Files
csgo2_tiny_server_plugin_sy…/csgo2/sdk/tier1/UtlVector.hpp
2023-10-06 05:08:40 +08:00

738 lines
23 KiB
C++

#pragma once
#include "../sdk.h"
#define _Utl_Vector_assert
template <class T>
inline T* CopyConstruct(T* pMemory, T const& src) {
return ::new (pMemory) T(src);
}
template <class T, class A = CUtlMemory<T> >
class CUtlVector {
typedef T* iterator;
typedef const T* const_iterator;
typedef A CAllocator;
public:
typedef T ElemType_t;
// constructor, destructor
CUtlVector(int growSize = 0, int initSize = 0);
CUtlVector(T* pMemory, int allocationCount, int numElements = 0);
~CUtlVector();
// Copy the array.
CUtlVector<T, A>& operator=(const CUtlVector<T, A>& other);
// element access
T& operator[](int i);
const T& operator[](int i) const;
T& Element(int i);
const T& Element(int i) const;
T& Head();
const T& Head() const;
T& Tail();
const T& Tail() const;
// Gets the base address (can change when adding elements!)
T* Base() { return m_Memory.Base(); }
const T* Base() const { return m_Memory.Base(); }
// Returns the number of elements in the vector
int Count() const;
// Is element index valid?
bool IsValidIndex(int i) const;
static int InvalidIndex();
// Adds an element, uses default constructor
int AddToHead();
int AddToTail();
int InsertBefore(int elem);
int InsertAfter(int elem);
// Adds an element, uses copy constructor
int AddToHead(const T& src);
int AddToTail(const T& src);
int InsertBefore(int elem, const T& src);
int InsertAfter(int elem, const T& src);
// Adds multiple elements, uses default constructor
int AddMultipleToHead(int num);
int AddMultipleToTail(int num);
int AddMultipleToTail(int num, const T* pToCopy);
int InsertMultipleBefore(int elem, int num);
int InsertMultipleBefore(int elem, int num, const T* pToCopy);
int InsertMultipleAfter(int elem, int num);
// Calls RemoveAll() then AddMultipleToTail.
void SetSize(int size);
void SetCount(int count);
void SetCountNonDestructively(
int count); // sets count by adding or removing elements to tail TODO:
// This should probably be the default behavior for
// SetCount
void CopyArray(const T* pArray,
int size); // Calls SetSize and copies each element.
// Fast swap
void Swap(CUtlVector<T, A>& vec);
// Add the specified array to the tail.
int AddVectorToTail(CUtlVector<T, A> const& src);
// Finds an element (element needs operator== defined)
int GetOffset(const T& src) const;
void FillWithValue(const T& src);
bool HasElement(const T& src) const;
// Makes sure we have enough memory allocated to store a requested # of
// elements
void EnsureCapacity(int num);
// Makes sure we have at least this many elements
void EnsureCount(int num);
// Element removal
void FastRemove(int elem); // doesn't preserve order
void Remove(int elem); // preserves order, shifts elements
bool FindAndRemove(const T& src); // removes first occurrence of src,
// preserves order, shifts elements
bool FindAndFastRemove(const T& src); // removes first occurrence of src,
// doesn't preserve order
void RemoveMultiple(int elem, int num); // preserves order, shifts elements
void RemoveMultipleFromHead(int num); // removes num elements from tail
void RemoveMultipleFromTail(int num); // removes num elements from tail
void RemoveAll(); // doesn't deallocate memory
void Purge(); // Memory deallocation
// Purges the list and calls delete on each element in it.
void PurgeAndDeleteElements();
// Compacts the vector to the number of elements actually in use
void Compact();
// Set the size by which it grows when it needs to allocate more memory.
void SetGrowSize(int size) { m_Memory.SetGrowSize(size); }
int NumAllocated()
const; // Only use this if you really know what you're doing!
void Sort(int(__cdecl* pfnCompare)(const T*, const T*));
iterator begin() { return Base(); }
const_iterator begin() const { return Base(); }
iterator end() { return Base() + Count(); }
const_iterator end() const { return Base() + Count(); }
protected:
// Can't copy this unless we explicitly do it!
