Files
awesome_anti_virus_engine/ai_anti_malware/sandbox_api_emu.cpp
Huoji's d2ed7936df fix up
2025-03-09 00:06:37 +08:00

2356 lines
84 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
#include "sandbox.h"
#include "sandbox_callbacks.h"
std::string getDllNameFromApiSetMap(const std::string& apiSet);
auto Api_QueryPerformanceCounter(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t return_params_address = 0;
LARGE_INTEGER data;
BOOL origin_return_value = QueryPerformanceCounter(&data);
if (context->GetPeInfo()->isX64) {
uc_reg_read(uc, UC_X86_REG_RCX, &return_params_address);
} else {
uint64_t ebp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &ebp_address);
ebp_address += 0x4;
uc_mem_read(uc, ebp_address, &return_params_address, 0x4);
}
uc_mem_write(uc, return_params_address, &data, sizeof(LARGE_INTEGER));
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&origin_return_value);
}
auto Api_GetSystemTimeAsFileTime(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
uint64_t rcx;
FILETIME file_time;
GetSystemTimeAsFileTime(&file_time);
uc_reg_read(uc, UC_X86_REG_RCX, &rcx);
uc_mem_write(uc, rcx, &file_time, sizeof(FILETIME));
}
void Api_GetCurrentThreadId(void* sandbox, uc_engine* uc, uint64_t address) {
auto context = static_cast<Sandbox*>(sandbox);
if (context->GetPeInfo()->isX64) {
uc_reg_write(uc, UC_X86_REG_RAX,
&context->GetTeb64()->ClientId.UniqueThread);
} else {
uc_reg_write(uc, UC_X86_REG_RAX,
&context->GetTeb32()->ClientId.UniqueThread);
}
}
void Api_GetCurrentProcessId(void* sandbox, uc_engine* uc, uint64_t address) {
auto context = static_cast<Sandbox*>(sandbox);
if (context->GetPeInfo()->isX64) {
uc_reg_write(uc, UC_X86_REG_RAX,
&context->GetTeb64()->ClientId.UniqueProcess);
} else {
uc_reg_write(uc, UC_X86_REG_RAX,
&context->GetTeb32()->ClientId.UniqueProcess);
}
}
auto Api_LoadLibraryA(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t params_address = 0;
// 获取参数地址
if (context->GetPeInfo()->isX64) {
uc_reg_read(uc, UC_X86_REG_RCX, &params_address);
} else {
uint64_t ebp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &ebp_address);
ebp_address += 0x4;
uc_mem_read(uc, ebp_address, &params_address, 0x4);
}
uint64_t return_address = 0;
std::string module_name;
char buffer[MAX_PATH];
size_t i = 0;
// 读取模块名称
if (params_address != 0) {
do {
uint8_t byte;
uc_mem_read(uc, params_address + i, &byte, 1);
buffer[i] = byte;
i++;
} while (buffer[i - 1] != 0 && i < MAX_PATH);
if (i > 0 && i < MAX_PATH) {
module_name = std::string(buffer);
// 确保模块名以.dll结尾不区分大小写
if (module_name.length() > 4) {
std::string ext = module_name.substr(module_name.length() - 4);
if (_stricmp(ext.c_str(), ".dll") != 0) {
module_name += ".dll";
}
} else {
module_name += ".dll";
}
std::string fuck_up_api_ms = module_name;
if (fuck_up_api_ms.find("api-ms-") != std::string::npos) {
module_name = getDllNameFromApiSetMap(fuck_up_api_ms);
if (module_name.size() <= 1) __debugbreak();
}
// 从模块列表中查找对应模块
for (const auto& module : context->GetModuleList()) {
if (_stricmp((*module).name, module_name.c_str()) == 0) {
return_address = (*module).base;
break;
}
}
}
}
printf("[*] LoadLibraryA: Module=%s, Base=0x%llx\n", module_name.c_str(),
return_address);
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&return_address);
}
auto Api_LoadLibraryExW(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t module_name_address = 0;
uint64_t flags = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = lpLibFileName, r8 = dwFlags
uc_reg_read(uc, UC_X86_REG_RCX, &module_name_address);
uc_reg_read(uc, UC_X86_REG_R8, &flags);
} else {
// x86: 从栈上读取参数
uint64_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &module_name_address, 0x4);
esp_address += 0x8; // 跳过hFile参数
uc_mem_read(uc, esp_address, &flags, 0x4);
}
uint64_t return_address = 0;
std::wstring module_name;
wchar_t buffer[MAX_PATH];
size_t i = 0;
bool isApiSetMapMeme = false;
// 读取宽字符模块名称
if (module_name_address != 0) {
do {
uint16_t wchar;
uc_mem_read(uc, module_name_address + (i * 2), &wchar, 2);
buffer[i] = wchar;
i++;
} while (buffer[i - 1] != 0 && i < MAX_PATH);
if (i > 0 && i < MAX_PATH) {
module_name = std::wstring(buffer);
std::string ansi_name(module_name.begin(), module_name.end());
std::string fuck_up_api_ms = ansi_name;
if (ansi_name.length() > 4) {
std::string ext = ansi_name.substr(ansi_name.length() - 4);
if (_stricmp(ext.c_str(), ".dll") != 0) {
ansi_name += ".dll";
}
} else {
ansi_name += ".dll";
}
if (ansi_name.find("api-ms-") != std::string::npos) {
ansi_name = getDllNameFromApiSetMap(ansi_name);
isApiSetMapMeme = true;
// if (ansi_name.size() <= 1) __debugbreak();
}
// 从模块列表中查找对应模块
for (const auto& module : context->GetModuleList()) {
if (_stricmp((*module).name, ansi_name.c_str()) == 0) {
return_address = (*module).base;
break;
}
}
}
}
printf("[*] LoadLibraryExW: Module=%ls, Flags=0x%llx, Base=0x%llx\n",
module_name.c_str(), flags, return_address);
if (return_address == 0 && isApiSetMapMeme) {
// 找不到就不管他了,操
return_address = 0x1337;
}
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&return_address);
}
void Api_GetLastError(void* sandbox, uc_engine* uc, uint64_t address) {
auto context = static_cast<Sandbox*>(sandbox);
DWORD last_error = 0;
// 从TEB中获取LastError
if (context->GetPeInfo()->isX64) {
last_error = context->GetTeb64()->LastErrorValue;
} else {
last_error = context->GetTeb32()->LastErrorValue;
}
printf("[*] GetLastError: LastError=0x%x\n", last_error);
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&last_error);
}
auto Api_InitializeCriticalSectionAndSpinCount(void* sandbox, uc_engine* uc,
uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t lpCriticalSection = 0;
uint32_t dwSpinCount = 0;
BOOL success = TRUE; // 默认返回成功
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = lpCriticalSection, rdx = dwSpinCount
uc_reg_read(uc, UC_X86_REG_RCX, &lpCriticalSection);
uint64_t temp_spin_count = 0;
uc_reg_read(uc, UC_X86_REG_RDX, &temp_spin_count);
dwSpinCount = static_cast<uint32_t>(temp_spin_count);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uint32_t temp_cs = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &temp_cs, sizeof(uint32_t));
lpCriticalSection = temp_cs;
esp_address += 0x4;
uc_mem_read(uc, esp_address, &dwSpinCount, sizeof(uint32_t));
}
if (lpCriticalSection != 0) {
// 初始化关键段结构
RTL_CRITICAL_SECTION cs = {0};
cs.LockCount = -1; // 初始未锁定状态
cs.RecursionCount = 0; // 初始递归计数为0
cs.SpinCount = dwSpinCount; // 设置自旋计数
cs.OwningThread = 0; // 初始无拥有线程
cs.LockSemaphore = 0; // 初始信号量为0
// 写入初始化后的结构到目标内存
uc_mem_write(uc, lpCriticalSection, &cs, sizeof(RTL_CRITICAL_SECTION));
} else {
success = FALSE;
// 设置LastError
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
}
printf(
"[*] InitializeCriticalSectionAndSpinCount: CS=0x%llx, SpinCount=0x%x, "
"Success=%d\n",
lpCriticalSection, dwSpinCount, success);
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&success);
}
auto Api_TlsAlloc(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
