("is x64: %d\n", sampleInfo->isX64);
|
||||
printf("is relocated: %d\n", sampleInfo->isRelocated);
|
||||
printf("RecImageBase: %llx\n", sampleInfo->RecImageBase);
|
||||
auto sandbox = std::make_shared<Sandbox>();
|
||||
sandbox->InitEnv(sampleInfo);
|
||||
sandbox->Run();
|
||||
auto [peBuffer, peSize] = sandbox->DumpPE();
|
||||
|
||||
if (peBuffer) {
|
||||
printf("peBuffer: %p\n", peBuffer.get());
|
||||
printf("peSize: %d\n", peSize);
|
||||
// peconv::dump_to_file("z:\\dumped_main.exe", peBuffer.get(), peSize);
|
||||
MachineLearning ml;
|
||||
ml.ExtractFeatures(peBuffer.get(), peSize);
|
||||
}
|
||||
peBuffer.release();
|
||||
*/
|
||||
system("pause");
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -1,4 +1,6 @@
|
||||
#pragma once
|
||||
#define LOG_LEVEL 0
|
||||
|
||||
#define _CRT_SECURE_NO_WARNINGS
|
||||
#include <iostream>
|
||||
#include <iostream>
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
#include "ml.h"
|
||||
#include <Windows.h>
|
||||
#include <array>
|
||||
#include <limits>
|
||||
#include <algorithm>
|
||||
@@ -7,6 +8,7 @@
|
||||
#include <iomanip>
|
||||
#include <sstream>
|
||||
#include <cfloat>
|
||||
#include <filesystem>
|
||||
|
||||
// 确保std命名空间中的函数可用
|
||||
using std::max;
|
||||
@@ -177,15 +179,14 @@ MachineLearning::~MachineLearning() {
|
||||
// 析构函数,清理资源(如有必要)
|
||||
}
|
||||
|
||||
bool MachineLearning::ExtractFeatures(const uint8_t* buffer, size_t bufferSize,
|
||||
const std::string& outputPath) {
|
||||
std::vector<double> MachineLearning::ExtractFeatures(const uint8_t* buffer,
|
||||
size_t bufferSize) {
|
||||
// 使用libpeconv解析PE文件
|
||||
size_t v_size = 0;
|
||||
BYTE* peBuffer = peconv::load_pe_module(const_cast<BYTE*>(buffer),
|
||||
bufferSize, v_size, false, false);
|
||||
if (!peBuffer) {
|
||||
std::cerr << "无法加载PE文件" << std::endl;
|
||||
return false;
|
||||
return std::vector<double>();
|
||||
}
|
||||
|
||||
// 解析PE信息
|
||||
@@ -202,7 +203,7 @@ bool MachineLearning::ExtractFeatures(const uint8_t* buffer, size_t bufferSize,
|
||||
(PIMAGE_NT_HEADERS)peconv::get_nt_hdrs(peBuffer);
|
||||
if (!ntHeaders) {
|
||||
peconv::free_pe_buffer(peBuffer);
|
||||
return false;
|
||||
return std::vector<double>();
|
||||
}
|
||||
|
||||
// 从NT头部获取信息
|
||||
@@ -392,13 +393,10 @@ bool MachineLearning::ExtractFeatures(const uint8_t* buffer, size_t bufferSize,
|
||||
// 7. 节区数量
|
||||
allFeatures.push_back(static_cast<double>(sections.size()));
|
||||
|
||||
// 导出特征到CSV
|
||||
bool result = ExportToCSV(allFeatures, outputPath);
|
||||
|
||||
// 清理资源
|
||||
peconv::free_pe_buffer(peBuffer);
|
||||
|
||||
return result;
|
||||
return allFeatures;
|
||||
}
|
||||
|
||||
std::vector<double> MachineLearning::EncodeProperties(
|
||||
@@ -588,4 +586,124 @@ MachineLearning::GetOpcodeStatistics(const uint8_t* data, size_t dataSize,
|
||||
bool isX64, const PeInfo& peInfo) {
|
||||
// 此函数未使用,但保留实现接口
|
||||
return std::make_tuple(std::vector<double>(), std::vector<int>());
|
||||
}
|
||||
|
||||
std::vector<uint8_t> MachineLearning::ReadFileToBuffer(
|
||||
const std::string& filePath) {
|
||||
std::ifstream fileStream(filePath, std::ios::binary | std::ios::ate);
|
||||