CUtlVector(CUtlVector const& vec) { _Utl_Vector_assert(0); }
// Grows the vector
void GrowVector(int num = 1);
// Shifts elements....
void ShiftElementsRight(int elem, int num = 1);
void ShiftElementsLeft(int elem, int num = 1);
public:
CAllocator m_Memory;
int m_Size;
// For easier access to the elements through the debugger
// it's in release builds so this can be used in libraries correctly
T* m_pElements;
inline void ResetDbgInfo() { m_pElements = Base(); }
};
//-----------------------------------------------------------------------------
// constructor, destructor
//-----------------------------------------------------------------------------
template <typename T, class A>
inline CUtlVector<T, A>::CUtlVector(int growSize, int initSize)
: m_Memory(growSize, initSize), m_Size(0) {
ResetDbgInfo();
}
template <typename T, class A>
inline CUtlVector<T, A>::CUtlVector(T* pMemory, int allocationCount,
int numElements)
: m_Memory(pMemory, allocationCount), m_Size(numElements) {
ResetDbgInfo();
}
template <typename T, class A>
inline CUtlVector<T, A>::~CUtlVector() {
Purge();
}
template <typename T, class A>
inline CUtlVector<T, A>& CUtlVector<T, A>::operator=(
const CUtlVector<T, A>& other) {
int nCount = other.Count();
SetSize(nCount);
for (int i = 0; i < nCount; i++) {
(*this)[i] = other[i];
}
return *this;
}
//-----------------------------------------------------------------------------
// element access
//-----------------------------------------------------------------------------
template <typename T, class A>
inline T& CUtlVector<T, A>::operator[](int i) {
_Utl_Vector_assert(i < m_Size);
return m_Memory[i];
}
template <typename T, class A>
inline const T& CUtlVector<T, A>::operator[](int i) const {
_Utl_Vector_assert(i < m_Size);
return m_Memory[i];
}
template <typename T, class A>
inline T& CUtlVector<T, A>::Element(int i) {
_Utl_Vector_assert(i < m_Size);
return m_Memory[i];
}
template <typename T, class A>
inline const T& CUtlVector<T, A>::Element(int i) const {
_Utl_Vector_assert(i < m_Size);
return m_Memory[i];
}
template <typename T, class A>
inline T& CUtlVector<T, A>::Head() {
_Utl_Vector_assert(m_Size > 0);
return m_Memory[0];
}
template <typename T, class A>
inline const T& CUtlVector<T, A>::Head() const {
_Utl_Vector_assert(m_Size > 0);
return m_Memory[0];
}
template <typename T, class A>
inline T& CUtlVector<T, A>::Tail() {
_Utl_Vector_assert(m_Size > 0);
return m_Memory[m_Size - 1];
}
template <typename T, class A>
inline const T& CUtlVector<T, A>::Tail() const {
_Utl_Vector_assert(m_Size > 0);
return m_Memory[m_Size - 1];
}
//-----------------------------------------------------------------------------
// Count
//-----------------------------------------------------------------------------
template <typename T, class A>
inline int CUtlVector<T, A>::Count() const {
return m_Size;
}
//-----------------------------------------------------------------------------
// Is element index valid?