DWORD tls_index = TLS_OUT_OF_INDEXES; // 默认返回失败值
// 获取TEB结构
if (context->GetPeInfo()->isX64) {
auto teb = context->GetTeb64();
// 在TLS槽中查找第一个可用的位置
for (DWORD i = 0; i < 64; i++) { // TEB中TlsSlots数组大小为64
if (teb->TlsSlots[i] == (void*)0x1337ffffff) {
teb->TlsSlots[i] = (void*)0; // 标记为已使用
tls_index = i;
break;
}
}
} else {
auto teb = context->GetTeb32();
// 在TLS槽中查找第一个可用的位置
for (DWORD i = 0; i < 64; i++) { // TEB中TlsSlots数组大小为64
if (teb->TlsSlots[i] == 0x1337) {
teb->TlsSlots[i] = 0; // 标记为已使用
tls_index = i;
break;
}
}
}
if (tls_index == TLS_OUT_OF_INDEXES) {
// 设置LastError为没有可用的TLS索引
DWORD error = ERROR_NO_MORE_ITEMS;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
}
printf("[*] TlsAlloc: Allocated TLS Index=0x%x\n", tls_index);
// 返回分配的TLS索引
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&tls_index);
}
auto Api_TlsSetValue(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
uint32_t dwTlsIndex = 0;
uint64_t lpTlsValue = 0;
BOOL success = FALSE;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = dwTlsIndex, rdx = lpTlsValue
uint64_t temp_index;
uc_reg_read(uc, UC_X86_REG_RCX, &temp_index);
dwTlsIndex = static_cast<uint32_t>(temp_index);
uc_reg_read(uc, UC_X86_REG_RDX, &lpTlsValue);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &dwTlsIndex, sizeof(uint32_t));
esp_address += 0x4;
uint32_t temp_value;
uc_mem_read(uc, esp_address, &temp_value, sizeof(uint32_t));
lpTlsValue = temp_value;
}
// 检查索引是否有效小于64
if (dwTlsIndex < 64) {
if (context->GetPeInfo()->isX64) {
auto teb = context->GetTeb64();
// 检查槽是否已分配不为nullptr
if (teb->TlsSlots[dwTlsIndex] != (void*)0x1337ffffff) {
teb->TlsSlots[dwTlsIndex] = (void*)lpTlsValue;
success = TRUE;
}
} else {
auto teb = context->GetTeb32();
// 检查槽是否已分配不为0
if (teb->TlsSlots[dwTlsIndex] != 0x1337) {
teb->TlsSlots[dwTlsIndex] = static_cast<uint32_t>(lpTlsValue);
success = TRUE;
}
}
}
if (!success) {
// 设置LastError
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
}
printf("[*] TlsSetValue: Index=0x%x, Value=0x%llx, Success=%d\n",
dwTlsIndex, lpTlsValue, success);
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&success);
}
auto Api_DeleteCriticalSection(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t lpCriticalSection = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = lpCriticalSection
uc_reg_read(uc, UC_X86_REG_RCX, &lpCriticalSection);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uint32_t temp_cs = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &temp_cs, sizeof(uint32_t));
lpCriticalSection = temp_cs;
}
if (lpCriticalSection != 0) {
// 读取现有的关键段结构
RTL_CRITICAL_SECTION cs;
uc_mem_read(uc, lpCriticalSection, &cs, sizeof(RTL_CRITICAL_SECTION));
// 检查是否有线程仍在等待
if (cs.LockCount >= 0) {
// 有线程正在等待,设置错误
DWORD error = ERROR_SEM_IS_SET;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
}
// 清零内存,表示删除
memset(&cs, 0, sizeof(RTL_CRITICAL_SECTION));
uc_mem_write(uc, lpCriticalSection, &cs, sizeof(RTL_CRITICAL_SECTION));
}
printf("[*] DeleteCriticalSection: CS=0x%llx\n", lpCriticalSection);
}
auto Api_IsProcessorFeaturePresent(void* sandbox, uc_engine* uc,
uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
uint32_t feature_number = 0;
BOOL is_supported = FALSE;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = FeatureNumber
uint64_t temp_feature;
uc_reg_read(uc, UC_X86_REG_RCX, &temp_feature);
feature_number = static_cast<uint32_t>(temp_feature);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &feature_number, sizeof(uint32_t));
}
// 模拟一些常见的处理器特性
switch (feature_number) {
case PF_FLOATING_POINT_PRECISION_ERRATA: // 0
is_supported = FALSE;
break;
case PF_FLOATING_POINT_EMULATED: // 1
is_supported = FALSE;
break;
case PF_COMPARE_EXCHANGE_DOUBLE: // 2
is_supported = TRUE;
break;
case PF_MMX_INSTRUCTIONS_AVAILABLE: // 3
is_supported = TRUE;
break;
case PF_XMMI_INSTRUCTIONS_AVAILABLE: // 6
is_supported = TRUE;
break;
case PF_3DNOW_INSTRUCTIONS_AVAILABLE: // 7
is_supported = FALSE;
break;
case PF_RDTSC_INSTRUCTION_AVAILABLE: // 8
is_supported = TRUE;
break;
case PF_PAE_ENABLED: // 9
is_supported = TRUE;
break;
case PF_XMMI64_INSTRUCTIONS_AVAILABLE: // 10
is_supported = TRUE;
break;
case PF_SSE_DAZ_MODE_AVAILABLE: // 11
is_supported = TRUE;
break;
case PF_NX_ENABLED: // 12
is_supported = TRUE;
break;
case PF_SSE3_INSTRUCTIONS_AVAILABLE: // 13
is_supported = TRUE;
break;
case PF_COMPARE_EXCHANGE128: // 14
is_supported = TRUE;
break;
case PF_XSAVE_ENABLED: // 17
is_supported = TRUE;
break;
case PF_ARM_VFP_32_REGISTERS_AVAILABLE: // 18
is_supported = FALSE;
break;
default:
is_supported = FALSE;
break;
}
printf("[*] IsProcessorFeaturePresent: Feature=0x%x, Supported=%d\n",
feature_number, is_supported);
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&is_supported);
}
auto Api_GetProcAddress(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t moduleHandle = 0;
uint64_t functionNameAddr = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = hModule, rdx = lpProcName
uc_reg_read(uc, UC_X86_REG_RCX, &moduleHandle);
uc_reg_read(uc, UC_X86_REG_RDX, &functionNameAddr);
} else {
// x86: 从栈上读取参数
uint64_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uint32_t temp_handle = 0;
uint32_t temp_name_addr = 0;
uc_mem_read(uc, esp_address, &temp_handle, sizeof(uint32_t));
uc_mem_read(uc, esp_address + 0x4, &temp_name_addr, sizeof(uint32_t));
moduleHandle = temp_handle;
functionNameAddr = temp_name_addr;
}
uint64_t return_address = 0;
// 读取函数名
if (functionNameAddr == 0) {
__debugbreak();
}
// 通过名称查找
char functionName[256] = {0};
size_t i = 0;
do {
uint8_t byte;
uc_mem_read(uc, functionNameAddr + i, &byte, 1);
functionName[i] = byte;
i++;
} while (functionName[i - 1] != 0 && i < sizeof(functionName));
// 在模块列表中查找对应模块
for (const auto& module : context->GetModuleList()) {
if (module->base == moduleHandle) {
// 遍历导出函数查找对应名称
for (const auto& exp : module->export_function) {
// 使用 _stricmp 进行大小写不敏感的比较
if (_stricmp(exp->name, functionName) == 0) {
return_address = module->base + exp->function_address;
break;
}
}
break;
}
}
printf("[*] GetProcAddress: Module=0x%llx, Function=%s, Address=0x%llx\n",
moduleHandle, functionName, return_address);
// 设置返回值
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&return_address);
}
auto Api_GetProcessHeap(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
// 返回默认堆句柄(使用堆基址作为句柄)
uint64_t heap_handle =
context->GetPeInfo()->isX64 ? HEAP_ADDRESS_64 : HEAP_ADDRESS_32;
printf("[*] GetProcessHeap: Handle=0x%llx\n", heap_handle);
// 返回堆句柄
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&heap_handle);
}
// 实现HeapAlloc API
auto Api_HeapAlloc(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t hHeap = 0;
uint32_t dwFlags = 0;
uint64_t dwBytes = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = hHeap, rdx = dwFlags, r8 = dwBytes
uc_reg_read(uc, UC_X86_REG_RCX, &hHeap);
uint64_t temp_flags;
uc_reg_read(uc, UC_X86_REG_RDX, &temp_flags);
dwFlags = static_cast<uint32_t>(temp_flags);
