#include "sandbox.h" #include "sandbox_callbacks.h" #include "sandbox_api_winhttp.h" std::string getDllNameFromApiSetMap(const std::string& apiSet); auto Api_RegOpenKeyExW(void* sandbox, uc_engine* uc, uint64_t address) -> void; auto Api_RegCloseKey(void* sandbox, uc_engine* uc, uint64_t address) -> void; auto Api_AreFileApisANSI(void* sandbox, uc_engine* uc, uint64_t address) -> void; auto Api_WideCharToMultiByte(void* sandbox, uc_engine* uc, uint64_t address) -> void; auto Api_InitializeSListHead(void* sandbox, uc_engine* uc, uint64_t address) -> void; ; auto Api_GetEnvironmentStringsW(void* sandbox, uc_engine* uc, uint64_t address) -> void; ; auto Api_FreeEnvironmentStringsW(void* sandbox, uc_engine* uc, uint64_t address) -> void; auto Api_GetProcessHeap(void* sandbox, uc_engine* uc, uint64_t address) -> void; auto Api_HeapAlloc(void* sandbox, uc_engine* uc, uint64_t address) -> void; auto Api_HeapFree(void* sandbox, uc_engine* uc, uint64_t address) -> void; auto Api_TlsGetValue(void* sandbox, uc_engine* uc, uint64_t address) -> void; auto Api_SetLastError(void* sandbox, uc_engine* uc, uint64_t address) -> void; auto Api_EnterCriticalSection(void* sandbox, uc_engine* uc, uint64_t address) -> void; auto Api_LeaveCriticalSection(void* sandbox, uc_engine* uc, uint64_t address) -> void; auto Api_GetStartupInfoW(void* sandbox, uc_engine* uc, uint64_t address) -> void; auto Api_GetStdHandle(void* sandbox, uc_engine* uc, uint64_t address) -> void; auto Api_GetFileType(void* sandbox, uc_engine* uc, uint64_t address) -> void; auto Api_HeapCreate(void* sandbox, uc_engine* uc, uint64_t address) -> void; auto Api_GetCommandLineA(void* sandbox, uc_engine* uc, uint64_t address) -> void; auto Api_GetCommandLineW(void* sandbox, uc_engine* uc, uint64_t address) -> void; auto Api_GetACP(void* sandbox, uc_engine* uc, uint64_t address) -> void; auto Api_GetCPInfo(void* sandbox, uc_engine* uc, uint64_t address) -> void; auto Api_MultiByteToWideChar(void* sandbox, uc_engine* uc, uint64_t address) -> void; auto Api_SHGetKnownFolderPath(void* sandbox, uc_engine* uc, uint64_t address) -> void; auto Api_EncodePointer(void* sandbox, uc_engine* uc, uint64_t address) -> void; auto Api_QueryPerformanceCounter(void* sandbox, uc_engine* uc, uint64_t address) -> void { auto context = static_cast(sandbox); uint64_t return_params_address = 0; LARGE_INTEGER data; BOOL origin_return_value = QueryPerformanceCounter(&data); if (context->GetPeInfo()->isX64) { uc_reg_read(uc, UC_X86_REG_RCX, &return_params_address); } else { uint64_t ebp_address = 0; uc_reg_read(uc, UC_X86_REG_ESP, &ebp_address); ebp_address += 0x4; uc_mem_read(uc, ebp_address, &return_params_address, 0x4); } uc_mem_write(uc, return_params_address, &data, sizeof(LARGE_INTEGER)); uc_reg_write(uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX, &origin_return_value); } auto Api_GetSystemTimeAsFileTime(void* sandbox, uc_engine* uc, uint64_t address) -> void { uint64_t rcx; FILETIME file_time; GetSystemTimeAsFileTime(&file_time); uc_reg_read(uc, UC_X86_REG_RCX, &rcx); uc_mem_write(uc, rcx, &file_time, sizeof(FILETIME)); } void Api_GetCurrentThreadId(void* sandbox, uc_engine* uc, uint64_t address) { auto context = static_cast(sandbox); if (context->GetPeInfo()->isX64) { uc_reg_write(uc, UC_X86_REG_RAX, &context->GetTeb64()->ClientId.UniqueThread); } else { uc_reg_write(uc, UC_X86_REG_RAX, &context->GetTeb32()->ClientId.UniqueThread); } } void Api_GetCurrentProcessId(void* sandbox, uc_engine* uc, uint64_t address) { auto context = static_cast(sandbox); if (context->GetPeInfo()->isX64) { uc_reg_write(uc, UC_X86_REG_RAX, &context->GetTeb64()->ClientId.UniqueProcess); } else { uc_reg_write(uc, UC_X86_REG_RAX, &context->GetTeb32()->ClientId.UniqueProcess); } } auto Api_LoadLibraryA(void* sandbox, uc_engine* uc, uint64_t address) -> void { auto context = static_cast(sandbox); uint64_t params_address = 0; // 获取参数地址 if (context->GetPeInfo()->isX64) { uc_reg_read(uc, UC_X86_REG_RCX, ¶ms_address); } else { uint64_t ebp_address = 0; uc_reg_read(uc, UC_X86_REG_ESP, &ebp_address); ebp_address += 0x4; uc_mem_read(uc, ebp_address, ¶ms_address, 0x4); } uint64_t return_address = 0; std::string module_name; char buffer[MAX_PATH]; size_t i = 0; // 读取模块名称 if (params_address != 0) { do { uint8_t byte; uc_mem_read(uc, params_address + i, &byte, 1); buffer[i] = byte; i++; } while (buffer[i - 1] != 0 && i < MAX_PATH); if (i > 0 && i < MAX_PATH) { module_name = std::string(buffer); // 确保模块名以.dll结尾(不区分大小写) if (module_name.length() > 4) { std::string ext = module_name.substr(module_name.length() - 4); if (_stricmp(ext.c_str(), ".dll") != 0) { module_name += ".dll"; } } else { module_name += ".dll"; } std::string fuck_up_api_ms = module_name; if (fuck_up_api_ms.find("api-ms-") != std::string::npos) { module_name = getDllNameFromApiSetMap(fuck_up_api_ms); if (module_name.size() <= 1) __debugbreak(); } // 从模块列表中查找对应模块 for (const auto& module : context->GetModuleList()) { if (_stricmp((*module).name, module_name.c_str()) == 0) { return_address = (*module).base; break; } } } } printf("[*] LoadLibraryA: Module=%s, Base=0x%llx\n", module_name.c_str(), return_address); uc_reg_write(uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX, &return_address); } auto Api_LoadLibraryExW(void* sandbox, uc_engine* uc, uint64_t address) -> void { auto context = static_cast(sandbox); uint64_t module_name_address = 0; uint64_t flags = 0; // 获取参数 if (context->GetPeInfo()->isX64) { // x64: rcx = lpLibFileName, r8 = dwFlags uc_reg_read(uc, UC_X86_REG_RCX, &module_name_address); uc_reg_read(uc, UC_X86_REG_R8, &flags); } else { // x86: 从栈上读取参数 uint64_t esp_address = 0; uc_reg_read(uc, UC_X86_REG_ESP, &esp_address); esp_address += 0x4; // 跳过返回地址 uc_mem_read(uc, esp_address, &module_name_address, 0x4); esp_address += 0x8; // 跳过hFile参数 uc_mem_read(uc, esp_address, &flags, 0x4); } uint64_t return_address = 0; std::wstring module_name; wchar_t buffer[MAX_PATH]; size_t i = 0; bool isApiSetMapMeme = false; // 读取宽字符模块名称 if (module_name_address != 0) { do { uint16_t wchar; uc_mem_read(uc, module_name_address + (i * 2), &wchar, 2); buffer[i] = wchar; i++; } while (buffer[i - 1] != 0 && i < MAX_PATH); if (i > 0 && i < MAX_PATH) { module_name = std::wstring(buffer); std::string ansi_name(module_name.begin(), module_name.end()); std::string fuck_up_api_ms = ansi_name; if (ansi_name.length() > 4) { std::string ext = ansi_name.substr(ansi_name.length() - 4); if (_stricmp(ext.c_str(), ".dll") != 0) { ansi_name += ".dll"; } } else { ansi_name += ".dll"; } if (ansi_name.find("api-ms-") != std::string::npos) { ansi_name = getDllNameFromApiSetMap(ansi_name); isApiSetMapMeme = true; // if (ansi_name.size() <= 1) __debugbreak(); } // 从模块列表中查找对应模块 for (const auto& module : context->GetModuleList()) { if (_stricmp((*module).name, ansi_name.c_str()) == 0) { return_address = (*module).base; break; } } } } printf("[*] LoadLibraryExW: Module=%ls, Flags=0x%llx, Base=0x%llx\n", module_name.c_str(), flags, return_address); if (return_address == 0 && isApiSetMapMeme) { // 找不到就不管他了,操 return_address = 0x1337; } uc_reg_write(uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX, &return_address); } void Api_GetLastError(void* sandbox, uc_engine* uc, uint64_t address) { auto context = static_cast(sandbox); DWORD last_error = 0; // 从TEB中获取LastError if (context->GetPeInfo()->isX64) { last_error = context->GetTeb64()->LastErrorValue; } else { last_error = context->GetTeb32()->LastErrorValue; } printf("[*] GetLastError: LastError=0x%x\n", last_error); uc_reg_write(uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX, &last_error); } auto Api_InitializeCriticalSectionAndSpinCount(void* sandbox, uc_engine* uc, uint64_t address) -> void { auto context = static_cast(sandbox); uint64_t lpCriticalSection = 0; uint32_t dwSpinCount = 0; BOOL success = TRUE; // 默认返回成功 // 获取参数 if (context->GetPeInfo()->isX64) { // x64: rcx = lpCriticalSection, rdx = dwSpinCount uc_reg_read(uc, UC_X86_REG_RCX, &lpCriticalSection); uint64_t temp_spin_count = 0; uc_reg_read(uc, UC_X86_REG_RDX, &temp_spin_count); dwSpinCount = static_cast(temp_spin_count); } else { // x86: 从栈上读取参数 uint32_t esp_address = 0; uint32_t temp_cs = 0; uc_reg_read(uc, UC_X86_REG_ESP, &esp_address); esp_address += 0x4; // 跳过返回地址 uc_mem_read(uc, esp_address, &temp_cs, sizeof(uint32_t)); lpCriticalSection = temp_cs; esp_address += 0x4; uc_mem_read(uc, esp_address, &dwSpinCount, sizeof(uint32_t)); } if (lpCriticalSection != 0) { // 初始化关键段结构 RTL_CRITICAL_SECTION cs = {0}; cs.LockCount = -1; // 初始未锁定状态 cs.RecursionCount = 0; // 初始递归计数为0 cs.SpinCount = dwSpinCount; // 设置自旋计数 cs.OwningThread = 0; // 初始无拥有线程 cs.LockSemaphore = 0; // 初始信号量为0 // 写入初始化后的结构到目标内存 uc_mem_write(uc, lpCriticalSection, &cs, sizeof(RTL_CRITICAL_SECTION)); } else { success = FALSE; // 设置LastError DWORD error = ERROR_INVALID_PARAMETER; if (context->GetPeInfo()->isX64) { context->GetTeb64()->LastErrorValue = error; } else { context->GetTeb32()->LastErrorValue = error; } } printf( "[*] InitializeCriticalSectionAndSpinCount: CS=0x%llx, SpinCount=0x%x, " "Success=%d\n", lpCriticalSection, dwSpinCount, success); uc_reg_write(uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX, &success); } auto Api_InitializeCriticalSectionEx(void* sandbox, uc_engine* uc, uint64_t address) -> void { auto context = static_cast(sandbox); uint64_t lpCriticalSection = 0; uint32_t dwSpinCount = 0; uint32_t dwFlags = 0; BOOL success = TRUE; // 默认返回成功 // 获取参数 if (context->GetPeInfo()->isX64) { // x64: rcx = lpCriticalSection, rdx = dwSpinCount, r8 = dwFlags uc_reg_read(uc, UC_X86_REG_RCX, &lpCriticalSection); uint64_t temp_spin_count = 0; uc_reg_read(uc, UC_X86_REG_RDX, &temp_spin_count); dwSpinCount = static_cast(temp_spin_count); uint64_t temp_flags = 0; uc_reg_read(uc, UC_X86_REG_R8, &temp_flags); dwFlags = static_cast(temp_flags); } else { // x86: 从栈上读取参数 uint32_t esp_address = 0; uint32_t temp_cs = 0; uc_reg_read(uc, UC_X86_REG_ESP, &esp_address); esp_address += 0x4; // 跳过返回地址 uc_mem_read(uc, esp_address, &temp_cs, sizeof(uint32_t)); lpCriticalSection = temp_cs; esp_address += 0x4; uc_mem_read(uc, esp_address, &dwSpinCount, sizeof(uint32_t)); esp_address += 0x4; uc_mem_read(uc, esp_address, &dwFlags, sizeof(uint32_t)); } if (lpCriticalSection != 0) { // 初始化关键段结构 RTL_CRITICAL_SECTION cs = {0}; cs.LockCount = -1; // 初始未锁定状态 cs.RecursionCount = 0; // 初始递归计数为0 cs.SpinCount = dwSpinCount; // 设置自旋计数 cs.OwningThread = 0; // 初始无拥有线程 cs.LockSemaphore = 0; // 初始信号量为0 // 处理特殊标志 // CRITICAL_SECTION_FLAG_NO_DEBUG_INFO = 0x01000000 // CRITICAL_SECTION_FLAG_DYNAMIC_SPIN = 0x02000000 // CRITICAL_SECTION_FLAG_STATIC_INIT = 0x04000000 // CRITICAL_SECTION_FLAG_RESOURCE_TYPE = 0x08000000 // CRITICAL_SECTION_FLAG_FORCE_DEBUG_INFO = 0x10000000 // 写入初始化后的结构到目标内存 uc_mem_write(uc, lpCriticalSection, &cs, sizeof(RTL_CRITICAL_SECTION)); } else { success = FALSE; // 设置LastError DWORD error = ERROR_INVALID_PARAMETER; if (context->GetPeInfo()->isX64) { context->GetTeb64()->LastErrorValue = error; } else { context->GetTeb32()->LastErrorValue = error; } } printf( "[*] InitializeCriticalSectionEx: CS=0x%llx, SpinCount=0x%x, " "Flags=0x%x, " "Success=%d\n", lpCriticalSection, dwSpinCount, dwFlags, success); uc_reg_write(uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX, &success); } auto Api_TlsAlloc(void* sandbox, uc_engine* uc, uint64_t address) -> void { auto context = static_cast(sandbox); DWORD tls_index = TLS_OUT_OF_INDEXES; // 默认返回失败值 // 获取TEB结构 if (context->GetPeInfo()->isX64) { auto teb = context->GetTeb64(); // 在TLS槽中查找第一个可用的位置 for (DWORD i = 0; i < 64; i++) { // TEB中TlsSlots数组大小为64 if (teb->TlsSlots[i] == (void*)0x1337ffffff) { teb->TlsSlots[i] = (void*)0; // 标记为已使用 tls_index = i; break; } } } else { auto teb = context->GetTeb32(); // 在TLS槽中查找第一个可用的位置 for (DWORD i = 0; i < 64; i++) { // TEB中TlsSlots数组大小为64 if (teb->TlsSlots[i] == 0x1337) { teb->TlsSlots[i] = 0; // 标记为已使用 tls_index = i; break; } } } if (tls_index == TLS_OUT_OF_INDEXES) { // 设置LastError为没有可用的TLS索引 DWORD error = ERROR_NO_MORE_ITEMS; if (context->GetPeInfo()->isX64) { context->GetTeb64()->LastErrorValue = error; } else { context->GetTeb32()->LastErrorValue = error; } } printf("[*] TlsAlloc: Allocated TLS Index=0x%x\n", tls_index); // 返回分配的TLS索引 uc_reg_write(uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX, &tls_index); } auto Api_TlsSetValue(void* sandbox, uc_engine* uc, uint64_t address) -> void { auto context = static_cast(sandbox); uint32_t dwTlsIndex = 0; uint64_t lpTlsValue = 0; BOOL success = FALSE; // 获取参数 if (context->GetPeInfo()->isX64) { // x64: rcx = dwTlsIndex, rdx = lpTlsValue uint64_t temp_index; uc_reg_read(uc, UC_X86_REG_RCX, &temp_index); dwTlsIndex = static_cast(temp_index); uc_reg_read(uc, UC_X86_REG_RDX, &lpTlsValue); } else { // x86: 从栈上读取参数 uint32_t esp_address = 0; uc_reg_read(uc, UC_X86_REG_ESP, &esp_address); esp_address += 0x4; // 跳过返回地址 uc_mem_read(uc, esp_address, &dwTlsIndex, sizeof(uint32_t)); esp_address += 0x4; uint32_t temp_value; uc_mem_read(uc, esp_address, &temp_value, sizeof(uint32_t)); lpTlsValue = temp_value; } // 检查索引是否有效(小于64) if (dwTlsIndex < 64) { if (context->GetPeInfo()->isX64) { auto teb = context->GetTeb64(); // 检查槽是否已分配(不为nullptr) if (teb->TlsSlots[dwTlsIndex] != (void*)0x1337ffffff) { teb->TlsSlots[dwTlsIndex] = (void*)lpTlsValue; success = TRUE; } } else { auto teb = context->GetTeb32(); // 检查槽是否已分配(不为0) if (teb->TlsSlots[dwTlsIndex] != 0x1337) { teb->TlsSlots[dwTlsIndex] = static_cast(lpTlsValue); success = TRUE; } } } if (!success) { // 设置LastError DWORD error = ERROR_INVALID_PARAMETER; if (context->GetPeInfo()->isX64) { context->GetTeb64()->LastErrorValue = error; } else { context->GetTeb32()->LastErrorValue = error; } } printf("[*] TlsSetValue: Index=0x%x, Value=0x%llx, Success=%d\n", dwTlsIndex, lpTlsValue, success); uc_reg_write(uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX, &success); } auto Api_DeleteCriticalSection(void* sandbox, uc_engine* uc, uint64_t address) -> void { auto context = static_cast(sandbox); uint64_t lpCriticalSection = 0; // 获取参数 if (context->GetPeInfo()->isX64) { // x64: rcx = lpCriticalSection uc_reg_read(uc, UC_X86_REG_RCX, &lpCriticalSection); } else { // x86: 从栈上读取参数 uint32_t esp_address = 0; uint32_t temp_cs = 0; uc_reg_read(uc, UC_X86_REG_ESP, &esp_address); esp_address += 0x4; // 跳过返回地址 uc_mem_read(uc, esp_address, &temp_cs, sizeof(uint32_t)); lpCriticalSection = temp_cs; } if (lpCriticalSection != 0) { // 读取现有的关键段结构 RTL_CRITICAL_SECTION cs; uc_mem_read(uc, lpCriticalSection, &cs, sizeof(RTL_CRITICAL_SECTION)); // 检查是否有线程仍在等待 if (cs.LockCount >= 0) { // 有线程正在等待,设置错误 DWORD error = ERROR_SEM_IS_SET; if (context->GetPeInfo()->isX64) { context->GetTeb64()->LastErrorValue = error; } else { context->GetTeb32()->LastErrorValue = error; } } // 清零内存,表示删除 memset(&cs, 0, sizeof(RTL_CRITICAL_SECTION)); uc_mem_write(uc, lpCriticalSection, &cs, sizeof(RTL_CRITICAL_SECTION)); } printf("[*] DeleteCriticalSection: CS=0x%llx\n", lpCriticalSection); } auto Api_IsProcessorFeaturePresent(void* sandbox, uc_engine* uc, uint64_t address) -> void { auto context = static_cast(sandbox); uint32_t feature_number = 0; BOOL is_supported = FALSE; // 获取参数 if (context->GetPeInfo()->isX64) { // x64: rcx = FeatureNumber uint64_t temp_feature; uc_reg_read(uc, UC_X86_REG_RCX, &temp_feature); feature_number = static_cast(temp_feature); } else { // x86: 从栈上读取参数 uint32_t esp_address = 0; uc_reg_read(uc, UC_X86_REG_ESP, &esp_address); esp_address += 0x4; // 跳过返回地址 uc_mem_read(uc, esp_address, &feature_number, sizeof(uint32_t)); } // 模拟一些常见的处理器特性 switch (feature_number) { case PF_FLOATING_POINT_PRECISION_ERRATA: // 0 is_supported = FALSE; break; case PF_FLOATING_POINT_EMULATED: // 1 is_supported = FALSE; break; case PF_COMPARE_EXCHANGE_DOUBLE: // 2 is_supported = TRUE; break; case PF_MMX_INSTRUCTIONS_AVAILABLE: // 3 is_supported = TRUE; break; case PF_XMMI_INSTRUCTIONS_AVAILABLE: // 6 is_supported = TRUE; break; case PF_3DNOW_INSTRUCTIONS_AVAILABLE: // 7 is_supported = FALSE; break; case PF_RDTSC_INSTRUCTION_AVAILABLE: // 8 is_supported = TRUE; break; case PF_PAE_ENABLED: // 9 is_supported = TRUE; break; case PF_XMMI64_INSTRUCTIONS_AVAILABLE: // 10 is_supported = TRUE; break; case PF_SSE_DAZ_MODE_AVAILABLE: // 11 is_supported = TRUE; break; case PF_NX_ENABLED: // 12 is_supported = TRUE; break; case PF_SSE3_INSTRUCTIONS_AVAILABLE: // 13 is_supported = TRUE; break; case PF_COMPARE_EXCHANGE128: // 14 is_supported = TRUE; break; case PF_XSAVE_ENABLED: // 17 is_supported = TRUE; break; case PF_ARM_VFP_32_REGISTERS_AVAILABLE: // 18 is_supported = FALSE; break; default: is_supported = FALSE; break; } printf("[*] IsProcessorFeaturePresent: Feature=0x%x, Supported=%d\n", feature_number, is_supported); uc_reg_write(uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX, &is_supported); } auto Api_GetProcAddress(void* sandbox, uc_engine* uc, uint64_t address) -> void { auto context = static_cast(sandbox); uint64_t moduleHandle = 0; uint64_t functionNameAddr = 0; // 获取参数 if (context->GetPeInfo()->isX64) { // x64: rcx = hModule, rdx = lpProcName uc_reg_read(uc, UC_X86_REG_RCX, &moduleHandle); uc_reg_read(uc, UC_X86_REG_RDX, &functionNameAddr); } else { // x86: 从栈上读取参数 uint64_t esp_address = 0; uc_reg_read(uc, UC_X86_REG_ESP, &esp_address); esp_address += 0x4; // 跳过返回地址 uint32_t temp_handle = 0; uint32_t temp_name_addr = 0; uc_mem_read(uc, esp_address, &temp_handle, sizeof(uint32_t)); uc_mem_read(uc, esp_address + 0x4, &temp_name_addr, sizeof(uint32_t)); moduleHandle = temp_handle; functionNameAddr = temp_name_addr; } uint64_t return_address = 0; // 读取函数名 if (functionNameAddr == 0) { __debugbreak(); } // 通过名称查找 char functionName[256] = {0}; size_t i = 0; do { uint8_t byte; uc_mem_read(uc, functionNameAddr + i, &byte, 1); functionName[i] = byte; i++; } while (functionName[i - 1] != 0 && i < sizeof(functionName)); context->CheckMalwareActive_GetProcAddress(functionName); // 在模块列表中查找对应模块 for (const auto& module : context->GetModuleList()) { if (module->base == moduleHandle) { // 遍历导出函数查找对应名称 for (const auto& exp : module->export_function) { // 使用 _stricmp 进行大小写不敏感的比较 if (_stricmp(exp->name, functionName) == 0) { return_address = module->base + exp->function_address; break; } } break; } } printf("[*] GetProcAddress: Module=0x%llx, Function=%s, Address=0x%llx\n", moduleHandle, functionName, return_address); // 设置返回值 uc_reg_write(uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX, &return_address); } auto Sandbox::FreeBlock(uint64_t address) -> bool { // 查找包含此地址的堆段 HeapSegment* segment = FindHeapSegment(address); if (!segment) return false; // 查找对应的块 HeapBlock* current = segment->blocks; while (current != nullptr) { if (current->address == address) { if (current->is_free) return false; // 已经是空闲的 current->is_free = true; MergeBlocks(current); // 尝试合并相邻的空闲块 return true; } current = current->next; } return false; } auto Sandbox::FindHeapSegment(uint64_t address) -> HeapSegment* { for (auto& pair : m_heapSegments) { HeapSegment* segment = pair.second; if (address >= segment->base && address < segment->base + segment->size) { return segment; } } return nullptr; } auto Sandbox::MergeBlocks(HeapBlock* block) -> void { // 与后一个块合并 if (block->next && block->next->is_free) { block->size += block->next->size; HeapBlock* temp = block->next; block->next = temp->next; if (block->next) { block->next->prev = block; } delete temp; } // 与前一个块合并 if (block->prev && block->prev->is_free) { block->prev->size += block->size; block->prev->next = block->next; if (block->next) { block->next->prev = block->prev; } delete block; } } auto Sandbox::SplitBlock(HeapBlock* block, size_t size) -> void { size_t remaining_size = block->size - size; block->size = size; auto new_block = new HeapBlock(); new_block->address = block->address + size; new_block->size = remaining_size; new_block->is_free = true; new_block->next = block->next; new_block->prev = block; if (block->next) { block->next->prev = new_block; } block->next = new_block; } auto Sandbox::InitCommandLine(std::string commandLine) -> void { // 设置默认的命令行字符串 m_commandLine = commandLine; // 将ANSI命令行字符串写入模拟内存 uc_mem_map(m_ucEngine, CMDLINE_ADDRESS, PAGE_SIZE, UC_PROT_READ | UC_PROT_WRITE); uc_mem_write(m_ucEngine, CMDLINE_ADDRESS, m_commandLine.c_str(), m_commandLine.length() + 1); // 为宽字符命令行分配内存 uc_mem_map(m_ucEngine, CMDLINEW_ADDRESS, PAGE_SIZE, UC_PROT_READ | UC_PROT_WRITE); // 将ANSI字符串转换为宽字符字符串 std::wstring wCommandLine(m_commandLine.begin(), m_commandLine.end()); // 写入宽字符命令行字符串 uc_mem_write(m_ucEngine, CMDLINEW_ADDRESS, wCommandLine.c_str(), (wCommandLine.length() + 1) * sizeof(wchar_t)); } auto Api_GetModuleFileNameW(void* sandbox, uc_engine* uc, uint64_t address) -> void { auto context = static_cast(sandbox); uint64_t hModule = 0; uint64_t lpFilename = 0; uint32_t nSize = 0; // 获取参数 if (context->GetPeInfo()->isX64) { // x64: rcx = hModule, rdx = lpFilename, r8 = nSize uc_reg_read(uc, UC_X86_REG_RCX, &hModule); uc_reg_read(uc, UC_X86_REG_RDX, &lpFilename); uint64_t temp_size; uc_reg_read(uc, UC_X86_REG_R8, &temp_size); nSize = static_cast(temp_size); } else { // x86: 从栈上读取参数 uint32_t esp_address = 0; uc_reg_read(uc, UC_X86_REG_ESP, &esp_address); esp_address += 0x4; // 跳过返回地址 uint32_t temp_module = 0; uint32_t temp_filename = 0; uc_mem_read(uc, esp_address, &temp_module, sizeof(uint32_t)); uc_mem_read(uc, esp_address + 0x4, &temp_filename, sizeof(uint32_t)); uc_mem_read(uc, esp_address + 0x8, &nSize, sizeof(uint32_t)); hModule = temp_module; lpFilename = temp_filename; } uint32_t result = 0; // 验证参数 if (lpFilename == 0 || nSize == 0) { DWORD error = ERROR_INVALID_PARAMETER; if (context->GetPeInfo()->isX64) { context->GetTeb64()->LastErrorValue = error; } else { context->GetTeb32()->LastErrorValue = error; } uc_reg_write( uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX, &result); return; } std::wstring modulePath; if (hModule == 0) { // 如果hModule为NULL,返回主模块(PE文件)的路径 modulePath = std::wstring(context->GetPeInfo()->inputFilePath.begin(), context->GetPeInfo()->inputFilePath.end()); } else { // 在模块列表中查找对应模块 bool found = false; for (const auto& module : context->GetModuleList()) { if (module->base == hModule) { // 构建完整的模块路径 char windowsPath[MAX_PATH]; GetWindowsDirectoryA(windowsPath, sizeof(windowsPath)); // 根据PE架构选择正确的系统目录 const std::string systemDir = context->GetPeInfo()->isX64 ? "\\System32\\" : "\\SysWOW64\\"; std::string fullPath = std::string(windowsPath) + systemDir + module->name; modulePath = std::wstring(fullPath.begin(), fullPath.end()); found = true; break; } } if (!found) { DWORD error = ERROR_MOD_NOT_FOUND; if (context->GetPeInfo()->isX64) { context->GetTeb64()->LastErrorValue = error; } else { context->GetTeb32()->LastErrorValue = error; } uc_reg_write( uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX, &result); return; } } // 检查缓冲区大小是否足够 if (nSize < modulePath.length() + 1) { // 缓冲区太小,返回所需大小 result = static_cast(modulePath.length() + 1); DWORD error = ERROR_INSUFFICIENT_BUFFER; if (context->GetPeInfo()->isX64) { context->GetTeb64()->LastErrorValue = error; } else { context->GetTeb32()->LastErrorValue = error; } } else { // 写入路径到缓冲区 if (uc_mem_write(uc, lpFilename, modulePath.c_str(), (modulePath.length() + 1) * sizeof(wchar_t)) == UC_ERR_OK) { result = static_cast(modulePath.length()); } else { result = 0; DWORD error = ERROR_INVALID_PARAMETER; if (context->GetPeInfo()->isX64) { context->GetTeb64()->LastErrorValue = error; } else { context->GetTeb32()->LastErrorValue = error; } } } printf( "[*] GetModuleFileNameW: Module=0x%llx, Buffer=0x%llx, Size=%u, " "Result=%u, Path=%ls\n", hModule, lpFilename, nSize, result, modulePath.c_str()); uc_reg_write(uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX, &result); } // 实现 SetUnhandledExceptionFilter API auto Api_SetUnhandledExceptionFilter(void* sandbox, uc_engine* uc, uint64_t address) -> void { auto context = static_cast(sandbox); uint64_t lpTopLevelExceptionFilter = 0; // 获取参数 if (context->GetPeInfo()->isX64) { // x64: rcx = lpTopLevelExceptionFilter uc_reg_read(uc, UC_X86_REG_RCX, &lpTopLevelExceptionFilter); } else { // x86: 从栈上读取参数 uint32_t esp_address = 0; uint32_t temp_filter = 0; uc_reg_read(uc, UC_X86_REG_ESP, &esp_address); esp_address += 0x4; // 跳过返回地址 uc_mem_read(uc, esp_address, &temp_filter, sizeof(uint32_t)); lpTopLevelExceptionFilter = temp_filter; } // 简单实现:返回NULL表示没有之前的过滤器 uint64_t prev_filter = 0; printf("[*] SetUnhandledExceptionFilter: Filter=0x%llx\n", lpTopLevelExceptionFilter); // 返回之前的过滤器(在这里始终返回NULL) uc_reg_write(uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX, &prev_filter); } // 将Windows VirtualProtect保护标志转换为Unicorn内存保护标志 uint32_t WindowsToUnicornProtect(uint32_t windowsProtect) { uint32_t unicornProtect = UC_PROT_NONE; // 转换基本属性 if (windowsProtect & (PAGE_READONLY | PAGE_READWRITE | PAGE_EXECUTE_READ | PAGE_EXECUTE_READWRITE)) { unicornProtect |= UC_PROT_READ; } if (windowsProtect & (PAGE_READWRITE | PAGE_WRITECOPY | PAGE_EXECUTE_READWRITE | PAGE_EXECUTE_WRITECOPY)) { unicornProtect |= UC_PROT_WRITE; } if (windowsProtect & (PAGE_EXECUTE | PAGE_EXECUTE_READ | PAGE_EXECUTE_READWRITE | PAGE_EXECUTE_WRITECOPY)) { unicornProtect |= UC_PROT_EXEC; } // 如果没有有效标志,至少给予读权限以防崩溃 if (unicornProtect == UC_PROT_NONE && windowsProtect != PAGE_NOACCESS) { unicornProtect = UC_PROT_READ; } return unicornProtect; } auto Api_VirtualProtect(void* sandbox, uc_engine* uc, uint64_t address) -> void { auto context = static_cast(sandbox); uint64_t lpAddress = 0; uint64_t dwSize = 0; uint32_t flNewProtect = 0; uint64_t lpflOldProtect = 0; // 获取参数 if (context->GetPeInfo()->isX64) { // x64: rcx = lpAddress, rdx = dwSize, r8 = flNewProtect, r9 = // lpflOldProtect uc_reg_read(uc, UC_X86_REG_RCX, &lpAddress); uc_reg_read(uc, UC_X86_REG_RDX, &dwSize); uint64_t temp_protect; uc_reg_read(uc, UC_X86_REG_R8, &temp_protect); flNewProtect = static_cast(temp_protect); uc_reg_read(uc, UC_X86_REG_R9, &lpflOldProtect); } else { // x86: 从栈上读取参数 uint32_t esp_address = 0; uc_reg_read(uc, UC_X86_REG_ESP, &esp_address); esp_address += 0x4; // 跳过返回地址 uint32_t temp_address; uc_mem_read(uc, esp_address, &temp_address, sizeof(uint32_t)); lpAddress = temp_address; esp_address += 0x4; uint32_t temp_size; uc_mem_read(uc, esp_address, &temp_size, sizeof(uint32_t)); dwSize = temp_size; esp_address += 0x4; uc_mem_read(uc, esp_address, &flNewProtect, sizeof(uint32_t)); esp_address += 0x4; uint32_t temp_old_protect; uc_mem_read(uc, esp_address, &temp_old_protect, sizeof(uint32_t)); lpflOldProtect = temp_old_protect; } // 检查参数有效性 if (lpAddress == 0 || dwSize == 0 || lpflOldProtect == 0) { uint64_t result = 0; // FALSE uc_reg_write( uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX, &result); // 设置错误码 - ERROR_INVALID_PARAMETER DWORD error = ERROR_INVALID_PARAMETER; if (context->GetPeInfo()->isX64) { context->GetTeb64()->LastErrorValue = error; } else { context->GetTeb32()->LastErrorValue = error; } return; } // 检查地址范围是否已映射 uint32_t unicornProtect = WindowsToUnicornProtect(flNewProtect); uc_err err = uc_mem_protect(uc, lpAddress, dwSize, unicornProtect); if (err != UC_ERR_OK) { uint64_t result = 0; // FALSE uc_reg_write( uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX, &result); // 设置错误码 - ERROR_INVALID_ADDRESS DWORD error = ERROR_INVALID_ADDRESS; if (context->GetPeInfo()->isX64) { context->GetTeb64()->LastErrorValue = error; } else { context->GetTeb32()->LastErrorValue = error; } return; } // 模拟的旧保护属性,这里简化为一个默认值 // 实际应用中,应该从内存映射表中获取 uint32_t oldProtect = PAGE_READWRITE; // 写入旧保护值到lpflOldProtect指向的内存 uc_mem_write(uc, lpflOldProtect, &oldProtect, sizeof(uint32_t)); // 调试输出 printf( "[*] VirtualProtect: Address=0x%llx, Size=0x%llx, WindowsProtect=0x%x, " "UnicornProtect=0x%x, OldProtect=0x%x\n", lpAddress, dwSize, flNewProtect, unicornProtect, oldProtect); // 设置返回值为TRUE uint64_t result = 1; // TRUE uc_reg_write(uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX, &result); } auto Api___set_app_type(void* sandbox, uc_engine* uc, uint64_t address) -> void { auto context = static_cast(sandbox); int32_t appType = 0; // 获取参数 if (context->GetPeInfo()->isX64) { // x64: rcx = appType uint64_t temp_type; uc_reg_read(uc, UC_X86_REG_RCX, &temp_type); appType = static_cast(temp_type); } else { // x86: 从栈上读取参数 uint32_t esp_address = 0; uc_reg_read(uc, UC_X86_REG_ESP, &esp_address); esp_address += 0x4; // 跳过返回地址 uc_mem_read(uc, esp_address, &appType, sizeof(int32_t)); } // 简单地返回0表示成功 int32_t result = 0; printf("[*] __set_app_type: AppType=%d\n", appType); uc_reg_write(uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX, &result); } auto Api___p__fmode(void* sandbox, uc_engine* uc, uint64_t address) -> void { auto sb = static_cast(sandbox); // 检查是否已经创建了 _fmode 变量 static uint64_t fmode_address = 0; static int32_t fmode_value = 0; // 默认为文本模式 (_O_TEXT) if (fmode_address == 0) { // 为 _fmode 变量分配内存 // 使用特定堆地址,与其他 API 一致 uint64_t heap_handle = sb->GetPeInfo()->isX64 ? HEAP_ADDRESS_64 : HEAP_ADDRESS_32; // 在堆上分配空间 HeapSegment* segment = nullptr; auto it = sb->m_heapSegments.find(heap_handle); if (it != sb->m_heapSegments.end()) { segment = it->second; } else { // 创建新的堆段 segment = sb->CreateHeapSegment(heap_handle, 0x10000); sb->m_heapSegments[heap_handle] = segment; } if (segment) { fmode_address = sb->AllocateFromSegment(segment, sizeof(int32_t)); if (fmode_address) { // 初始化 _fmode 为文本模式 uc_mem_write(uc, fmode_address, &fmode_value, sizeof(int32_t)); printf( "[*] __p__fmode: Allocated _fmode at 0x%llx with value " "%d\n", fmode_address, fmode_value); } } } // 返回 _fmode 变量的地址 printf("[*] __p__fmode: Returning address 0x%llx\n", fmode_address); // 设置返回值 if (sb->GetPeInfo()->isX64) { uc_reg_write(uc, UC_X86_REG_RAX, &fmode_address); } else { uint32_t eax = static_cast(fmode_address); uc_reg_write(uc, UC_X86_REG_EAX, &eax); } } auto Api_Sleep(void* sandbox, uc_engine* uc, uint64_t address) -> void { auto context = static_cast(sandbox); uint64_t milliseconds; // 获取参数:dwMilliseconds if (context->GetPeInfo()->isX64) { // 在x64中,参数通过寄存器传递,第一个参数在RCX uc_reg_read(uc, UC_X86_REG_RCX, &milliseconds); } else { // 在x86中,参数通过栈传递 uint32_t esp; uc_reg_read(uc, UC_X86_REG_ESP, &esp); // 返回地址之后的4字节是第一个参数 uc_mem_read(uc, esp + 4, &milliseconds, sizeof(milliseconds)); } // 打印日志 printf("Sleep API called with %u milliseconds\n", milliseconds); } // 内部实现函数,处理实际的模块句柄获取逻辑 auto GetModuleHandleInternal(void* sandbox, const std::wstring& moduleName) -> HMODULE { auto* sb = static_cast(sandbox); // 如果模块名为空,返回当前进程的基址 if (moduleName.empty()) { return reinterpret_cast(sb->GetPeInfo()->RecImageBase); } // 在已加载的模块中查找 for (const auto& module : sb->GetModuleList()) { std::string currentModuleNameA = module->name; std::wstring currentModuleName = std::wstring(currentModuleNameA.begin(), currentModuleNameA.end()); if (_wcsicmp(currentModuleName.c_str(), moduleName.c_str()) == 0) { return reinterpret_cast(module->base); } } return nullptr; } // GetModuleHandleA的实现 auto Api_GetModuleHandleA(void* sandbox, uc_engine* uc, uint64_t address) -> void { auto* sb = static_cast(sandbox); uint64_t esp = 0, rsp = 0; HMODULE result = nullptr; if (sb->GetPeInfo()->isX64) { // 获取第一个参数 (rcx) uint64_t moduleNamePtr; uc_reg_read(uc, UC_X86_REG_RCX, &moduleNamePtr); uc_reg_read(uc, UC_X86_REG_RSP, &rsp); std::string moduleName; if (moduleNamePtr != 0) { // 读取ANSI字符串 char ch; size_t i = 0; do { if (uc_mem_read(uc, moduleNamePtr + i, &ch, 1) != UC_ERR_OK) { break; } if (ch == 0) break; moduleName += ch; i++; } while (i < MAX_PATH); } // 转换为宽字符 std::wstring wModuleName; if (!moduleName.empty()) { wModuleName = std::wstring(moduleName.begin(), moduleName.end()); } // 获取模块句柄 result = GetModuleHandleInternal(sandbox, wModuleName); // 设置返回值 uc_reg_write(uc, UC_X86_REG_RAX, &result); } else { // 32位实现 uc_reg_read(uc, UC_X86_REG_ESP, &esp); uint32_t moduleNamePtr; uc_mem_read(uc, esp + 4, &moduleNamePtr, sizeof(moduleNamePtr)); std::string moduleName; if (moduleNamePtr != 0) { // 读取ANSI字符串 char ch; size_t i = 0; do { if (uc_mem_read(uc, moduleNamePtr + i, &ch, 1) != UC_ERR_OK) { break; } if (ch == 0) break; moduleName += ch; i++; } while (i < MAX_PATH); } // 转换为宽字符 std::wstring wModuleName; if (!moduleName.empty()) { wModuleName = std::wstring(moduleName.begin(), moduleName.end()); } // 获取模块句柄 result = GetModuleHandleInternal(sandbox, wModuleName); // 设置返回值 uint32_t result32 = reinterpret_cast(result); uc_reg_write(uc, UC_X86_REG_EAX, &result32); } // 设置错误码 DWORD error = result ? 0 : ERROR_MOD_NOT_FOUND; if (sb->GetPeInfo()->isX64) { sb->GetTeb64()->LastErrorValue = error; } else { sb->GetTeb32()->LastErrorValue = error; } } // GetModuleHandleW的实现 auto Api_GetModuleHandleW(void* sandbox, uc_engine* uc, uint64_t address) -> void { auto* sb = static_cast(sandbox); uint64_t esp = 0, rsp = 0; HMODULE result = nullptr; if (sb->GetPeInfo()->isX64) { // 获取第一个参数 (rcx) uint64_t moduleNamePtr; uc_reg_read(uc, UC_X86_REG_RCX, &moduleNamePtr); uc_reg_read(uc, UC_X86_REG_RSP, &rsp); std::wstring moduleName; if (moduleNamePtr != 0) { // 读取宽字符串 wchar_t ch; size_t i = 0; do { if (uc_mem_read(uc, moduleNamePtr + (i * 2), &ch, 2) != UC_ERR_OK) { break; } if (ch == 0) break; moduleName += ch; i++; } while (i < MAX_PATH); } // 获取模块句柄 result = GetModuleHandleInternal(sandbox, moduleName); // 设置返回值 uc_reg_write(uc, UC_X86_REG_RAX, &result); } else { // 32位实现 uc_reg_read(uc, UC_X86_REG_ESP, &esp); uint32_t moduleNamePtr; uc_mem_read(uc, esp + 4, &moduleNamePtr, sizeof(moduleNamePtr)); std::wstring moduleName; if (moduleNamePtr != 0) { // 读取宽字符串 wchar_t ch; size_t i = 0; do { if (uc_mem_read(uc, moduleNamePtr + (i * 2), &ch, 2) != UC_ERR_OK) { break; } if (ch == 0) break; moduleName += ch; i++; } while (i < MAX_PATH); } // 获取模块句柄 result = GetModuleHandleInternal(sandbox, moduleName); // 设置返回值 uint32_t result32 = reinterpret_cast(result); uc_reg_write(uc, UC_X86_REG_EAX, &result32); } // 设置错误码 DWORD error = result ? 