//-----------------------------------------------------------------------------
template <typename T, class A>
inline bool CUtlVector<T, A>::IsValidIndex(int i) const {
return (i >= 0) && (i < m_Size);
}
//-----------------------------------------------------------------------------
// Returns in invalid index
//-----------------------------------------------------------------------------
template <typename T, class A>
inline int CUtlVector<T, A>::InvalidIndex() {
return -1;
}
//-----------------------------------------------------------------------------
// Grows the vector
//-----------------------------------------------------------------------------
template <typename T, class A>
void CUtlVector<T, A>::GrowVector(int num) {
if (m_Size + num > m_Memory.NumAllocated()) {
m_Memory.Grow(m_Size + num - m_Memory.NumAllocated());
}
m_Size += num;
ResetDbgInfo();
}
//-----------------------------------------------------------------------------
// Sorts the vector
//-----------------------------------------------------------------------------
template <typename T, class A>
void CUtlVector<T, A>::Sort(int(__cdecl* pfnCompare)(const T*, const T*)) {
typedef int(__cdecl * QSortCompareFunc_t)(const void*, const void*);
if (Count() <= 1) return;
if (Base()) {
qsort(Base(), Count(), sizeof(T), (QSortCompareFunc_t)(pfnCompare));
} else {
_Utl_Vector_assert(0);
// this path is untested
// if you want to sort vectors that use a non-sequential memory
// allocator, you'll probably want to patch in a quicksort algorithm
// here I just threw in this bubble sort to have something just in
// case...
for (int i = m_Size - 1; i >= 0; --i) {
for (int j = 1; j <= i; ++j) {
if (pfnCompare(&Element(j - 1), &Element(j)) < 0) {
V_swap(Element(j - 1), Element(j));
}
}
}
}
}
//-----------------------------------------------------------------------------
// Makes sure we have enough memory allocated to store a requested # of elements
//-----------------------------------------------------------------------------
template <typename T, class A>
void CUtlVector<T, A>::EnsureCapacity(int num) {
MEM_ALLOC_CREDIT_CLASS();
m_Memory.EnsureCapacity(num);
ResetDbgInfo();
}
//-----------------------------------------------------------------------------
// Makes sure we have at least this many elements
//-----------------------------------------------------------------------------
template <typename T, class A>
void CUtlVector<T, A>::EnsureCount(int num) {
if (Count() < num) {
AddMultipleToTail(num - Count());
}
}
//-----------------------------------------------------------------------------
// Shifts elements
//-----------------------------------------------------------------------------
template <typename T, class A>
void CUtlVector<T, A>::ShiftElementsRight(int elem, int num) {
_Utl_Vector_assert(IsValidIndex(elem) || (m_Size == 0) || (num == 0));
int numToMove = m_Size - elem - num;
if ((numToMove > 0) && (num > 0))
memmove(&Element(elem + num), &Element(elem), numToMove * sizeof(T));
}
template <typename T, class A>
void CUtlVector<T, A>::ShiftElementsLeft(int elem, int num) {
_Utl_Vector_assert(IsValidIndex(elem) || (m_Size == 0) || (num == 0));
int numToMove = m_Size - elem - num;
if ((numToMove > 0) && (num > 0)) {
memmove(&Element(elem), &Element(elem + num), numToMove * sizeof(T));
#ifdef _DEBUG
memset(&Element(m_Size - num), 0xDD, num * sizeof(T));
#endif
}
}
//-----------------------------------------------------------------------------
// Adds an element, uses default constructor
//-----------------------------------------------------------------------------
template <typename T, class A>
inline int CUtlVector<T, A>::AddToHead() {
return InsertBefore(0);
}
template <typename T, class A>
inline int CUtlVector<T, A>::AddToTail() {
return InsertBefore(m_Size);
}
template <typename T, class A>
inline int CUtlVector<T, A>::InsertAfter(int elem) {