uc_reg_read(uc, UC_X86_REG_R8, &dwBytes);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uint32_t temp_heap;
uc_mem_read(uc, esp_address, &temp_heap, sizeof(uint32_t));
hHeap = temp_heap;
esp_address += 0x4;
uc_mem_read(uc, esp_address, &dwFlags, sizeof(uint32_t));
esp_address += 0x4;
uint32_t temp_bytes;
uc_mem_read(uc, esp_address, &temp_bytes, sizeof(uint32_t));
dwBytes = temp_bytes;
}
// 检查堆句柄是否有效
uint64_t expected_handle =
context->GetPeInfo()->isX64 ? HEAP_ADDRESS_64 : HEAP_ADDRESS_32;
if (hHeap != expected_handle) {
uint64_t null_ptr = 0;
uc_reg_write(
uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&null_ptr);
return;
}
// 获取或创建堆段
HeapSegment* segment = nullptr;
auto it = context->m_heapSegments.find(hHeap);
if (it == context->m_heapSegments.end()) {
segment = context->CreateHeapSegment(
hHeap, context->GetPeInfo()->isX64 ? HEAP_SIZE_64 : HEAP_SIZE_32);
context->m_heapSegments[hHeap] = segment;
} else {
segment = it->second;
}
// 分配内存
uint64_t allocated_address = context->AllocateFromSegment(segment, dwBytes);
printf(
"[*] HeapAlloc: Handle=0x%llx, Flags=0x%x, Size=0x%llx, "
"Address=0x%llx\n",
hHeap, dwFlags, dwBytes, allocated_address);
// 返回分配的地址
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&allocated_address);
}
// 实现HeapFree API
auto Api_HeapFree(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t hHeap = 0;
uint32_t dwFlags = 0;
uint64_t lpMem = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = hHeap, rdx = dwFlags, r8 = lpMem
uc_reg_read(uc, UC_X86_REG_RCX, &hHeap);
uint64_t temp_flags;
uc_reg_read(uc, UC_X86_REG_RDX, &temp_flags);
dwFlags = static_cast<uint32_t>(temp_flags);
uc_reg_read(uc, UC_X86_REG_R8, &lpMem);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uint32_t temp_heap;
uc_mem_read(uc, esp_address, &temp_heap, sizeof(uint32_t));
hHeap = temp_heap;
esp_address += 0x4;
uc_mem_read(uc, esp_address, &dwFlags, sizeof(uint32_t));
esp_address += 0x4;
uint32_t temp_mem;
uc_mem_read(uc, esp_address, &temp_mem, sizeof(uint32_t));
lpMem = temp_mem;
}
// 释放内存
bool success = context->FreeBlock(lpMem);
printf(
"[*] HeapFree: Handle=0x%llx, Flags=0x%x, Address=0x%llx, Success=%d\n",
hHeap, dwFlags, lpMem, success);
// 返回操作是否成功
uint64_t result = success ? 1 : 0;
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
}
// 实现TlsGetValue API
auto Api_TlsGetValue(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
uint32_t dwTlsIndex = 0;
uint64_t return_value = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = dwTlsIndex
uint64_t temp_index;
uc_reg_read(uc, UC_X86_REG_RCX, &temp_index);
dwTlsIndex = static_cast<uint32_t>(temp_index);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &dwTlsIndex, sizeof(uint32_t));
}
// 检查索引是否有效小于64
if (dwTlsIndex < 64) {
if (context->GetPeInfo()->isX64) {
auto teb = context->GetTeb64();
// 检查槽是否已分配不为nullptr
if (teb->TlsSlots[dwTlsIndex] != (void*)0x1337ffffff) {
return_value =
reinterpret_cast<uint64_t>(teb->TlsSlots[dwTlsIndex]);
} else {
// 槽未分配设置LastError
DWORD error = ERROR_INVALID_PARAMETER;
teb->LastErrorValue = error;
}
} else {
auto teb = context->GetTeb32();
// 检查槽是否已分配不为0
if (teb->TlsSlots[dwTlsIndex] != 0x1337) {
return_value = teb->TlsSlots[dwTlsIndex];
} else {
// 槽未分配设置LastError
DWORD error = ERROR_INVALID_PARAMETER;
teb->LastErrorValue = error;
}
}
} else {
// 索引无效设置LastError
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
}
printf("[*] TlsGetValue: Index=0x%x, Value=0x%llx\n", dwTlsIndex,
return_value);
// 返回TLS槽中的值
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&return_value);
}
auto Api_SetLastError(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
uint32_t dwErrCode = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = dwErrCode
uint64_t temp_error;
uc_reg_read(uc, UC_X86_REG_RCX, &temp_error);
dwErrCode = static_cast<uint32_t>(temp_error);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &dwErrCode, sizeof(uint32_t));
}
// 设置LastError值
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = dwErrCode;
} else {
context->GetTeb32()->LastErrorValue = dwErrCode;
}
printf("[*] SetLastError: Error=0x%x\n", dwErrCode);
}
auto Api_EnterCriticalSection(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t lpCriticalSection = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = lpCriticalSection
uc_reg_read(uc, UC_X86_REG_RCX, &lpCriticalSection);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uint32_t temp_cs = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &temp_cs, sizeof(uint32_t));
lpCriticalSection = temp_cs;
}
if (lpCriticalSection != 0) {
RTL_CRITICAL_SECTION cs;
uc_mem_read(uc, lpCriticalSection, &cs, sizeof(RTL_CRITICAL_SECTION));
// 获取当前线程ID
HANDLE currentThreadHandle = nullptr;
if (context->GetPeInfo()->isX64) {
currentThreadHandle =
(HANDLE)(ULONG_PTR)context->GetTeb64()->ClientId.UniqueThread;
} else {
currentThreadHandle =
(HANDLE)(ULONG_PTR)context->GetTeb32()->ClientId.UniqueThread;
}
// 如果当前线程已经拥有锁,增加递归计数
if (cs.OwningThread == currentThreadHandle) {
cs.RecursionCount++;
} else {
// 如果没有线程拥有锁,获取它
if (cs.LockCount == -1) {
cs.OwningThread = currentThreadHandle;
cs.RecursionCount = 1;
cs.LockCount = 0;
} else {
// 在实际情况下这里应该自旋等待,但在模拟环境中我们直接获取锁
cs.OwningThread = currentThreadHandle;
cs.RecursionCount = 1;
cs.LockCount++;
}
}
// 写回更新后的关键段结构
uc_mem_write(uc, lpCriticalSection, &cs, sizeof(RTL_CRITICAL_SECTION));
}
printf("[*] EnterCriticalSection: CS=0x%llx\n", lpCriticalSection);
}
auto Api_LeaveCriticalSection(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t lpCriticalSection = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = lpCriticalSection
uc_reg_read(uc, UC_X86_REG_RCX, &lpCriticalSection);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uint32_t temp_cs = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &temp_cs, sizeof(uint32_t));
lpCriticalSection = temp_cs;
}
if (lpCriticalSection != 0) {
RTL_CRITICAL_SECTION cs;
uc_mem_read(uc, lpCriticalSection, &cs, sizeof(RTL_CRITICAL_SECTION));
// 获取当前线程ID
HANDLE currentThreadHandle = nullptr;
if (context->GetPeInfo()->isX64) {
currentThreadHandle =
(HANDLE)(ULONG_PTR)context->GetTeb64()->ClientId.UniqueThread;
} else {
currentThreadHandle =
(HANDLE)(ULONG_PTR)context->GetTeb32()->ClientId.UniqueThread;
}
// 检查当前线程是否拥有锁
if (cs.OwningThread == currentThreadHandle) {
cs.RecursionCount--;
if (cs.RecursionCount == 0) {
// 完全释放锁
cs.OwningThread = nullptr;
cs.LockCount = -1;
}
// 写回更新后的关键段结构
uc_mem_write(uc, lpCriticalSection, &cs,
sizeof(RTL_CRITICAL_SECTION));
}
}
printf("[*] LeaveCriticalSection: CS=0x%llx\n", lpCriticalSection);
}
auto Api_GetStartupInfoW(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t lpStartupInfo = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = lpStartupInfo
uc_reg_read(uc, UC_X86_REG_RCX, &lpStartupInfo);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uint32_t temp_info = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &temp_info, sizeof(uint32_t));
lpStartupInfo = temp_info;
}
if (lpStartupInfo != 0) {