if (!fileStream.is_open()) {
|
||||
std::cerr << "无法打开文件: " << filePath << std::endl;
|
||||
return std::vector<uint8_t>();
|
||||
}
|
||||
|
||||
// 获取文件大小
|
||||
std::streamsize fileSize = fileStream.tellg();
|
||||
fileStream.seekg(0, std::ios::beg);
|
||||
|
||||
// 分配缓冲区并读取文件
|
||||
std::vector<uint8_t> buffer(fileSize);
|
||||
if (!fileStream.read(reinterpret_cast<char*>(buffer.data()), fileSize)) {
|
||||
std::cerr << "读取文件失败: " << filePath << std::endl;
|
||||
return std::vector<uint8_t>();
|
||||
}
|
||||
|
||||
return buffer;
|
||||
}
|
||||
|
||||
bool MachineLearning::ProcessDirectory(const std::string& directoryPath,
|
||||
const std::string& outputCsvPath) {
|
||||
// 打开CSV文件用于写入
|
||||
std::ofstream csvFile(outputCsvPath);
|
||||
if (!csvFile.is_open()) {
|
||||
std::cerr << "无法创建CSV文件: " << outputCsvPath << std::endl;
|
||||
return false;
|
||||
}
|
||||
/*
|
||||
// 写入CSV标题行
|
||||
csvFile << "文件路径";
|
||||
for (size_t i = 0; i < _properties.size(); i++) {
|
||||
csvFile << ",属性_" << i;
|
||||
}
|
||||
for (size_t i = 0; i < _libraries.size(); i++) {
|
||||
csvFile << ",库_" << i;
|
||||
}
|
||||
csvFile << ",文件熵";
|
||||
for (size_t i = 0; i < 64; i++) { // 前64个字节特征
|
||||
csvFile << ",EP_" << i;
|
||||
}
|
||||
csvFile << ",节区数";
|
||||
csvFile << ",平均熵";
|
||||
csvFile << ",最大熵";
|
||||
csvFile << ",归一化平均熵";
|
||||
csvFile << ",节区大小比率";
|
||||
csvFile << ",代码比率";
|
||||
csvFile << ",节区计数";
|
||||
csvFile << std::endl;
|
||||
*/
|
||||
// 递归遍历目录
|
||||
WIN32_FIND_DATAA findData;
|
||||
std::string searchPath = directoryPath + "\\*";
|
||||
HANDLE hFind = FindFirstFileA(searchPath.c_str(), &findData);
|
||||
|
||||
if (hFind == INVALID_HANDLE_VALUE) {
|
||||
std::cerr << "无法访问目录: " << directoryPath << std::endl;
|
||||
csvFile.close();
|
||||
return false;
|
||||
}
|
||||
|
||||
int processedCount = 0;
|
||||
int failedCount = 0;
|
||||
|
||||
do {
|
||||
// 跳过 "." 和 ".." 目录
|
||||
if (strcmp(findData.cFileName, ".") == 0 ||
|
||||
strcmp(findData.cFileName, "..") == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
std::string currentPath = directoryPath + "\\" + findData.cFileName;
|
||||
|
||||
if (findData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) {
|
||||
// 递归处理子目录
|
||||
ProcessDirectory(currentPath, outputCsvPath);
|
||||
} else {
|
||||
// 处理文件
|
||||
std::vector<uint8_t> fileBuffer = ReadFileToBuffer(currentPath);
|
||||
if (fileBuffer.empty()) {
|
||||
std::cerr << "跳过文件: " << currentPath << " (读取失败)"
|
||||
<< std::endl;
|
||||
failedCount++;
|
||||
continue;
|
||||
}
|
||||
|
||||
// 提取特征
|
||||
std::vector<double> features =
|
||||
ExtractFeatures(fileBuffer.data(), fileBuffer.size());
|
||||
if (features.empty()) {
|
||||
std::cerr << "跳过文件: " << currentPath << " (特征提取失败)"
|
||||
<< std::endl;
|
||||
failedCount++;
|
||||
continue;
|
||||
}
|
||||
|
||||
// 写入CSV
|
||||
csvFile << currentPath;
|
||||
for (const auto& feature : features) {
|
||||
csvFile << "," << std::fixed << std::setprecision(6) << feature;
|
||||
}
|
||||
csvFile << std::endl;
|
||||
|
||||
processedCount++;
|
||||
if (processedCount % 100 == 0) {
|
||||
std::cout << "已处理 " << processedCount << " 个文件..."