return InsertBefore(elem + 1);
}
template <typename T, class A>
int CUtlVector<T, A>::InsertBefore(int elem) {
// Can insert at the end
_Utl_Vector_assert((elem == Count()) || IsValidIndex(elem));
GrowVector();
ShiftElementsRight(elem);
Construct(&Element(elem));
return elem;
}
//-----------------------------------------------------------------------------
// Adds an element, uses copy constructor
//-----------------------------------------------------------------------------
template <typename T, class A>
inline int CUtlVector<T, A>::AddToHead(const T& src) {
// Can't insert something that's in the list... reallocation may hose us
_Utl_Vector_assert((Base() == NULL) || (&src < Base()) ||
(&src >= (Base() + Count())));
return InsertBefore(0, src);
}
template <typename T, class A>
inline int CUtlVector<T, A>::AddToTail(const T& src) {
// Can't insert something that's in the list... reallocation may hose us
_Utl_Vector_assert((Base() == NULL) || (&src < Base()) ||
(&src >= (Base() + Count())));
return InsertBefore(m_Size, src);
}
template <typename T, class A>
inline int CUtlVector<T, A>::InsertAfter(int elem, const T& src) {
// Can't insert something that's in the list... reallocation may hose us
_Utl_Vector_assert((Base() == NULL) || (&src < Base()) ||
(&src >= (Base() + Count())));
return InsertBefore(elem + 1, src);
}
template <typename T, class A>
int CUtlVector<T, A>::InsertBefore(int elem, const T& src) {
// Can't insert something that's in the list... reallocation may hose us
_Utl_Vector_assert((Base() == NULL) || (&src < Base()) ||
(&src >= (Base() + Count())));
// Can insert at the end
_Utl_Vector_assert((elem == Count()) || IsValidIndex(elem));
GrowVector();
ShiftElementsRight(elem);
CopyConstruct(&Element(elem), src);
return elem;
}
//-----------------------------------------------------------------------------
// Adds multiple elements, uses default constructor
//-----------------------------------------------------------------------------
template <typename T, class A>
inline int CUtlVector<T, A>::AddMultipleToHead(int num) {
return InsertMultipleBefore(0, num);
}
template <typename T, class A>
inline int CUtlVector<T, A>::AddMultipleToTail(int num) {
return InsertMultipleBefore(m_Size, num);
}
template <typename T, class A>
inline int CUtlVector<T, A>::AddMultipleToTail(int num, const T* pToCopy) {
// Can't insert something that's in the list... reallocation may hose us
_Utl_Vector_assert((Base() == NULL) || !pToCopy ||
(pToCopy + num <= Base()) ||
(pToCopy >= (Base() + Count())));
return InsertMultipleBefore(m_Size, num, pToCopy);
}
template <typename T, class A>
int CUtlVector<T, A>::InsertMultipleAfter(int elem, int num) {
return InsertMultipleBefore(elem + 1, num);
}
template <typename T, class A>
void CUtlVector<T, A>::SetCount(int count) {
RemoveAll();
AddMultipleToTail(count);
}
template <typename T, class A>
inline void CUtlVector<T, A>::SetSize(int size) {
SetCount(size);
}
template <typename T, class A>
void CUtlVector<T, A>::SetCountNonDestructively(int count) {
int delta = count - m_Size;
if (delta > 0)
AddMultipleToTail(delta);
else if (delta < 0)
RemoveMultipleFromTail(-delta);
}
template <typename T, class A>
void CUtlVector<T, A>::CopyArray(const T* pArray, int size) {
// Can't insert something that's in the list... reallocation may hose us
_Utl_Vector_assert((Base() == NULL) || !pArray ||
(Base() >= (pArray + size)) ||
(pArray >= (Base() + Count())));
SetSize(size);
for (int i = 0; i < size; i++) {
(*this)[i] = pArray[i];
}
}
template <typename T, class A>
void CUtlVector<T, A>::Swap(CUtlVector<T, A>& vec) {
m_Memory.Swap(vec.m_Memory);
V_swap(m_Size, vec.m_Size);
#ifndef _X360
V_swap(m_pElements, vec.m_pElements);
#endif
}
template <typename T, class A>
int CUtlVector<T, A>::AddVectorToTail(CUtlVector const& src) {
_Utl_Vector_assert(&src != this);
int base = Count();
// Make space.