// 创建一个默认的 STARTUPINFOW 结构
STARTUPINFOW si = {0};
si.cb = sizeof(STARTUPINFOW);
si.dwFlags = STARTF_USESHOWWINDOW;
si.wShowWindow = SW_SHOWNORMAL;
si.lpDesktop = nullptr;
si.lpTitle = nullptr;
si.dwX = 0;
si.dwY = 0;
si.dwXSize = 0;
si.dwYSize = 0;
si.dwXCountChars = 0;
si.dwYCountChars = 0;
si.dwFillAttribute = 0;
si.cbReserved2 = 0;
si.lpReserved2 = nullptr;
si.hStdInput = nullptr;
si.hStdOutput = nullptr;
si.hStdError = nullptr;
// 写入结构到目标内存
uc_mem_write(uc, lpStartupInfo, &si, sizeof(STARTUPINFOW));
}
printf("[*] GetStartupInfoW: lpStartupInfo=0x%llx\n", lpStartupInfo);
}
// 实现 GetStdHandle API
auto Api_GetStdHandle(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
int32_t nStdHandle = 0;
HANDLE handle = INVALID_HANDLE_VALUE;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = nStdHandle
uint64_t temp_handle;
uc_reg_read(uc, UC_X86_REG_RCX, &temp_handle);
nStdHandle = static_cast<int32_t>(temp_handle);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &nStdHandle, sizeof(int32_t));
}
// 根据请求的标准句柄类型返回相应的句柄
switch ((unsigned long)nStdHandle) {
case STD_INPUT_HANDLE: // -10
handle = reinterpret_cast<HANDLE>(0x1000); // 模拟标准输入句柄
break;
case STD_OUTPUT_HANDLE: // -11
handle = reinterpret_cast<HANDLE>(0x2000); // 模拟标准输出句柄
break; // End of Selection
break;
case STD_ERROR_HANDLE: // -12
handle = reinterpret_cast<HANDLE>(0x3000); // 模拟标准错误句柄
break;
default:
handle = INVALID_HANDLE_VALUE;
// 设置错误码
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = ERROR_INVALID_PARAMETER;
} else {
context->GetTeb32()->LastErrorValue = ERROR_INVALID_PARAMETER;
}
break;
}
printf("[*] GetStdHandle: Type=%d, Handle=0x%p\n", nStdHandle, handle);
// 返回句柄值
uint64_t return_value = reinterpret_cast<uint64_t>(handle);
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&return_value);
}
// 实现 GetFileType API
auto Api_GetFileType(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
HANDLE hFile = nullptr;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = hFile
uint64_t temp_handle;
uc_reg_read(uc, UC_X86_REG_RCX, &temp_handle);
hFile = reinterpret_cast<HANDLE>(temp_handle);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uint32_t temp_handle = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &temp_handle, sizeof(uint32_t));
hFile = reinterpret_cast<HANDLE>(static_cast<uint64_t>(temp_handle));
}
DWORD file_type = FILE_TYPE_UNKNOWN;
// 根据标准句柄类型返回相应的文件类型
if (hFile == reinterpret_cast<HANDLE>(0x1000) || // STD_INPUT_HANDLE
hFile == reinterpret_cast<HANDLE>(0x2000) || // STD_OUTPUT_HANDLE
hFile == reinterpret_cast<HANDLE>(0x3000)) { // STD_ERROR_HANDLE
file_type = FILE_TYPE_CHAR; // 控制台句柄通常是字符设备
} else {
// 对于无效句柄,设置错误码
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = ERROR_INVALID_HANDLE;
} else {
context->GetTeb32()->LastErrorValue = ERROR_INVALID_HANDLE;
}
file_type = FILE_TYPE_UNKNOWN;
}
printf("[*] GetFileType: Handle=0x%p, Type=0x%x\n", hFile, file_type);
// 返回文件类型
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&file_type);
}
// 实现 GetCommandLineA API
auto Api_GetCommandLineA(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
printf("[*] GetCommandLineA: CommandLine=%s\n", context->GetCommandLine());
// 返回命令行字符串的地址
uint64_t return_value = context->GetCommandLineAddress();
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&return_value);
}
// 实现 GetCommandLineW API
auto Api_GetCommandLineW(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
printf("[*] GetCommandLineW: CommandLine=%s\n", context->GetCommandLine());
// 返回宽字符命令行字符串的地址
uint64_t return_value = context->GetCommandLineWAddress();
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&return_value);
}
// 实现 GetACP API
auto Api_GetACP(void* sandbox, uc_engine* uc, uint64_t address) -> void {
// 返回默认的 ANSI 代码页 (936 - 简体中文)
uint32_t codepage = 936;
printf("[*] GetACP: CodePage=%u\n", codepage);
// 返回代码页值
uc_reg_write(uc,
static_cast<Sandbox*>(sandbox)->GetPeInfo()->isX64
? UC_X86_REG_RAX
: UC_X86_REG_EAX,
&codepage);
}
// 实现 GetCPInfo API
auto Api_GetCPInfo(void* sandbox, uc_engine* uc, uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
uint32_t codePage = 0;
uint64_t lpCPInfo = 0;
BOOL success = FALSE;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = CodePage, rdx = lpCPInfo
uint64_t temp_codepage;
uc_reg_read(uc, UC_X86_REG_RCX, &temp_codepage);
codePage = static_cast<uint32_t>(temp_codepage);
uc_reg_read(uc, UC_X86_REG_RDX, &lpCPInfo);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &codePage, sizeof(uint32_t));
esp_address += 0x4;
uint32_t temp_cpinfo;
uc_mem_read(uc, esp_address, &temp_cpinfo, sizeof(uint32_t));
lpCPInfo = temp_cpinfo;
}
if (lpCPInfo != 0) {
// 创建 CPINFO 结构
CPINFO cpInfo = {0};
// 根据代码页设置相应的信息
switch (codePage) {
case 936: // 简体中文 GBK
cpInfo.MaxCharSize = 2; // 最大字符大小为2字节
cpInfo.DefaultChar[0] = '?'; // 默认替换字符
cpInfo.DefaultChar[1] = '\0';
cpInfo.LeadByte[0] = 0x81; // 前导字节范围
cpInfo.LeadByte[1] = 0xFE;
cpInfo.LeadByte[2] = 0; // 结束标记
success = TRUE;
break;
case 437: // US ASCII
case 1252: // Western European
cpInfo.MaxCharSize = 1; // 单字节字符集
cpInfo.DefaultChar[0] = '?';
cpInfo.DefaultChar[1] = '\0';
cpInfo.LeadByte[0] = 0; // 无前导字节
success = TRUE;
break;
default:
// 不支持的代码页
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue =
ERROR_INVALID_PARAMETER;
} else {
context->GetTeb32()->LastErrorValue =
ERROR_INVALID_PARAMETER;
}
success = FALSE;
break;
}
if (success) {
// 写入 CPINFO 结构到目标内存
uc_mem_write(uc, lpCPInfo, &cpInfo, sizeof(CPINFO));
}
} else {
// 无效的指针参数
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = ERROR_INVALID_PARAMETER;
} else {
context->GetTeb32()->LastErrorValue = ERROR_INVALID_PARAMETER;
}
success = FALSE;
}
printf("[*] GetCPInfo: CodePage=%u, lpCPInfo=0x%llx, Success=%d\n",
codePage, lpCPInfo, success);
// 返回操作是否成功
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&success);
}
auto Api_MultiByteToWideChar(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint32_t CodePage = 0;
uint32_t dwFlags = 0;
uint64_t lpMultiByteStr = 0;
int32_t cbMultiByte = 0;
uint64_t lpWideCharStr = 0;
int32_t cchWideChar = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
uint64_t temp_codepage = 0;
uint64_t temp_flags = 0;
uint64_t temp_multibyte = 0;
uint64_t temp_cbmultibyte = 0;
// x64: rcx, rdx, r8, r9, [rsp+0x28], [rsp+0x30]
uc_reg_read(uc, UC_X86_REG_RCX, &temp_codepage);
uc_reg_read(uc, UC_X86_REG_RDX, &temp_flags);
uc_reg_read(uc, UC_X86_REG_R8, &temp_multibyte);
uc_reg_read(uc, UC_X86_REG_R9, &temp_cbmultibyte);
CodePage = static_cast<uint32_t>(temp_codepage);
dwFlags = static_cast<uint32_t>(temp_flags);
lpMultiByteStr = temp_multibyte;
cbMultiByte = static_cast<int32_t>(temp_cbmultibyte);
// 获取栈上的参数
uint64_t rsp = 0;
uc_reg_read(uc, UC_X86_REG_RSP, &rsp);
// 为了确保安全访问,先验证栈地址的有效性
if (rsp < 0x8000000000000000 || rsp + 0x40 > 0x8000000000010000) {
// 无效的栈地址
DWORD error = ERROR_INVALID_PARAMETER;
context->GetTeb64()->LastErrorValue = error;
int result = 0;
uc_reg_write(uc, UC_X86_REG_RAX, &result);
return;