0 : ERROR_MOD_NOT_FOUND; if (sb->GetPeInfo()->isX64) { sb->GetTeb64()->LastErrorValue = error; } else { sb->GetTeb32()->LastErrorValue = error; } } auto Api_VirtualQuery(void* sandbox, uc_engine* uc, uint64_t address) -> void { auto* context = static_cast(sandbox); uint64_t lpAddress = 0; uint64_t lpBuffer = 0; uint32_t dwLength = 0; // 获取参数 if (context->GetPeInfo()->isX64) { // 64位参数获取 uc_reg_read(uc, UC_X86_REG_RCX, &lpAddress); uc_reg_read(uc, UC_X86_REG_RDX, &lpBuffer); uint64_t temp_length = 0; uc_reg_read(uc, UC_X86_REG_R8, &temp_length); dwLength = static_cast(temp_length); } else { // 32位参数获取 uint32_t esp = 0; uc_reg_read(uc, UC_X86_REG_ESP, &esp); esp += 0x4; // 跳过返回地址 uint32_t temp_address = 0; uint32_t temp_buffer = 0; uc_mem_read(uc, esp, &temp_address, sizeof(uint32_t)); uc_mem_read(uc, esp + 0x4, &temp_buffer, sizeof(uint32_t)); uc_mem_read(uc, esp + 0x8, &dwLength, sizeof(uint32_t)); lpAddress = temp_address; lpBuffer = temp_buffer; } // 构造MEMORY_BASIC_INFORMATION结构 MEMORY_BASIC_INFORMATION mbi = {}; mbi.BaseAddress = reinterpret_cast(static_cast(lpAddress)); mbi.AllocationBase = mbi.BaseAddress; mbi.AllocationProtect = PAGE_EXECUTE_READWRITE; // 默认保护属性 mbi.RegionSize = 0x1000; // 默认页大小 mbi.State = MEM_COMMIT; mbi.Protect = PAGE_EXECUTE_READWRITE; mbi.Type = MEM_PRIVATE; // 写入查询结果 uint64_t return_value = 0; if (lpBuffer != 0 && dwLength >= sizeof(MEMORY_BASIC_INFORMATION)) { uc_mem_write(uc, lpBuffer, &mbi, sizeof(MEMORY_BASIC_INFORMATION)); return_value = sizeof(MEMORY_BASIC_INFORMATION); } // 设置返回值 if (context->GetPeInfo()->isX64) { uc_reg_write(uc, UC_X86_REG_RAX, &return_value); } else { uint32_t return_value_32 = static_cast(return_value); uc_reg_write(uc, UC_X86_REG_EAX, &return_value_32); } } auto Sandbox::InitApiHooks() -> void { auto FakeApi_GetSystemTimeAsFileTime = _fakeApi{.func = Api_GetSystemTimeAsFileTime, .paramCount = 1}; auto FakeApi_GetCurrentThreadId = _fakeApi{.func = Api_GetCurrentThreadId, .paramCount = 0}; auto FakeApi_GetCurrentProcessId = _fakeApi{.func = Api_GetCurrentProcessId, .paramCount = 0}; auto FakeApi_QueryPerformanceCounter = _fakeApi{.func = Api_QueryPerformanceCounter, .paramCount = 1}; auto FakeApi_LoadLibraryA = _fakeApi{.func = Api_LoadLibraryA, .paramCount = 1}; auto FakeApi_LoadLibraryExW = _fakeApi{.func = Api_LoadLibraryExW, .paramCount = 3}; auto FakeApi_GetLastError = _fakeApi{.func = Api_GetLastError, .paramCount = 0}; auto FakeApi_InitializeCriticalSectionAndSpinCount = _fakeApi{ .func = Api_InitializeCriticalSectionAndSpinCount, .paramCount = 2}; auto FakeApi_InitializeCriticalSectionEx = _fakeApi{.func = Api_InitializeCriticalSectionEx, .paramCount = 3}; auto FakeApi_DeleteCriticalSection = _fakeApi{.func = Api_DeleteCriticalSection, .paramCount = 1}; auto FakeApi_TlsAlloc = _fakeApi{.func = Api_TlsAlloc, .paramCount = 0}; auto FakeApi_TlsSetValue = _fakeApi{.func = Api_TlsSetValue, .paramCount = 2}; auto FakeApi_IsProcessorFeaturePresent = _fakeApi{.func = Api_IsProcessorFeaturePresent, .paramCount = 1}; auto FakeApi_GetProcAddress = _fakeApi{.func = Api_GetProcAddress, .paramCount = 2}; auto FakeApi_GetProcessHeap = _fakeApi{.func = Api_GetProcessHeap, .paramCount = 0}; auto FakeApi_HeapAlloc = _fakeApi{.func = Api_HeapAlloc, .paramCount = 3}; auto FakeApi_HeapFree = _fakeApi{.func = Api_HeapFree, .paramCount = 3}; auto FakeApi_TlsGetValue = _fakeApi{.func = Api_TlsGetValue, .paramCount = 1}; auto FakeApi_SetLastError = _fakeApi{.func = Api_SetLastError, .paramCount = 1}; auto FakeApi_EnterCriticalSection = _fakeApi{.func = Api_EnterCriticalSection, .paramCount = 1}; auto FakeApi_LeaveCriticalSection = _fakeApi{.func = Api_LeaveCriticalSection, .paramCount = 1}; auto FakeApi_GetStartupInfoW = _fakeApi{.func = Api_GetStartupInfoW, .paramCount = 1}; auto FakeApi_GetStdHandle = _fakeApi{.func = Api_GetStdHandle, .paramCount = 1}; auto FakeApi_GetFileType = _fakeApi{.func = Api_GetFileType, .paramCount = 1}; auto FakeApi_GetCommandLineA = _fakeApi{.func = Api_GetCommandLineA, .paramCount = 0}; auto FakeApi_GetCommandLineW = _fakeApi{.func = Api_GetCommandLineW, .paramCount = 0}; auto FakeApi_GetACP = _fakeApi{.func = Api_GetACP, .paramCount = 0}; auto FakeApi_GetCPInfo = _fakeApi{.func = Api_GetCPInfo, .paramCount = 2}; auto FakeApi_MultiByteToWideChar = _fakeApi{.func = Api_MultiByteToWideChar, .paramCount = 6}; auto FakeApi_GetModuleFileNameW = _fakeApi{.func = Api_GetModuleFileNameW, .paramCount = 3}; auto FakeApi_AreFileApisANSI = _fakeApi{.func = Api_AreFileApisANSI, .paramCount = 0}; auto FakeApi_WideCharToMultiByte = _fakeApi{.func = Api_WideCharToMultiByte, .paramCount = 8}; auto FakeApi_InitializeSListHead = _fakeApi{.func = Api_InitializeSListHead, .paramCount = 1}; auto FakeApi_GetEnvironmentStringsW = _fakeApi{.func = Api_GetEnvironmentStringsW, .paramCount = 0}; auto FakeApi_FreeEnvironmentStringsW = _fakeApi{.func = Api_FreeEnvironmentStringsW, .paramCount = 1}; auto FakeApi_SetUnhandledExceptionFilter = _fakeApi{.func = Api_SetUnhandledExceptionFilter, .paramCount = 1}; auto FakeApi_VirtualProtect = _fakeApi{.func = Api_VirtualProtect, .paramCount = 4}; auto FakeApi_RegOpenKeyExW = _fakeApi{.func = Api_RegOpenKeyExW, .paramCount = 5}; auto FakeApi_RegCloseKey = _fakeApi{.func = Api_RegCloseKey, .paramCount = 1}; auto FakeApi___set_app_type = _fakeApi{.func = Api___set_app_type, .paramCount = 1}; auto FakeApi___p__fmode = _fakeApi{.func = Api___p__fmode, .paramCount = 0}; auto FakeApi_Sleep = _fakeApi{.func = Api_Sleep, .paramCount = 1}; auto FakeApi_SHGetKnownFolderPath = _fakeApi{.func = Api_SHGetKnownFolderPath, .paramCount = 4}; // 添加新的Internet API函数 auto FakeApi_InternetOpenA = _fakeApi{.func = Api_InternetOpenA, .paramCount = 5}; auto FakeApi_InternetOpenUrlA = _fakeApi{.func = Api_InternetOpenUrlA, .paramCount = 6}; auto FakeApi_InternetCloseHandle = _fakeApi{.func = Api_InternetCloseHandle, .paramCount = 1}; auto FakeApi_InternetReadFile = _fakeApi{.func = Api_InternetReadFile, .paramCount = 4}; auto