int nSrcCount = src.Count();
EnsureCapacity(base + nSrcCount);
// Copy the elements.
m_Size += nSrcCount;
for (int i = 0; i < nSrcCount; i++) {
CopyConstruct(&Element(base + i), src[i]);
}
return base;
}
template <typename T, class A>
inline int CUtlVector<T, A>::InsertMultipleBefore(int elem, int num) {
if (num == 0) return elem;
// Can insert at the end
_Utl_Vector_assert((elem == Count()) || IsValidIndex(elem));
GrowVector(num);
ShiftElementsRight(elem, num);
// Invoke default constructors
for (int i = 0; i < num; ++i) {
Construct(&Element(elem + i));
}
return elem;
}
template <typename T, class A>
inline int CUtlVector<T, A>::InsertMultipleBefore(int elem, int num,
const T* pToInsert) {
if (num == 0) return elem;
// Can insert at the end
_Utl_Vector_assert((elem == Count()) || IsValidIndex(elem));
GrowVector(num);
ShiftElementsRight(elem, num);
// Invoke default constructors
if (!pToInsert) {
for (int i = 0; i < num; ++i) {
Construct(&Element(elem + i));
}
} else {
for (int i = 0; i < num; i++) {
CopyConstruct(&Element(elem + i), pToInsert[i]);
}
}
return elem;
}
//-----------------------------------------------------------------------------
// Finds an element (element needs operator== defined)
//-----------------------------------------------------------------------------
template <typename T, class A>
int CUtlVector<T, A>::GetOffset(const T& src) const {
for (int i = 0; i < Count(); ++i) {
if (Element(i) == src) return i;
}
return -1;
}
template <typename T, class A>
void CUtlVector<T, A>::FillWithValue(const T& src) {
for (int i = 0; i < Count(); i++) {
Element(i) = src;
}
}
template <typename T, class A>
bool CUtlVector<T, A>::HasElement(const T& src) const {
return (GetOffset(src) >= 0);
}
//-----------------------------------------------------------------------------
// Element removal
//-----------------------------------------------------------------------------
template <typename T, class A>
void CUtlVector<T, A>::FastRemove(int elem) {
_Utl_Vector_assert(IsValidIndex(elem));
Destruct(&Element(elem));
if (m_Size > 0) {
if (elem != m_Size - 1)
memcpy(&Element(elem), &Element(m_Size - 1), sizeof(T));
--m_Size;
}
}
template <typename T, class A>
void CUtlVector<T, A>::Remove(int elem) {
Destruct(&Element(elem));
ShiftElementsLeft(elem);
--m_Size;
}
template <typename T, class A>
bool CUtlVector<T, A>::FindAndRemove(const T& src) {
int elem = GetOffset(src);
if (elem != -1) {
Remove(elem);
return true;
}
return false;
}
template <typename T, class A>
bool CUtlVector<T, A>::FindAndFastRemove(const T& src) {
int elem = GetOffset(src);
if (elem != -1) {
FastRemove(elem);
return true;
}
return false;
}
template <typename T, class A>
void CUtlVector<T, A>::RemoveMultiple(int elem, int num) {
_Utl_Vector_assert(elem >= 0);
_Utl_Vector_assert(elem + num <= Count());
for (int i = elem + num; --i >= elem;) Destruct(&Element(i));
ShiftElementsLeft(elem, num);
m_Size -= num;
}
template <typename T, class A>
void CUtlVector<T, A>::RemoveMultipleFromHead(int num) {
_Utl_Vector_assert(num <= Count());
for (int i = num; --i >= 0;) Destruct(&Element(i));
ShiftElementsLeft(0, num);
m_Size -= num;
}
template <typename T, class A>
void CUtlVector<T, A>::RemoveMultipleFromTail(int num) {
_Utl_Vector_assert(num <= Count());