}
// 读取栈上的参数
uint64_t shadow_space = 0x20; // x64调用约定中的shadow space
uc_mem_read(uc, rsp + shadow_space + 0x8, &lpWideCharStr,
sizeof(uint64_t));
uc_mem_read(uc, rsp + shadow_space + 0x10, &cchWideChar,
sizeof(int32_t));
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &CodePage, sizeof(uint32_t));
uc_mem_read(uc, esp_address + 0x4, &dwFlags, sizeof(uint32_t));
uc_mem_read(uc, esp_address + 0x8, &lpMultiByteStr, sizeof(uint32_t));
uc_mem_read(uc, esp_address + 0xC, &cbMultiByte, sizeof(int32_t));
uc_mem_read(uc, esp_address + 0x10, &lpWideCharStr, sizeof(uint32_t));
uc_mem_read(uc, esp_address + 0x14, &cchWideChar, sizeof(int32_t));
}
// 验证参数
if (lpMultiByteStr == 0 || (lpWideCharStr == 0 && cchWideChar != 0)) {
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
int result = 0;
uc_reg_write(
uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
// 读取源字符串
std::vector<char> srcBuffer;
if (cbMultiByte == -1) {
// 如果长度为-1,则源字符串以null结尾
char ch = 0;
size_t len = 0;
do {
if (uc_mem_read(uc, lpMultiByteStr + len, &ch, 1) != UC_ERR_OK) {
break;
}
srcBuffer.push_back(ch);
len++;
} while (ch != 0 && len < MAX_PATH); // 添加长度限制防止无限循环
if (len >= MAX_PATH) {
// 设置错误码
DWORD error = ERROR_INSUFFICIENT_BUFFER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
int result = 0;
uc_reg_write(
uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
cbMultiByte = static_cast<int32_t>(len);
} else if (cbMultiByte > 0) {
// 使用指定长度,但添加安全检查
if (cbMultiByte > MAX_PATH) {
DWORD error = ERROR_INSUFFICIENT_BUFFER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
int result = 0;
uc_reg_write(
uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
srcBuffer.resize(cbMultiByte);
if (uc_mem_read(uc, lpMultiByteStr, srcBuffer.data(), cbMultiByte) !=
UC_ERR_OK) {
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
int result = 0;
uc_reg_write(
uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
} else {
// 无效的输入长度
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
int result = 0;
uc_reg_write(
uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
// 计算所需的宽字符缓冲区大小
int result = MultiByteToWideChar(CodePage, dwFlags, srcBuffer.data(),
cbMultiByte, nullptr, 0);
if (result == 0) {
// 转换失败,获取错误码
DWORD error = GetLastError();
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
uc_reg_write(
uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
// 如果只是查询所需缓冲区大小
if (lpWideCharStr == 0 || cchWideChar == 0) {
uc_reg_write(
uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
// 检查目标缓冲区大小是否足够
if (cchWideChar < result) {
DWORD error = ERROR_INSUFFICIENT_BUFFER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
result = 0;
uc_reg_write(
uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
// 执行实际转换
std::vector<wchar_t> wideBuffer(result);
if (MultiByteToWideChar(CodePage, dwFlags, srcBuffer.data(), cbMultiByte,
wideBuffer.data(), result) > 0) {
// 写入转换后的字符串到目标内存
if (uc_mem_write(uc, lpWideCharStr, wideBuffer.data(),
result * sizeof(wchar_t)) != UC_ERR_OK) {
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
result = 0;
}
} else {
// 转换失败
DWORD error = GetLastError();
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
result = 0;
}
printf(
"[*] MultiByteToWideChar: CodePage=%u, Flags=0x%x, Input=%p, "
"InputLen=%d, Output=%p, OutputLen=%d, Result=%d\n",
CodePage, dwFlags, (void*)lpMultiByteStr, cbMultiByte,
(void*)lpWideCharStr, cchWideChar, result);
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
}
auto Sandbox::CreateHeapSegment(uint64_t base, size_t size) -> HeapSegment* {
auto segment = new HeapSegment();
segment->base = base;
segment->size = size;
// 创建初始空闲块
auto block = new HeapBlock();
block->address = base;
block->size = size;
block->is_free = true;
block->next = nullptr;
block->prev = nullptr;
segment->blocks = block;
return segment;
}
auto Sandbox::AllocateFromSegment(HeapSegment* segment, size_t size)
-> uint64_t {
// 对齐大小到16字节
size = (size + 15) & ~15;
// 查找合适的空闲块
HeapBlock* current = segment->blocks;
while (current != nullptr) {
if (current->is_free && current->size >= size) {
// 如果块太大,分割它
if (current->size > size + 32) { // 32字节为最小块大小
SplitBlock(current, size);
}
current->is_free = false;
return current->address;
}
current = current->next;
}
return 0; // 分配失败
}
auto Sandbox::FreeBlock(uint64_t address) -> bool {
// 查找包含此地址的堆段
HeapSegment* segment = FindHeapSegment(address);
if (!segment) return false;
// 查找对应的块
HeapBlock* current = segment->blocks;
while (current != nullptr) {
if (current->address == address) {
if (current->is_free) return false; // 已经是空闲的
current->is_free = true;
MergeBlocks(current); // 尝试合并相邻的空闲块
return true;
}
current = current->next;
}
return false;
}
auto Sandbox::FindHeapSegment(uint64_t address) -> HeapSegment* {
for (auto& pair : m_heapSegments) {
HeapSegment* segment = pair.second;
if (address >= segment->base &&
address < segment->base + segment->size) {
return segment;
}
}
return nullptr;
}
auto Sandbox::MergeBlocks(HeapBlock* block) -> void {
// 与后一个块合并
if (block->next && block->next->is_free) {
block->size += block->next->size;
HeapBlock* temp = block->next;
block->next = temp->next;
if (block->next) {
block->next->prev = block;
}
delete temp;
}
// 与前一个块合并
if (block->prev && block->prev->is_free) {
block->prev->size += block->size;
block->prev->next = block->next;
if (block->next) {
block->next->prev = block->prev;
}
delete block;
}
}
auto Sandbox::SplitBlock(HeapBlock* block, size_t size) -> void {
size_t remaining_size = block->size - size;
block->size = size;
auto new_block = new HeapBlock();
new_block->address = block->address + size;
new_block->size = remaining_size;
new_block->is_free = true;
new_block->next = block->next;
new_block->prev = block;
if (block->next) {
block->next->prev = new_block;
}
block->next = new_block;
}
auto Sandbox::InitCommandLine(std::string commandLine) -> void {
// 设置默认的命令行字符串
m_commandLine = commandLine;
// 将ANSI命令行字符串写入模拟内存
uc_mem_map(m_ucEngine, CMDLINE_ADDRESS, PAGE_SIZE,
UC_PROT_READ | UC_PROT_WRITE);
uc_mem_write(m_ucEngine, CMDLINE_ADDRESS, m_commandLine.c_str(),
m_commandLine.length() + 1);
// 为宽字符命令行分配内存
uc_mem_map(m_ucEngine, CMDLINEW_ADDRESS, PAGE_SIZE,
UC_PROT_READ | UC_PROT_WRITE);
// 将ANSI字符串转换为宽字符字符串
std::wstring wCommandLine(m_commandLine.begin(), m_commandLine.end());
// 写入宽字符命令行字符串
uc_mem_write(m_ucEngine, CMDLINEW_ADDRESS, wCommandLine.c_str(),
(wCommandLine.length() + 1) * sizeof(wchar_t));
}
auto Api_GetModuleFileNameW(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t hModule = 0;
uint64_t lpFilename = 0;
uint32_t nSize = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = hModule, rdx = lpFilename, r8 = nSize
uc_reg_read(uc, UC_X86_REG_RCX, &hModule);
uc_reg_read(uc, UC_X86_REG_RDX, &lpFilename);
uint64_t temp_size;
uc_reg_read(uc, UC_X86_REG_R8, &temp_size);
nSize = static_cast<uint32_t>(temp_size);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uint32_t temp_module = 0;
uint32_t temp_filename = 0;