FakeApi_EncodePointer = _fakeApi{.func = Api_EncodePointer, .paramCount = 1}; auto FakeApi_HeapCreate = _fakeApi{.func = Api_HeapCreate, .paramCount = 3}; auto FakeApi_GetModuleHandleA = _fakeApi{.func = Api_GetModuleHandleA, .paramCount = 1}; auto FakeApi_GetModuleHandleW = _fakeApi{.func = Api_GetModuleHandleW, .paramCount = 1}; auto FakeApi_VirtualQuery = _fakeApi{.func = Api_VirtualQuery, .paramCount = 3}; api_map = { {"GetSystemTimeAsFileTime", std::make_shared<_fakeApi>(FakeApi_GetSystemTimeAsFileTime)}, {"GetCurrentThreadId", std::make_shared<_fakeApi>(FakeApi_GetCurrentThreadId)}, {"GetCurrentProcessId", std::make_shared<_fakeApi>(FakeApi_GetCurrentProcessId)}, {"QueryPerformanceCounter", std::make_shared<_fakeApi>(FakeApi_QueryPerformanceCounter)}, {"LoadLibraryA", std::make_shared<_fakeApi>(FakeApi_LoadLibraryA)}, {"LoadLibraryExW", std::make_shared<_fakeApi>(FakeApi_LoadLibraryExW)}, {"GetLastError", std::make_shared<_fakeApi>(FakeApi_GetLastError)}, {"InitializeCriticalSectionAndSpinCount", std::make_shared<_fakeApi>( FakeApi_InitializeCriticalSectionAndSpinCount)}, {"InitializeCriticalSectionEx", std::make_shared<_fakeApi>(FakeApi_InitializeCriticalSectionEx)}, {"DeleteCriticalSection", std::make_shared<_fakeApi>(FakeApi_DeleteCriticalSection)}, {"TlsAlloc", std::make_shared<_fakeApi>(FakeApi_TlsAlloc)}, {"TlsSetValue", std::make_shared<_fakeApi>(FakeApi_TlsSetValue)}, {"IsProcessorFeaturePresent", std::make_shared<_fakeApi>(FakeApi_IsProcessorFeaturePresent)}, {"GetProcAddress", std::make_shared<_fakeApi>(FakeApi_GetProcAddress)}, {"GetProcessHeap", std::make_shared<_fakeApi>(FakeApi_GetProcessHeap)}, {"HeapAlloc", std::make_shared<_fakeApi>(FakeApi_HeapAlloc)}, {"HeapFree", std::make_shared<_fakeApi>(FakeApi_HeapFree)}, {"TlsGetValue", std::make_shared<_fakeApi>(FakeApi_TlsGetValue)}, {"SetLastError", std::make_shared<_fakeApi>(FakeApi_SetLastError)}, {"EnterCriticalSection", std::make_shared<_fakeApi>(FakeApi_EnterCriticalSection)}, {"LeaveCriticalSection", std::make_shared<_fakeApi>(FakeApi_LeaveCriticalSection)}, {"GetStartupInfoW", std::make_shared<_fakeApi>(FakeApi_GetStartupInfoW)}, {"GetStdHandle", std::make_shared<_fakeApi>(FakeApi_GetStdHandle)}, {"GetFileType", std::make_shared<_fakeApi>(FakeApi_GetFileType)}, {"GetCommandLineA", std::make_shared<_fakeApi>(FakeApi_GetCommandLineA)}, {"GetCommandLineW", std::make_shared<_fakeApi>(FakeApi_GetCommandLineW)}, {"GetACP", std::make_shared<_fakeApi>(FakeApi_GetACP)}, {"GetCPInfo", std::make_shared<_fakeApi>(FakeApi_GetCPInfo)}, {"MultiByteToWideChar", std::make_shared<_fakeApi>(FakeApi_MultiByteToWideChar)}, {"GetModuleFileNameW", std::make_shared<_fakeApi>(FakeApi_GetModuleFileNameW)}, {"AreFileApisANSI", std::make_shared<_fakeApi>(FakeApi_AreFileApisANSI)}, {"WideCharToMultiByte", std::make_shared<_fakeApi>(FakeApi_WideCharToMultiByte)}, {"InitializeSListHead", std::make_shared<_fakeApi>(FakeApi_InitializeSListHead)}, {"GetEnvironmentStringsW", std::make_shared<_fakeApi>(FakeApi_GetEnvironmentStringsW)}, {"FreeEnvironmentStringsW", std::make_shared<_fakeApi>(FakeApi_FreeEnvironmentStringsW)}, {"SetUnhandledExceptionFilter", std::make_shared<_fakeApi>(FakeApi_SetUnhandledExceptionFilter)}, {"VirtualProtect", std::make_shared<_fakeApi>(FakeApi_VirtualProtect)}, {"RegOpenKeyExW", std::make_shared<_fakeApi>(FakeApi_RegOpenKeyExW)}, {"RegCloseKey", std::make_shared<_fakeApi>(FakeApi_RegCloseKey)}, {"_set_app_type", std::make_shared<_fakeApi>(FakeApi___set_app_type)}, {"_p__fmode", std::make_shared<_fakeApi>(FakeApi___p__fmode)}, {"Sleep", std::make_shared<_fakeApi>(FakeApi_Sleep)}, {"SHGetKnownFolderPath", std::make_shared<_fakeApi>(FakeApi_SHGetKnownFolderPath)}, // 添加新的Internet API映射 {"InternetOpenA", std::make_shared<_fakeApi>(FakeApi_InternetOpenA)}, {"InternetOpenUrlA", std::make_shared<_fakeApi>(FakeApi_InternetOpenUrlA)}, {"InternetCloseHandle", std::make_shared<_fakeApi>(FakeApi_InternetCloseHandle)}, {"InternetReadFile", std::make_shared<_fakeApi>(FakeApi_InternetReadFile)}, {"EncodePointer", std::make_shared<_fakeApi>(FakeApi_EncodePointer)}, {"HeapCreate", std::make_shared<_fakeApi>(FakeApi_HeapCreate)}, {"GetModuleHandleA", std::make_shared<_fakeApi>(FakeApi_GetModuleHandleA)}, {"GetModuleHandleW", std::make_shared<_fakeApi>(FakeApi_GetModuleHandleW)}, {"VirtualQuery", std::make_shared<_fakeApi>(FakeApi_VirtualQuery)}, }; } auto Sandbox::EmulateApi(uc_engine* uc, uint64_t address, uint64_t rip, std::string ApiName) -> void { auto it = api_map.find(ApiName); if (it != api_map.end()) { it->second->func(this, uc, address); this->ApiCallList.push_back(ApiName); // 获取参数数量 int paramCount = it->second->paramCount; uint32_t esp; uint64_t rsp; // 从栈上读取返回地址 uint64_t return_address; if (this->GetPeInfo()->isX64) { // 64位系统 uc_reg_read(uc, UC_X86_REG_RSP, &rsp); // 读取8字节的返回地址 uc_mem_read(uc, rsp, &return_address, 8); // x64下,前4个参数通过寄存器传递,超过的部分通过栈传递 // int stack_params = (paramCount > 4) ? (paramCount - 4) : 0; // 调整栈指针:每个参数8字节 + 返回地址8字节 // rsp += (stack_params * 8) + 8; rsp += 8; // 设置RIP为返回地址 uc_reg_write(uc, UC_X86_REG_RIP, &return_address); } else { // 32位系统 // 读取4字节的返回地址 uc_reg_read(uc, UC_X86_REG_ESP, &esp); uc_mem_read(uc, esp, &return_address, 4); uint32_t return_address_32; uc_mem_read(uc, esp, &return_address_32, 4); printf("return_address_32: %x\n", return_address_32); // x86下,所有参数都通过栈传递 // 调整栈指针:每个参数4字节 + 返回地址4字节 esp += (paramCount * 4) + 4; // 设置EIP为返回地址 uc_reg_write(uc, UC_X86_REG_EIP, &return_address_32); } if (this->GetPeInfo()->isX64) { uc_reg_write(uc, UC_X86_REG_RSP, &rsp); } else { uc_reg_write(uc, UC_X86_REG_ESP, &esp); } return; } printf("ApiName: %s not found\n", ApiName.c_str()); uc_emu_stop(uc); return; }