|
||||
<< std::endl;
|
||||
}
|
||||
}
|
||||
} while (FindNextFileA(hFind, &findData));
|
||||
|
||||
FindClose(hFind);
|
||||
csvFile.close();
|
||||
printf("ML Process Result, success count: %d fail count: %d \n",
|
||||
processedCount, failedCount);
|
||||
return true;
|
||||
}
|
||||
@@ -62,9 +62,20 @@ class MachineLearning {
|
||||
MachineLearning();
|
||||
~MachineLearning();
|
||||
|
||||
// 主函数:提取特征并导出到CSV
|
||||
bool ExtractFeatures(const uint8_t* buffer, size_t bufferSize,
|
||||
const std::string& outputPath);
|
||||
// 提取特征并返回特征向量
|
||||
std::vector<double> ExtractFeatures(const uint8_t* buffer,
|
||||
size_t bufferSize);
|
||||
|
||||
// 将特征导出到CSV
|
||||
bool ExportToCSV(const std::vector<double>& features,
|
||||
const std::string& outputPath);
|
||||
|
||||
// 批量处理目录中的样本并生成CSV
|
||||
bool ProcessDirectory(const std::string& directoryPath,
|
||||
const std::string& outputCsvPath);
|
||||
|
||||
// 读取文件到内存
|
||||
std::vector<uint8_t> ReadFileToBuffer(const std::string& filePath);
|
||||
|
||||
private:
|
||||
// 特征提取辅助函数
|
||||
@@ -81,10 +92,6 @@ class MachineLearning {
|
||||
int GetOpcodeType(const void* code, bool isX64);
|
||||
double CalculateEntropy(const uint8_t* data, size_t size);
|
||||
|
||||
// 将特征导出到CSV
|
||||
bool ExportToCSV(const std::vector<double>& features,
|
||||
const std::string& outputPath);
|
||||
|
||||
// 常量定义
|
||||
std::vector<std::string> _properties;
|
||||
std::vector<std::string> _libraries;
|
||||
|
||||
@@ -155,7 +155,7 @@ class cFixImprot : public peconv::t_function_resolver {
|
||||
}
|
||||
}
|
||||
}
|
||||
__debugbreak();
|
||||
//__debugbreak();
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
@@ -191,12 +191,6 @@ Sandbox::~Sandbox() {
|
||||
}
|
||||
m_heapSegments.clear();
|
||||
|
||||
// 4. 清理栈内存
|
||||
if (m_stackBuffer) {
|
||||
free(m_stackBuffer);
|
||||
m_stackBuffer = nullptr;
|
||||
}
|
||||
|
||||
// 5. 最后清理底层资源
|
||||
if (m_csHandle) {
|
||||
cs_close(&m_csHandle);
|
||||
@@ -349,8 +343,9 @@ auto Sandbox::ResolveImportExports() -> void {
|
||||
}
|
||||
const auto exports = ResolveExport(module->real_base);
|
||||
for (const auto item : exports) {
|
||||
printf("import export: [%s] %s => %llx\n", module->name, item->name,
|
||||
item->function_address);
|
||||
if (LOG_LEVEL > 0) {
|
||||
printf("import export: [%s] %s => %llx\n", module->name, item->name, item->function_address);
|
||||
}
|
||||
module->export_function.push_back(item);
|
||||
}
|
||||
}
|
||||
@@ -359,7 +354,9 @@ auto Sandbox::ResolveImportExports() -> void {
|
||||
auto Sandbox::processImportModule(const moudle_import* importModule) -> void {
|
||||
for (auto module : m_moduleList) {
|
||||
if (strcmp(module->name, importModule->dll_name) == 0) {
|
||||
printf("skip module name: %s (already loaded)\n", module->name);
|
||||
if (LOG_LEVEL > 0) {
|
||||
printf("skip module name: %s (already loaded)\n", module->name);
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -2173,6 +2173,83 @@ auto Api_VirtualProtect(void* sandbox, uc_engine* uc, uint64_t address)