uc_mem_read(uc, esp_address, &temp_module, sizeof(uint32_t));
uc_mem_read(uc, esp_address + 0x4, &temp_filename, sizeof(uint32_t));
uc_mem_read(uc, esp_address + 0x8, &nSize, sizeof(uint32_t));
hModule = temp_module;
lpFilename = temp_filename;
}
uint32_t result = 0;
// 验证参数
if (lpFilename == 0 || nSize == 0) {
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
uc_reg_write(
uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
std::wstring modulePath;
if (hModule == 0) {
// 如果hModule为NULL,返回主模块(PE文件)的路径
modulePath = std::wstring(context->GetPeInfo()->inputFilePath.begin(),
context->GetPeInfo()->inputFilePath.end());
} else {
// 在模块列表中查找对应模块
bool found = false;
for (const auto& module : context->GetModuleList()) {
if (module->base == hModule) {
// 构建完整的模块路径
char windowsPath[MAX_PATH];
GetWindowsDirectoryA(windowsPath, sizeof(windowsPath));
// 根据PE架构选择正确的系统目录
const std::string systemDir = context->GetPeInfo()->isX64
? "\\System32\\"
: "\\SysWOW64\\";
std::string fullPath =
std::string(windowsPath) + systemDir + module->name;
modulePath = std::wstring(fullPath.begin(), fullPath.end());
found = true;
break;
}
}
if (!found) {
DWORD error = ERROR_MOD_NOT_FOUND;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
uc_reg_write(
uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
}
// 检查缓冲区大小是否足够
if (nSize < modulePath.length() + 1) {
// 缓冲区太小,返回所需大小
result = static_cast<uint32_t>(modulePath.length() + 1);
DWORD error = ERROR_INSUFFICIENT_BUFFER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
} else {
// 写入路径到缓冲区
if (uc_mem_write(uc, lpFilename, modulePath.c_str(),
(modulePath.length() + 1) * sizeof(wchar_t)) ==
UC_ERR_OK) {
result = static_cast<uint32_t>(modulePath.length());
} else {
result = 0;
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
}
}
printf(
"[*] GetModuleFileNameW: Module=0x%llx, Buffer=0x%llx, Size=%u, "
"Result=%u, Path=%ls\n",
hModule, lpFilename, nSize, result, modulePath.c_str());
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
}
// 实现 AreFileApisANSI API
auto Api_AreFileApisANSI(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
// 默认返回TRUE表示使用ANSI字符集
BOOL isAnsi = TRUE;
printf("[*] AreFileApisANSI: IsAnsi=%d\n", isAnsi);
// 返回结果
uc_reg_write(uc,
static_cast<Sandbox*>(sandbox)->GetPeInfo()->isX64
? UC_X86_REG_RAX
: UC_X86_REG_EAX,
&isAnsi);
}
auto Api_WideCharToMultiByte(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint32_t CodePage = 0;
uint32_t dwFlags = 0;
uint64_t lpWideCharStr = 0;
int32_t cchWideChar = 0;
uint64_t lpMultiByteStr = 0;
int32_t cbMultiByte = 0;
uint64_t lpDefaultChar = 0;
uint64_t lpUsedDefaultChar = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx, rdx, r8, r9, [rsp+0x28], [rsp+0x30], [rsp+0x38], [rsp+0x40]
uint64_t temp_codepage = 0;
uint64_t temp_flags = 0;
uint64_t temp_widechar = 0;
uint64_t temp_cchwidechar = 0;
uc_reg_read(uc, UC_X86_REG_RCX, &temp_codepage);
uc_reg_read(uc, UC_X86_REG_RDX, &temp_flags);
uc_reg_read(uc, UC_X86_REG_R8, &temp_widechar);
uc_reg_read(uc, UC_X86_REG_R9, &temp_cchwidechar);
CodePage = static_cast<uint32_t>(temp_codepage);
dwFlags = static_cast<uint32_t>(temp_flags);
lpWideCharStr = temp_widechar;
cchWideChar = static_cast<int32_t>(temp_cchwidechar);
// 获取栈上的参数
uint64_t rsp = 0;
uc_reg_read(uc, UC_X86_REG_RSP, &rsp);
uint64_t shadow_space = 0x20;
uc_mem_read(uc, rsp + shadow_space + 0x8, &lpMultiByteStr,
sizeof(uint64_t));
uc_mem_read(uc, rsp + shadow_space + 0x10, &cbMultiByte,
sizeof(int32_t));
uc_mem_read(uc, rsp + shadow_space + 0x18, &lpDefaultChar,
sizeof(uint64_t));
uc_mem_read(uc, rsp + shadow_space + 0x20, &lpUsedDefaultChar,
sizeof(uint64_t));
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &CodePage, sizeof(uint32_t));
uc_mem_read(uc, esp_address + 0x4, &dwFlags, sizeof(uint32_t));
uc_mem_read(uc, esp_address + 0x8, &lpWideCharStr, sizeof(uint32_t));
uc_mem_read(uc, esp_address + 0xC, &cchWideChar, sizeof(int32_t));
uc_mem_read(uc, esp_address + 0x10, &lpMultiByteStr, sizeof(uint32_t));
uc_mem_read(uc, esp_address + 0x14, &cbMultiByte, sizeof(int32_t));
uc_mem_read(uc, esp_address + 0x18, &lpDefaultChar, sizeof(uint32_t));
uc_mem_read(uc, esp_address + 0x1C, &lpUsedDefaultChar,
sizeof(uint32_t));
}
// 基本参数验证
if (lpWideCharStr == 0 || cchWideChar == 0) {
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
int result = 0;
uc_reg_write(
uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
// 读取源宽字符串
std::vector<wchar_t> srcBuffer;
size_t actualWideLength = 0;
if (cchWideChar == -1) {
// 如果长度为-1,则源字符串以null结尾
wchar_t ch = 0;
do {
if (uc_mem_read(uc, lpWideCharStr + (actualWideLength * 2), &ch,
2) != UC_ERR_OK) {
break;
}
srcBuffer.push_back(ch);
actualWideLength++;
} while (ch != 0 && actualWideLength < MAX_PATH);
if (actualWideLength >= MAX_PATH) {
DWORD error = ERROR_INSUFFICIENT_BUFFER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
int result = 0;
uc_reg_write(
uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
} else {
// 使用指定长度
if (cchWideChar > 0 && cchWideChar <= MAX_PATH) {
srcBuffer.resize(cchWideChar);
if (uc_mem_read(uc, lpWideCharStr, srcBuffer.data(),
cchWideChar * 2) != UC_ERR_OK) {
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
int result = 0;
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX
: UC_X86_REG_EAX,
&result);
return;
}
actualWideLength = cchWideChar;
} else {
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
int result = 0;
uc_reg_write(
uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
}
// 读取默认字符和使用默认字符标志
char defaultChar = '?';
BOOL usedDefaultChar = FALSE;
if (lpDefaultChar != 0) {
uc_mem_read(uc, lpDefaultChar, &defaultChar, 1);
}
// 计算所需的多字节缓冲区大小
int requiredSize = WideCharToMultiByte(
CodePage, dwFlags, srcBuffer.data(), static_cast<int>(actualWideLength),
nullptr, 0, lpDefaultChar ? &defaultChar : nullptr,
lpUsedDefaultChar ? &usedDefaultChar : nullptr);
if (requiredSize == 0) {
// 获取并设置错误码
DWORD error = GetLastError();
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
int result = 0;
uc_reg_write(
uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
// 如果只是查询所需缓冲区大小
if (lpMultiByteStr == 0 || cbMultiByte == 0) {
uc_reg_write(
uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&requiredSize);
return;
}
// 检查目标缓冲区大小是否足够
if (cbMultiByte < requiredSize) {
DWORD error = ERROR_INSUFFICIENT_BUFFER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
int result = 0;
uc_reg_write(
uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
return;
}
// 执行实际转换
std::vector<char> multiByteBuffer(requiredSize);
int result = WideCharToMultiByte(
CodePage, dwFlags, srcBuffer.data(), static_cast<int>(actualWideLength),
multiByteBuffer.data(), requiredSize,
lpDefaultChar ? &defaultChar : nullptr,
lpUsedDefaultChar ? &usedDefaultChar : nullptr);
if (result > 0) {
// 写入转换后的字符串到目标内存
if (uc_mem_write(uc, lpMultiByteStr, multiByteBuffer.data(), result) !=
UC_ERR_OK) {
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
result = 0;
}
// 如果需要,写回使用默认字符标志
if (lpUsedDefaultChar != 0) {
