import pandas as pd import numpy as np import xgboost as xgb from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score import m2cgen as m2c from xgboost import XGBClassifier import csv malware_csv = 'data/malware_features.csv' whitelist_csv = 'data/whitelist_features.csv' # 手动读取CSV文件并自动填充缺失字段 def read_csv_with_padding(file_path): print(f"开始读取 {file_path}...") max_cols = 0 rows = [] # 首先确定最大列数 with open(file_path, 'r', encoding='latin1', errors='replace') as f: csv_reader = csv.reader(f) for row in csv_reader: max_cols = max(max_cols, len(row)) rows.append(row) print(f"文件 {file_path} 最大列数: {max_cols}") # 为每一行填充缺失的字段 padded_rows = [] for row in rows: # 如果行长度小于最大列数,用'0'填充 padded_row = row + ['0'] * (max_cols - len(row)) padded_rows.append(padded_row) # 转换为DataFrame df = pd.DataFrame(padded_rows) print(f"读取 {file_path} 完成,形状: {df.shape}") return df # 读取CSV文件 malware_data = read_csv_with_padding(malware_csv) whitelist_data = read_csv_with_padding(whitelist_csv) # 删除第一列(路径列) malware_data = malware_data.iloc[:, 1:] whitelist_data = whitelist_data.iloc[:, 1:] # 将所有列转换为数值类型,非数值将转为NaN for col in malware_data.columns: malware_data[col] = pd.to_numeric(malware_data[col], errors='coerce') for col in whitelist_data.columns: whitelist_data[col] = pd.to_numeric(whitelist_data[col], errors='coerce') # 用0填充NaN值 malware_data.fillna(0, inplace=True) whitelist_data.fillna(0, inplace=True) # 找到最大列数(最长的特征向量) max_cols = max(malware_data.shape[1], whitelist_data.shape[1]) # 用 0 填充(Padding)数据,使所有样本的列数相同 malware_data = malware_data.reindex(columns=range(max_cols), fill_value=0) whitelist_data = whitelist_data.reindex(columns=range(max_cols), fill_value=0) # 添加标签 malware_data['label'] = 1 # 恶意软件 whitelist_data['label'] = 0 # 白名单(正常) print(malware_data.head()) print(whitelist_data.head()) # 合并数据 combined_data = pd.concat([malware_data, whitelist_data], ignore_index=True) print(f"合并后数据形状: {combined_data.shape}") # 分离特征和标签 X = combined_data.drop('label', axis=1) y = combined_data['label'] # 分割数据集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) print(f"训练集形状: {X_train.shape}, 测试集形状: {X_test.shape}") # 创建 XGBoost 数据集 dtrain = xgb.DMatrix(X_train, label=y_train) dtest = xgb.DMatrix(X_test, label=y_test) # 训练 XGBoost 模型 num_rounds = 30 # 创建watchlist来监控训练和验证集的性能 watchlist = [(dtrain, '训练集'), (dtest, '验证集')] pos_ratio = np.mean(y_train) # 计算 1 的比例 clf = XGBClassifier( base_score=pos_ratio, # objective='binary:logistic', # 适用于二分类 max_depth=6, # 树的最大深度 learning_rate=0.1, # 学习率 n_estimators=100, # 迭代轮数 subsample=0.8, # 采样比例,防止过拟合 colsample_bytree=0.8, use_label_encoder=False, # 关闭 XGBoost 的 label 编码 (适用于新版本) eval_metric='logloss' # 交叉熵损失 ) clf.fit(X_train, y_train) # 预测 y_pred_prob = clf.predict(X_test) y_pred = [1 if prob > 0.5 else 0 for prob in y_pred_prob] # 计算准确率 accuracy = accuracy_score(y_test, y_pred) print(f'XGBoost 分类准确率: {accuracy:.4f}') code = m2c.export_to_c(clf) output_file = "malware_detector.cpp" with open(output_file, "w") as f: f.write(code)