Files
awesome_anti_virus_engine/ai_anti_malware/ai_anti_malware.cpp
Huoji's defe59ffe8 update
2025-03-09 03:19:40 +08:00

129 lines
4.7 KiB
C++

// ai_anti_malware.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。
//
#include "head.h"
auto getPeInfo(std::string inputFilePath) -> std::shared_ptr<BasicPeInfo> {
auto sampleInfo = std::make_shared<BasicPeInfo>();
sampleInfo->inputFilePath = inputFilePath;
sampleInfo->peBuffer =
peconv::load_pe_module((const char*)sampleInfo->inputFilePath.c_str(),
sampleInfo->peSize, false, false);
sampleInfo->ntHead64 = peconv::get_nt_hdrs64((BYTE*)sampleInfo->peBuffer);
sampleInfo->ntHead32 = peconv::get_nt_hdrs32((BYTE*)sampleInfo->peBuffer);
sampleInfo->isX64 = peconv::is64bit((BYTE*)sampleInfo->peBuffer);
sampleInfo->RecImageBase =
sampleInfo->isX64
? (DWORD64)sampleInfo->ntHead64->OptionalHeader.ImageBase
: (DWORD)sampleInfo->ntHead32->OptionalHeader.ImageBase;
sampleInfo->isRelocated =
peconv::relocate_module((BYTE*)sampleInfo->peBuffer, sampleInfo->peSize,
sampleInfo->RecImageBase);
sampleInfo->entryPoint =
sampleInfo->isX64
? sampleInfo->ntHead64->OptionalHeader.AddressOfEntryPoint
: sampleInfo->ntHead32->OptionalHeader.AddressOfEntryPoint;
sampleInfo->imageEnd =
sampleInfo->RecImageBase +
(sampleInfo->isX64 ? sampleInfo->ntHead64->OptionalHeader.SizeOfImage
: sampleInfo->ntHead32->OptionalHeader.SizeOfImage);
printf("Debug - Memory mapping parameters:\n");
printf("RecImageBase: 0x%llx\n", sampleInfo->RecImageBase);
printf("peSize: 0x%llx\n", sampleInfo->peSize);
printf("Page aligned base: 0x%llx\n", sampleInfo->RecImageBase & ~0xFFF);
printf("Page aligned size: 0x%llx\n",
(sampleInfo->peSize + 0xFFF) & ~0xFFF);
sampleInfo->RecImageBase = sampleInfo->RecImageBase & ~0xFFF;
sampleInfo->peSize = (sampleInfo->peSize + 0xFFF) & ~0xFFF;
return sampleInfo;
}
int doMl(int argc, char* argv[]) {
// 检查命令行参数
if (argc < 3) {
std::cout << "用法: " << argv[0] << " <样本目录路径> <输出CSV路径>"
<< std::endl;
std::cout << "或者: " << argv[0]
<< " -single <单个文件路径> <输出CSV路径>" << std::endl;
return 1;
}
MachineLearning ml;
if (std::string(argv[1]) == "-single") {
// 处理单个文件
if (argc < 4) {
std::cout << "处理单个文件时需要提供文件路径和输出CSV路径"
<< std::endl;
return 1;
}
std::string filePath = argv[2];
std::string csvPath = argv[3];
// 读取文件
std::vector<uint8_t> buffer = ml.ReadFileToBuffer(filePath);
if (buffer.empty()) {
std::cerr << "无法读取文件: " << filePath << std::endl;
return 1;
}
// 提取特征
std::vector<double> features =
ml.ExtractFeatures(buffer.data(), buffer.size());
if (features.empty()) {
std::cerr << "无法从文件提取特征: " << filePath << std::endl;
return 1;
}
// 导出到CSV
if (!ml.ExportToCSV(features, csvPath)) {
std::cerr << "无法导出到CSV文件: " << csvPath << std::endl;
return 1;
}
std::cout << "成功处理文件并导出特征到: " << csvPath << std::endl;
} else {
// 处理目录
std::string dirPath = argv[1];
std::string csvPath = argv[2];
std::cout << "开始处理目录: " << dirPath << std::endl;
std::cout << "特征将导出到: " << csvPath << std::endl;
if (!ml.ProcessDirectory(dirPath, csvPath)) {
std::cerr << "处理目录时发生错误" << std::endl;
return 1;
}
}
return 0;
};
int main(int argc, char* argv[]) {
doMl(argc, argv);
/*
auto sampleInfo = getPeInfo(
"E:\\对战平台\\CrowAntiCheat\\CrowAntiCheat\\client\\Console_"
"Test\\Release\\Console_Test.exe");
// auto sampleInfo = getPeInfo("C:\\ConsoleApplication1.exe");
printf("input new file %s \n", sampleInfo->inputFilePath);
printf("is x64: %d\n", sampleInfo->isX64);
printf("is relocated: %d\n", sampleInfo->isRelocated);
printf("RecImageBase: %llx\n", sampleInfo->RecImageBase);
auto sandbox = std::make_shared<Sandbox>();
sandbox->InitEnv(sampleInfo);
sandbox->Run();
auto [peBuffer, peSize] = sandbox->DumpPE();
if (peBuffer) {
printf("peBuffer: %p\n", peBuffer.get());
printf("peSize: %d\n", peSize);
// peconv::dump_to_file("z:\\dumped_main.exe", peBuffer.get(), peSize);
MachineLearning ml;
ml.ExtractFeatures(peBuffer.get(), peSize);
}
peBuffer.release();
*/
system("pause");
return 0;
}