uc_mem_write(uc, lpUsedDefaultChar, &usedDefaultChar, sizeof(BOOL));
}
} else {
// 获取并设置错误码
DWORD error = GetLastError();
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
}
printf(
"[*] WideCharToMultiByte: CodePage=%u, Flags=0x%x, WideStr=%p, "
"WideLen=%d, MultiStr=%p, MultiLen=%d, Result=%d\n",
CodePage, dwFlags, (void*)lpWideCharStr, cchWideChar,
(void*)lpMultiByteStr, cbMultiByte, result);
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
}
// 实现 InitializeSListHead API
auto Api_InitializeSListHead(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t ListHead = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = ListHead
uc_reg_read(uc, UC_X86_REG_RCX, &ListHead);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uint32_t temp_listhead = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &temp_listhead, sizeof(uint32_t));
ListHead = temp_listhead;
}
if (ListHead != 0) {
if (context->GetPeInfo()->isX64) {
// 64位系统的SLIST_HEADER结构 (16字节对齐)
struct SLIST_HEADER64 {
union {
struct {
ULONGLONG Alignment;
ULONGLONG Region;
} DUMMYSTRUCTNAME;
struct {
ULONGLONG Depth : 16;
ULONGLONG Sequence : 48;
ULONGLONG Reserved : 4;
ULONGLONG NextEntry : 60;
} HeaderX64;
};
} header = {0};
// 初始化Depth和Sequence为0
header.HeaderX64.Depth = 0;
header.HeaderX64.Sequence = 0;
header.HeaderX64.Reserved = 0;
header.HeaderX64.NextEntry = 0;
// 写入初始化的结构
uc_mem_write(uc, ListHead, &header, sizeof(SLIST_HEADER64));
} else {
// 32位系统的SLIST_HEADER结构 (8字节)
struct SLIST_HEADER32 {
union {
ULONGLONG Alignment;
struct {
SLIST_ENTRY* Next;
WORD Depth;
WORD Sequence;
} Header32;
};
} header = {0};
// 初始化Next、Depth和Sequence为0
header.Header32.Next = nullptr;
header.Header32.Depth = 0;
header.Header32.Sequence = 0;
// 写入初始化的结构
uc_mem_write(uc, ListHead, &header, sizeof(SLIST_HEADER32));
}
}
printf("[*] InitializeSListHead: ListHead=0x%llx\n", ListHead);
}
// 实现 GetEnvironmentStringsW API
auto Api_GetEnvironmentStringsW(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t envBlock = context->GetEnvBlockBase();
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&envBlock);
}
// 实现 FreeEnvironmentStringsW API
auto Api_FreeEnvironmentStringsW(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t lpszEnvironmentBlock = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = lpszEnvironmentBlock
uc_reg_read(uc, UC_X86_REG_RCX, &lpszEnvironmentBlock);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uint32_t temp_block = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &temp_block, sizeof(uint32_t));
lpszEnvironmentBlock = temp_block;
}
// 检查传入的地址是否是我们之前分配的环境块地址
BOOL success = (lpszEnvironmentBlock == context->GetEnvBlockBase());
if (!success) {
// 如果地址无效,设置错误码
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
}
printf("[*] FreeEnvironmentStringsW: Block=0x%llx, Success=%d\n",
lpszEnvironmentBlock, success);
// 返回操作是否成功
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&success);
}
// 实现 SetUnhandledExceptionFilter API
auto Api_SetUnhandledExceptionFilter(void* sandbox, uc_engine* uc,
uint64_t address) -> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t lpTopLevelExceptionFilter = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = lpTopLevelExceptionFilter
uc_reg_read(uc, UC_X86_REG_RCX, &lpTopLevelExceptionFilter);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uint32_t temp_filter = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uc_mem_read(uc, esp_address, &temp_filter, sizeof(uint32_t));
lpTopLevelExceptionFilter = temp_filter;
}
// 简单实现返回NULL表示没有之前的过滤器
uint64_t prev_filter = 0;
printf("[*] SetUnhandledExceptionFilter: Filter=0x%llx\n",
lpTopLevelExceptionFilter);
// 返回之前的过滤器在这里始终返回NULL
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&prev_filter);
}
// 将Windows VirtualProtect保护标志转换为Unicorn内存保护标志
uint32_t WindowsToUnicornProtect(uint32_t windowsProtect) {
uint32_t unicornProtect = UC_PROT_NONE;
// 转换基本属性
if (windowsProtect & (PAGE_READONLY | PAGE_READWRITE | PAGE_EXECUTE_READ |
PAGE_EXECUTE_READWRITE)) {
unicornProtect |= UC_PROT_READ;
}
if (windowsProtect & (PAGE_READWRITE | PAGE_WRITECOPY |
PAGE_EXECUTE_READWRITE | PAGE_EXECUTE_WRITECOPY)) {
unicornProtect |= UC_PROT_WRITE;
}
if (windowsProtect & (PAGE_EXECUTE | PAGE_EXECUTE_READ |
PAGE_EXECUTE_READWRITE | PAGE_EXECUTE_WRITECOPY)) {
unicornProtect |= UC_PROT_EXEC;
}
// 如果没有有效标志,至少给予读权限以防崩溃
if (unicornProtect == UC_PROT_NONE && windowsProtect != PAGE_NOACCESS) {
unicornProtect = UC_PROT_READ;
}
return unicornProtect;
}
auto Api_VirtualProtect(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t lpAddress = 0;
uint64_t dwSize = 0;
uint32_t flNewProtect = 0;
uint64_t lpflOldProtect = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = lpAddress, rdx = dwSize, r8 = flNewProtect, r9 =
// lpflOldProtect
uc_reg_read(uc, UC_X86_REG_RCX, &lpAddress);
uc_reg_read(uc, UC_X86_REG_RDX, &dwSize);
uint64_t temp_protect;
uc_reg_read(uc, UC_X86_REG_R8, &temp_protect);
flNewProtect = static_cast<uint32_t>(temp_protect);
uc_reg_read(uc, UC_X86_REG_R9, &lpflOldProtect);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uint32_t temp_address;
uc_mem_read(uc, esp_address, &temp_address, sizeof(uint32_t));
lpAddress = temp_address;
esp_address += 0x4;
uint32_t temp_size;
uc_mem_read(uc, esp_address, &temp_size, sizeof(uint32_t));
dwSize = temp_size;
esp_address += 0x4;
uc_mem_read(uc, esp_address, &flNewProtect, sizeof(uint32_t));
esp_address += 0x4;
uint32_t temp_old_protect;
uc_mem_read(uc, esp_address, &temp_old_protect, sizeof(uint32_t));
lpflOldProtect = temp_old_protect;
}
// 检查参数有效性
if (lpAddress == 0 || dwSize == 0 || lpflOldProtect == 0) {
uint64_t result = 0; // FALSE
uc_reg_write(
uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
// 设置错误码 - ERROR_INVALID_PARAMETER
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
return;
}
// 检查地址范围是否已映射
uint32_t unicornProtect = WindowsToUnicornProtect(flNewProtect);
uc_err err = uc_mem_protect(uc, lpAddress, dwSize, unicornProtect);
if (err != UC_ERR_OK) {
uint64_t result = 0; // FALSE
uc_reg_write(
uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
// 设置错误码 - ERROR_INVALID_ADDRESS
DWORD error = ERROR_INVALID_ADDRESS;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
return;
}
// 模拟的旧保护属性,这里简化为一个默认值
// 实际应用中,应该从内存映射表中获取
uint32_t oldProtect = PAGE_READWRITE;
// 写入旧保护值到lpflOldProtect指向的内存
uc_mem_write(uc, lpflOldProtect, &oldProtect, sizeof(uint32_t));
// 调试输出
printf(
"[*] VirtualProtect: Address=0x%llx, Size=0x%llx, WindowsProtect=0x%x, "
"UnicornProtect=0x%x, OldProtect=0x%x\n",
lpAddress, dwSize, flNewProtect, unicornProtect, oldProtect);
// 设置返回值为TRUE
uint64_t result = 1; // TRUE
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
}
auto Sandbox::InitApiHooks() -> void {
auto FakeApi_GetSystemTimeAsFileTime =
_fakeApi{.func = Api_GetSystemTimeAsFileTime, .paramCount = 1};
auto FakeApi_GetCurrentThreadId =
_fakeApi{.func = Api_GetCurrentThreadId, .paramCount = 0};
auto FakeApi_GetCurrentProcessId =
