264 lines
8.4 KiB
Python
264 lines
8.4 KiB
Python
#!/usr/bin/env python
|
||
# -*- coding: utf-8 -*-
|
||
|
||
import pandas as pd
|
||
import numpy as np
|
||
import xgboost as xgb
|
||
from sklearn.model_selection import train_test_split
|
||
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
|
||
import matplotlib.pyplot as plt
|
||
import seaborn as sns
|
||
import os
|
||
import joblib
|
||
|
||
def load_data(malware_csv, whitelist_csv):
|
||
"""
|
||
加载恶意软件和白名单CSV文件
|
||
"""
|
||
print(f"加载恶意软件数据: {malware_csv}")
|
||
|
||
# 预处理:先获取CSV的列数
|
||
# 读取第一行以确定正确的列数
|
||
try:
|
||
header = pd.read_csv(malware_csv, nrows=1)
|
||
expected_columns = len(header.columns)
|
||
print(f"预期列数: {expected_columns}")
|
||
|
||
# 使用自定义函数读取CSV,处理字段不足的行
|
||
malware_df = pd.read_csv(
|
||
malware_csv,
|
||
header=0,
|
||
low_memory=False,
|
||
on_bad_lines='skip', # 跳过无法解析的行
|
||
dtype=float, # 将所有数据列转为浮点型
|
||
converters={0: str} # 第一列为文件路径,保持为字符串类型
|
||
)
|
||
|
||
# 检查列数是否不足,如果不足则填充0
|
||
actual_columns = len(malware_df.columns)
|
||
if actual_columns < expected_columns:
|
||
for i in range(actual_columns, expected_columns):
|
||
col_name = f"col_{i}"
|
||
malware_df[col_name] = 0.0
|
||
|
||
print(f"成功读取恶意软件数据,形状: {malware_df.shape}")
|
||
except Exception as e:
|
||
print(f"读取恶意软件数据时出错: {e}")
|
||
return None, None
|
||
|
||
malware_df['label'] = 1 # 恶意软件标签为1
|
||
|
||
print(f"加载白名单数据: {whitelist_csv}")
|
||
try:
|
||
# 同样处理白名单数据
|
||
whitelist_df = pd.read_csv(
|
||
whitelist_csv,
|
||
header=0,
|
||
low_memory=False,
|
||
on_bad_lines='skip',
|
||
dtype=float,
|
||
converters={0: str}
|
||
)
|
||
|
||
# 确保列数与恶意软件数据一致
|
||
whitelist_cols = len(whitelist_df.columns)
|
||
malware_cols = len(malware_df.columns) - 1 # 减去标签列
|
||
|
||
if whitelist_cols < malware_cols:
|
||
for i in range(whitelist_cols, malware_cols):
|
||
col_name = f"col_{i}"
|
||
whitelist_df[col_name] = 0.0
|
||
|
||
print(f"成功读取白名单数据,形状: {whitelist_df.shape}")
|
||
except Exception as e:
|
||
print(f"读取白名单数据时出错: {e}")
|
||
return None, None
|
||
|
||
whitelist_df['label'] = 0 # 白名单软件标签为0
|
||
|
||
# 确保两个DataFrame的列完全一致(除了可能的文件路径差异)
|
||
malware_features = set(malware_df.columns)
|
||
whitelist_features = set(whitelist_df.columns)
|
||
|
||
# 找出不同的列
|
||
malware_only = malware_features - whitelist_features
|
||
whitelist_only = whitelist_features - malware_features
|
||
|
||
# 为缺少的列添加0值
|
||
for col in malware_only:
|
||
if col != 'label':
|
||
whitelist_df[col] = 0.0
|
||
|
||
for col in whitelist_only:
|
||
if col != 'label':
|
||
malware_df[col] = 0.0
|
||
|
||
# 合并数据
|
||
combined_df = pd.concat([malware_df, whitelist_df], ignore_index=True, sort=False)
|
||
|
||
# 第一列通常是文件路径,需要将其移除
|
||
# 先保存文件路径以便后续参考
|
||
file_paths = combined_df.iloc[:, 0].tolist()
|
||
|
||
features = combined_df.iloc[:, 1:-1] # 除去第一列(文件路径)和最后一列(标签)
|
||
labels = combined_df['label']
|
||
|
||
print(f"数据加载完成: {len(malware_df)} 个恶意样本, {len(whitelist_df)} 个白名单样本")
|
||
print(f"特征维度: {features.shape}")
|
||
|
||
return features, labels
|
||
|
||
def train_xgboost_model(X_train, y_train, X_test, y_test):
|
||
"""
|
||
训练XGBoost模型
|
||
"""
|
||
print("开始训练XGBoost模型...")
|
||
|
||
# 处理数据中可能存在的NaN值
|
||
print("检查并填充缺失值...")