for (int i = m_Size - num; i < m_Size; i++) Destruct(&Element(i));
m_Size -= num;
}
template <typename T, class A>
void CUtlVector<T, A>::RemoveAll() {
for (int i = m_Size; --i >= 0;) {
Destruct(&Element(i));
}
m_Size = 0;
}
//-----------------------------------------------------------------------------
// Memory deallocation
//-----------------------------------------------------------------------------
template <typename T, class A>
inline void CUtlVector<T, A>::Purge() {
RemoveAll();
m_Memory.Purge();
ResetDbgInfo();
}
template <typename T, class A>
inline void CUtlVector<T, A>::PurgeAndDeleteElements() {
for (int i = 0; i < m_Size; i++) {
delete Element(i);
}
Purge();
}
template <typename T, class A>
inline void CUtlVector<T, A>::Compact() {
m_Memory.Purge(m_Size);
}
template <typename T, class A>
inline int CUtlVector<T, A>::NumAllocated() const {
return m_Memory.NumAllocated();
}
//-----------------------------------------------------------------------------
// Data and memory validation
//-----------------------------------------------------------------------------
#ifdef DBGFLAG_VALIDATE
template <typename T, class A>
void CUtlVector<T, A>::Validate(CValidator& validator, char* pchName) {
validator.Push(typeid(*this).name(), this, pchName);
m_Memory.Validate(validator, "m_Memory");
validator.Pop();
}
#endif // DBGFLAG_VALIDATE
// A vector class for storing pointers, so that the elements pointed to by the
// pointers are deleted on exit.
template <class T>
class CUtlVectorAutoPurge : public CUtlVector<T, CUtlMemory<T, int> > {
public:
~CUtlVectorAutoPurge(void) { this->PurgeAndDeleteElements(); }
};
// easy string list class with dynamically allocated strings. For use with
// V_SplitString, etc. Frees the dynamic strings in destructor.
class CUtlStringList : public CUtlVectorAutoPurge<char*> {
public:
void CopyAndAddToTail(
char const* pString) // clone the string and add to the end
{
char* pNewStr = new char[1 + strlen(pString)];
strcpy_s(pNewStr, 1 + strlen(pString), pString);
AddToTail(pNewStr);
}
static int __cdecl SortFunc(char* const* sz1, char* const* sz2) {
return strcmp(*sz1, *sz2);
}
};
template <class T, size_t MAX_SIZE>
class CUtlVectorFixed : public CUtlVector<T, CUtlMemoryFixed<T, MAX_SIZE> > {
typedef CUtlVector<T, CUtlMemoryFixed<T, MAX_SIZE> > BaseClass;
public:
// constructor, destructor
CUtlVectorFixed(int growSize = 0, int initSize = 0)
: BaseClass(growSize, initSize) {}
CUtlVectorFixed(T* pMemory, int numElements)
: BaseClass(pMemory, numElements) {}
};
template <class T, size_t SIZE, class I = int>
class CUtlMemoryFixedGrowable : public CUtlMemory<T, I> {
typedef CUtlMemory<T, I> BaseClass;
public:
CUtlMemoryFixedGrowable(int nGrowSize = 0, int nInitSize = SIZE)
: BaseClass(m_pFixedMemory, SIZE) {
Assert(nInitSize == 0 || nInitSize == SIZE);
}
void EnsureCapacity(int num) {
if (CUtlMemory<T>::m_nAllocationCount >= num) return;
BaseClass::EnsureCapacity(num);
}
private:
T m_pFixedMemory[SIZE];
};
template <class T, size_t MAX_SIZE>
class CUtlVectorFixedGrowable
: public CUtlVector<T, CUtlMemoryFixedGrowable<T, MAX_SIZE> > {
typedef CUtlVector<T, CUtlMemoryFixedGrowable<T, MAX_SIZE> > BaseClass;
public:
// constructor, destructor
CUtlVectorFixedGrowable(int growSize = 0) : BaseClass(growSize, MAX_SIZE) {}
};