|
||||
&result);
|
||||
}
|
||||
|
||||
auto Api___set_app_type(void* sandbox, uc_engine* uc, uint64_t address)
|
||||
-> void {
|
||||
auto context = static_cast<Sandbox*>(sandbox);
|
||||
int32_t appType = 0;
|
||||
|
||||
// 获取参数
|
||||
if (context->GetPeInfo()->isX64) {
|
||||
// x64: rcx = appType
|
||||
uint64_t temp_type;
|
||||
uc_reg_read(uc, UC_X86_REG_RCX, &temp_type);
|
||||
appType = static_cast<int32_t>(temp_type);
|
||||
} else {
|
||||
// x86: 从栈上读取参数
|
||||
uint32_t esp_address = 0;
|
||||
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
|
||||
esp_address += 0x4; // 跳过返回地址
|
||||
uc_mem_read(uc, esp_address, &appType, sizeof(int32_t));
|
||||
}
|
||||
|
||||
// 简单地返回0表示成功
|
||||
int32_t result = 0;
|
||||
printf("[*] __set_app_type: AppType=%d\n", appType);
|
||||
|
||||
uc_reg_write(uc,
|
||||
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
|
||||
&result);
|
||||
}
|
||||
|
||||
auto Api___p__fmode(void* sandbox, uc_engine* uc, uint64_t address) -> void {
|
||||
auto sb = static_cast<Sandbox*>(sandbox);
|
||||
|
||||
// 检查是否已经创建了 _fmode 变量
|
||||
static uint64_t fmode_address = 0;
|
||||
static int32_t fmode_value = 0; // 默认为文本模式 (_O_TEXT)
|
||||
|
||||
if (fmode_address == 0) {
|
||||
// 为 _fmode 变量分配内存
|
||||
// 使用特定堆地址,与其他 API 一致
|
||||
uint64_t heap_handle =
|
||||
sb->GetPeInfo()->isX64 ? HEAP_ADDRESS_64 : HEAP_ADDRESS_32;
|
||||
|
||||
// 在堆上分配空间
|
||||
HeapSegment* segment = nullptr;
|
||||
auto it = sb->m_heapSegments.find(heap_handle);
|
||||
if (it != sb->m_heapSegments.end()) {
|
||||
segment = it->second;
|
||||
} else {
|
||||
// 创建新的堆段
|
||||
segment = sb->CreateHeapSegment(heap_handle, 0x10000);
|
||||
sb->m_heapSegments[heap_handle] = segment;
|
||||
}
|
||||
|
||||
if (segment) {
|
||||
fmode_address = sb->AllocateFromSegment(segment, sizeof(int32_t));
|
||||
if (fmode_address) {
|
||||
// 初始化 _fmode 为文本模式
|
||||
uc_mem_write(uc, fmode_address, &fmode_value, sizeof(int32_t));
|
||||
printf(
|
||||
"[*] __p__fmode: Allocated _fmode at 0x%llx with value "
|
||||
"%d\n",
|
||||
fmode_address, fmode_value);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 返回 _fmode 变量的地址
|
||||
printf("[*] __p__fmode: Returning address 0x%llx\n", fmode_address);
|
||||
|
||||
// 设置返回值
|
||||
if (sb->GetPeInfo()->isX64) {
|
||||
uc_reg_write(uc, UC_X86_REG_RAX, &fmode_address);
|
||||
} else {
|
||||
uint32_t eax = static_cast<uint32_t>(fmode_address);
|
||||
uc_reg_write(uc, UC_X86_REG_EAX, &eax);
|
||||
}
|
||||
}
|
||||
|
||||
auto Sandbox::InitApiHooks() -> void {
|
||||
auto FakeApi_GetSystemTimeAsFileTime =
|
||||
_fakeApi{.func = Api_GetSystemTimeAsFileTime, .paramCount = 1};
|
||||
@@ -2241,6 +2318,9 @@ auto Sandbox::InitApiHooks() -> void {
|
||||
_fakeApi{.func = Api_SetUnhandledExceptionFilter, .paramCount = 1};
|
||||
auto FakeApi_VirtualProtect =
|
||||
_fakeApi{.func = Api_VirtualProtect, .paramCount = 4};
|
||||
auto FakeApi___set_app_type =
|
||||
_fakeApi{.func = Api___set_app_type, .paramCount = 1};
|
||||