|
||
X_train = X_train.fillna(0)
|
||
X_test = X_test.fillna(0)
|
||
|
||
# 检查是否还有无限值,并将其替换为0
|
||
X_train = X_train.replace([np.inf, -np.inf], 0)
|
||
X_test = X_test.replace([np.inf, -np.inf], 0)
|
||
|
||
print(f"处理后的训练数据形状: {X_train.shape}")
|
||
print(f"处理后的测试数据形状: {X_test.shape}")
|
||
|
||
# 设置XGBoost参数
|
||
params = {
|
||
'max_depth': 6, # 树的最大深度
|
||
'learning_rate': 0.1, # 学习率
|
||
'n_estimators': 100, # 树的数量
|
||
'objective': 'binary:logistic', # 二分类问题
|
||
'eval_metric': 'logloss', # 评估指标
|
||
'subsample': 0.8, # 样本采样率
|
||
'colsample_bytree': 0.8, # 特征采样率
|
||
'random_state': 42 # 随机种子
|
||
}
|
||
|
||
# 创建XGBoost分类器
|
||
model = xgb.XGBClassifier(**params)
|
||
|
||
# 训练模型
|
||
model.fit(
|
||
X_train, y_train,
|
||
eval_set=[(X_train, y_train), (X_test, y_test)],
|
||
early_stopping_rounds=10,
|
||
verbose=True
|
||
)
|
||
|
||
print("模型训练完成!")
|
||
return model
|
||
|
||
def evaluate_model(model, X_test, y_test):
|
||
"""
|
||
评估模型性能
|
||
"""
|
||
print("评估模型性能...")
|
||
|
||
# 在测试集上进行预测
|
||
y_pred = model.predict(X_test)
|
||
|
||
# 计算准确率
|
||
accuracy = accuracy_score(y_test, y_pred)
|
||
print(f"准确率: {accuracy:.4f}")
|
||
|
||
# 打印分类报告
|
||
print("\n分类报告:")
|
||
print(classification_report(y_test, y_pred, target_names=['白名单', '恶意软件']))
|
||
|
||
# 打印混淆矩阵
|
||
cm = confusion_matrix(y_test, y_pred)
|
||
plt.figure(figsize=(8, 6))
|
||
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
|
||
xticklabels=['白名单', '恶意软件'],
|
||
yticklabels=['白名单', '恶意软件'])
|
||
plt.xlabel('预测')
|
||
plt.ylabel('实际')
|
||
plt.title('混淆矩阵')
|
||
plt.savefig('confusion_matrix.png')
|
||
plt.close()
|
||
|
||
# 显示特征重要性
|
||
plt.figure(figsize=(12, 8))
|
||
xgb.plot_importance(model, max_num_features=20)
|
||
plt.title('特征重要性')
|
||
plt.savefig('feature_importance.png')
|
||
plt.close()
|
||
|
||
return accuracy
|
||
|
||
def save_model(model, output_path='xgboost_malware_detector.model'):
|
||
"""
|
||
保存模型到文件
|
||
"""
|
||
print(f"保存模型到 {output_path}")
|
||
joblib.dump(model, output_path)
|
||
print("模型保存完成!")
|
||
|
||
def main():
|
||
"""
|
||
主函数:加载数据,训练模型,评估结果,保存模型
|
||
"""
|
||
try:
|
||
print("开始恶意软件检测模型训练...")
|
||
|
||
# 设置文件路径
|
||
malware_csv = 'data/malware_features.csv'
|
||
whitelist_csv = 'data/whitelist_features.csv'
|
||
|
||
# 检查文件是否存在
|
||
if not os.path.exists(malware_csv):
|
||
print(f"错误: 找不到恶意软件特征文件 {malware_csv}")
|
||
return
|
||
|
||
if not os.path.exists(whitelist_csv):
|
||
print(f"错误: 找不到白名单特征文件 {whitelist_csv}")
|
||
return
|
||
|
||
# 加载数据
|
||
X, y = load_data(malware_csv, whitelist_csv)
|
||
|
||
if X is None or y is None:
|
||
print("数据加载失败,终止训练")
|
||
return
|
||
|
||
print(f"数据集加载完成,共 {len(X)} 个样本")
|
||
|
||
# 数据划分
|
||
try:
|
||
X_train, X_test, y_train, y_test = train_test_split(
|
||
X, y, test_size=0.2, random_state=42, stratify=y)
|
||
|
||
print(f"训练集: {len(X_train)} 样本,测试集: {len(X_test)} 样本")
|
||
except Exception as e:
|
||
print(f"数据划分出错: {e}")
|
||
return
|
||
|
||
# 训练模型
|
||
try:
|
||
model = train_xgboost_model(X_train, y_train, X_test, y_test)
|
||
except Exception as e:
|
||
print(f"模型训练出错: {e}")
|
||
return
|
||
|
||
# 评估模型
|
||
try:
|
||
evaluate_model(model, X_test, y_test)
|
||
except Exception as e:
|
||
print(f"模型评估出错: {e}")
|
||
|
||
# 保存模型
|
||
try:
|
||
save_model(model)
|
||
print("模型训练和评估完成!")
|
||
except Exception as e:
|
||
print(f"模型保存出错: {e}")
|
||
|
||
except Exception as e:
|
||
print(f"训练过程中发生未预期错误: {e}")
|
||
|
||
if __name__ == "__main__":
|
||
main() |