_fakeApi{.func = Api_GetCurrentProcessId, .paramCount = 0};
auto FakeApi_QueryPerformanceCounter =
_fakeApi{.func = Api_QueryPerformanceCounter, .paramCount = 1};
auto FakeApi_LoadLibraryA =
_fakeApi{.func = Api_LoadLibraryA, .paramCount = 1};
auto FakeApi_LoadLibraryExW =
_fakeApi{.func = Api_LoadLibraryExW, .paramCount = 3};
auto FakeApi_GetLastError =
_fakeApi{.func = Api_GetLastError, .paramCount = 0};
auto FakeApi_InitializeCriticalSectionAndSpinCount = _fakeApi{
.func = Api_InitializeCriticalSectionAndSpinCount, .paramCount = 2};
auto FakeApi_TlsAlloc = _fakeApi{.func = Api_TlsAlloc, .paramCount = 0};
auto FakeApi_TlsSetValue =
_fakeApi{.func = Api_TlsSetValue, .paramCount = 2};
auto FakeApi_DeleteCriticalSection =
_fakeApi{.func = Api_DeleteCriticalSection, .paramCount = 1};
auto FakeApi_IsProcessorFeaturePresent =
_fakeApi{.func = Api_IsProcessorFeaturePresent, .paramCount = 1};
auto FakeApi_GetProcAddress =
_fakeApi{.func = Api_GetProcAddress, .paramCount = 2};
auto FakeApi_GetProcessHeap =
_fakeApi{.func = Api_GetProcessHeap, .paramCount = 0};
auto FakeApi_HeapAlloc = _fakeApi{.func = Api_HeapAlloc, .paramCount = 3};
auto FakeApi_HeapFree = _fakeApi{.func = Api_HeapFree, .paramCount = 3};
auto FakeApi_TlsGetValue =
_fakeApi{.func = Api_TlsGetValue, .paramCount = 1};
auto FakeApi_SetLastError =
_fakeApi{.func = Api_SetLastError, .paramCount = 1};
auto FakeApi_EnterCriticalSection =
_fakeApi{.func = Api_EnterCriticalSection, .paramCount = 1};
auto FakeApi_LeaveCriticalSection =
_fakeApi{.func = Api_LeaveCriticalSection, .paramCount = 1};
auto FakeApi_GetStartupInfoW =
_fakeApi{.func = Api_GetStartupInfoW, .paramCount = 1};
auto FakeApi_GetStdHandle =
_fakeApi{.func = Api_GetStdHandle, .paramCount = 1};
auto FakeApi_GetFileType =
_fakeApi{.func = Api_GetFileType, .paramCount = 1};
auto FakeApi_GetCommandLineA =
_fakeApi{.func = Api_GetCommandLineA, .paramCount = 0};
auto FakeApi_GetCommandLineW =
_fakeApi{.func = Api_GetCommandLineW, .paramCount = 0};
auto FakeApi_GetACP = _fakeApi{.func = Api_GetACP, .paramCount = 0};
auto FakeApi_GetCPInfo = _fakeApi{.func = Api_GetCPInfo, .paramCount = 2};
auto FakeApi_MultiByteToWideChar =
_fakeApi{.func = Api_MultiByteToWideChar, .paramCount = 6};
auto FakeApi_GetModuleFileNameW =
_fakeApi{.func = Api_GetModuleFileNameW, .paramCount = 3};
auto FakeApi_AreFileApisANSI =
_fakeApi{.func = Api_AreFileApisANSI, .paramCount = 0};
auto FakeApi_WideCharToMultiByte =
_fakeApi{.func = Api_WideCharToMultiByte, .paramCount = 8};
auto FakeApi_InitializeSListHead =
_fakeApi{.func = Api_InitializeSListHead, .paramCount = 1};
auto FakeApi_GetEnvironmentStringsW =
_fakeApi{.func = Api_GetEnvironmentStringsW, .paramCount = 0};
auto FakeApi_FreeEnvironmentStringsW =
_fakeApi{.func = Api_FreeEnvironmentStringsW, .paramCount = 1};
auto FakeApi_SetUnhandledExceptionFilter =
_fakeApi{.func = Api_SetUnhandledExceptionFilter, .paramCount = 1};
auto FakeApi_VirtualProtect =
_fakeApi{.func = Api_VirtualProtect, .paramCount = 4};
api_map = {
{"GetSystemTimeAsFileTime",
std::make_shared<_fakeApi>(FakeApi_GetSystemTimeAsFileTime)},
{"GetCurrentThreadId",
std::make_shared<_fakeApi>(FakeApi_GetCurrentThreadId)},
{"GetCurrentProcessId",
std::make_shared<_fakeApi>(FakeApi_GetCurrentProcessId)},
{"QueryPerformanceCounter",
std::make_shared<_fakeApi>(FakeApi_QueryPerformanceCounter)},
{"LoadLibraryA", std::make_shared<_fakeApi>(FakeApi_LoadLibraryA)},
{"LoadLibraryExW", std::make_shared<_fakeApi>(FakeApi_LoadLibraryExW)},
{"GetLastError", std::make_shared<_fakeApi>(FakeApi_GetLastError)},
{"InitializeCriticalSectionAndSpinCount",
std::make_shared<_fakeApi>(
FakeApi_InitializeCriticalSectionAndSpinCount)},
{"DeleteCriticalSection",
std::make_shared<_fakeApi>(FakeApi_DeleteCriticalSection)},
{"TlsAlloc", std::make_shared<_fakeApi>(FakeApi_TlsAlloc)},
{"TlsSetValue", std::make_shared<_fakeApi>(FakeApi_TlsSetValue)},
{"IsProcessorFeaturePresent",
std::make_shared<_fakeApi>(FakeApi_IsProcessorFeaturePresent)},
{"GetProcAddress", std::make_shared<_fakeApi>(FakeApi_GetProcAddress)},
{"GetProcessHeap", std::make_shared<_fakeApi>(FakeApi_GetProcessHeap)},
{"HeapAlloc", std::make_shared<_fakeApi>(FakeApi_HeapAlloc)},
{"HeapFree", std::make_shared<_fakeApi>(FakeApi_HeapFree)},
{"TlsGetValue", std::make_shared<_fakeApi>(FakeApi_TlsGetValue)},
{"SetLastError", std::make_shared<_fakeApi>(FakeApi_SetLastError)},
{"EnterCriticalSection",
std::make_shared<_fakeApi>(FakeApi_EnterCriticalSection)},
{"LeaveCriticalSection",
std::make_shared<_fakeApi>(FakeApi_LeaveCriticalSection)},
{"GetStartupInfoW",
std::make_shared<_fakeApi>(FakeApi_GetStartupInfoW)},
{"GetStdHandle", std::make_shared<_fakeApi>(FakeApi_GetStdHandle)},
{"GetFileType", std::make_shared<_fakeApi>(FakeApi_GetFileType)},
{"GetCommandLineA",
std::make_shared<_fakeApi>(FakeApi_GetCommandLineA)},
{"GetCommandLineW",
std::make_shared<_fakeApi>(FakeApi_GetCommandLineW)},
{"GetACP", std::make_shared<_fakeApi>(FakeApi_GetACP)},
{"GetCPInfo", std::make_shared<_fakeApi>(FakeApi_GetCPInfo)},
{"MultiByteToWideChar",
std::make_shared<_fakeApi>(FakeApi_MultiByteToWideChar)},
{"GetModuleFileNameW",
std::make_shared<_fakeApi>(FakeApi_GetModuleFileNameW)},
{"AreFileApisANSI",
std::make_shared<_fakeApi>(FakeApi_AreFileApisANSI)},
{"WideCharToMultiByte",
std::make_shared<_fakeApi>(FakeApi_WideCharToMultiByte)},
{"InitializeSListHead",
std::make_shared<_fakeApi>(FakeApi_InitializeSListHead)},
{"GetEnvironmentStringsW",
std::make_shared<_fakeApi>(FakeApi_GetEnvironmentStringsW)},
{"FreeEnvironmentStringsW",
std::make_shared<_fakeApi>(FakeApi_FreeEnvironmentStringsW)},
{"SetUnhandledExceptionFilter",
std::make_shared<_fakeApi>(FakeApi_SetUnhandledExceptionFilter)},
{"VirtualProtect", std::make_shared<_fakeApi>(FakeApi_VirtualProtect)},
};
}
auto Sandbox::EmulateApi(uc_engine* uc, uint64_t address, uint64_t rip,
std::string ApiName) -> void {
auto it = api_map.find(ApiName);
if (it != api_map.end()) {
it->second->func(this, uc, address);
// 获取参数数量
int paramCount = it->second->paramCount;
// 获取当前的栈指针
uint64_t rsp;
uc_reg_read(uc,
this->GetPeInfo()->isX64 ? UC_X86_REG_RSP : UC_X86_REG_ESP,
&rsp);
// 从栈上读取返回地址
uint64_t return_address;
if (this->GetPeInfo()->isX64) { // 64位系统
// 读取8字节的返回地址
uc_mem_read(uc, rsp, &return_address, 8);
// x64下前4个参数通过寄存器传递超过的部分通过栈传递
// int stack_params = (paramCount > 4) ? (paramCount - 4) : 0;
// 调整栈指针每个参数8字节 + 返回地址8字节
// rsp += (stack_params * 8) + 8;
rsp += 8;
// 设置RIP为返回地址
uc_reg_write(uc, UC_X86_REG_RIP, &return_address);
} else { // 32位系统
// 读取4字节的返回地址
uint32_t return_address_32;
uc_mem_read(uc, rsp, &return_address_32, 4);
// x86下所有参数都通过栈传递
// 调整栈指针每个参数4字节 + 返回地址4字节
rsp += (paramCount * 4) + 4;
// 设置EIP为返回地址
uc_reg_write(uc, UC_X86_REG_EIP, &return_address_32);
}
// 更新栈指针,使用正确的寄存器
uc_reg_write(uc,
this->GetPeInfo()->isX64 ? UC_X86_REG_RSP : UC_X86_REG_ESP,
&rsp);
return;
}
printf("ApiName: %s not found\n", ApiName.c_str());
uc_emu_stop(uc);
return;
}