auto FakeApi___p__fmode = _fakeApi{.func = Api___p__fmode, .paramCount = 0};
|
||||
|
||||
api_map = {
|
||||
{"GetSystemTimeAsFileTime",
|
||||
@@ -2300,6 +2380,8 @@ auto Sandbox::InitApiHooks() -> void {
|
||||
{"SetUnhandledExceptionFilter",
|
||||
std::make_shared<_fakeApi>(FakeApi_SetUnhandledExceptionFilter)},
|
||||
{"VirtualProtect", std::make_shared<_fakeApi>(FakeApi_VirtualProtect)},
|
||||
{"__set_app_type", std::make_shared<_fakeApi>(FakeApi___set_app_type)},
|
||||
{"__p__fmode", std::make_shared<_fakeApi>(FakeApi___p__fmode)},
|
||||
};
|
||||
}
|
||||
auto Sandbox::EmulateApi(uc_engine* uc, uint64_t address, uint64_t rip,
|
||||
@@ -2310,16 +2392,13 @@ auto Sandbox::EmulateApi(uc_engine* uc, uint64_t address, uint64_t rip,
|
||||
|
||||
// 获取参数数量
|
||||
int paramCount = it->second->paramCount;
|
||||
|
||||
// 获取当前的栈指针
|
||||
uint32_t esp;
|
||||
uint64_t rsp;
|
||||
uc_reg_read(uc,
|
||||
this->GetPeInfo()->isX64 ? UC_X86_REG_RSP : UC_X86_REG_ESP,
|
||||
&rsp);
|
||||
|
||||
// 从栈上读取返回地址
|
||||
uint64_t return_address;
|
||||
if (this->GetPeInfo()->isX64) { // 64位系统
|
||||
uc_reg_read(uc, UC_X86_REG_RSP, &rsp);
|
||||
// 读取8字节的返回地址
|
||||
uc_mem_read(uc, rsp, &return_address, 8);
|
||||
|
||||
@@ -2332,21 +2411,24 @@ auto Sandbox::EmulateApi(uc_engine* uc, uint64_t address, uint64_t rip,
|
||||
uc_reg_write(uc, UC_X86_REG_RIP, &return_address);
|
||||
} else { // 32位系统
|
||||
// 读取4字节的返回地址
|
||||
uint32_t return_address_32;
|
||||
uc_mem_read(uc, rsp, &return_address_32, 4);
|
||||
uc_reg_read(uc, UC_X86_REG_ESP, &esp);
|
||||
uc_mem_read(uc, esp, &return_address, 4);
|
||||
|
||||
uint32_t return_address_32;
|
||||
uc_mem_read(uc, esp, &return_address_32, 4);
|
||||
printf("return_address_32: %x\n", return_address_32);
|
||||
// x86下,所有参数都通过栈传递
|
||||
// 调整栈指针:每个参数4字节 + 返回地址4字节
|
||||
rsp += (paramCount * 4) + 4;
|
||||
|
||||
esp += (paramCount * 4) + 4;
|
||||
// 设置EIP为返回地址
|
||||
uc_reg_write(uc, UC_X86_REG_EIP, &return_address_32);
|
||||
}
|
||||
if (this->GetPeInfo()->isX64) {
|
||||
uc_reg_write(uc, UC_X86_REG_RSP, &rsp);
|
||||
} else {
|
||||
uc_reg_write(uc, UC_X86_REG_ESP, &esp);
|
||||
}
|
||||
|
||||
// 更新栈指针,使用正确的寄存器
|
||||
uc_reg_write(uc,
|
||||
this->GetPeInfo()->isX64 ? UC_X86_REG_RSP : UC_X86_REG_ESP,
|
||||
&rsp);
|
||||
return;
|
||||
}
|
||||
printf("ApiName: %s not found\n", ApiName.c_str());
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
#include "sandbox_callbacks.h"
|
||||
#define LOG_LEVEL 0
|
||||
namespace sandboxCallbacks {
|
||||
void handleCodeRun(uc_engine* uc, uint64_t address, uint32_t size,
|
||||
void* userData) {
|
||||
@@ -236,6 +235,7 @@ void handleMemoryUnmapRead(uc_engine* uc, uc_mem_type type, uint64_t address,
|
||||
printf("[handleMemoryUnmapRead] Address: %p Size: %p Value: %p\n", address,
|
||||
size, value);
|
||||
dumpVmenv(uc, userData);
|
||||
__debugbreak();
|
||||
}
|
||||
|
||||
void handleMemoryWrite(uc_engine* uc, uc_mem_type type, uint64_t address,
|
||||
|
||||
Reference in New Issue
Block a user