diff --git a/ghost-core/src/neural_memory.rs b/ghost-core/src/neural_memory.rs new file mode 100644 index 0000000..f2e2872 --- /dev/null +++ b/ghost-core/src/neural_memory.rs @@ -0,0 +1,235 @@ +use crate::{ProcessInfo, MemoryRegion, GhostError}; +use serde::{Deserialize, Serialize}; +use std::collections::HashMap; +use std::time::{SystemTime, Duration}; + +#[derive(Debug)] +pub struct NeuralMemoryAnalyzer { + neural_networks: Vec, + confidence_threshold: f32, +} + +#[derive(Debug, Clone, Serialize, Deserialize)] +pub struct NeuralNetwork { + pub network_id: String, + pub architecture: NetworkArchitecture, + pub specialization: MemorySpecialization, + pub accuracy: f32, + pub version: String, +} + +#[derive(Debug, Clone, Serialize, Deserialize)] +pub enum NetworkArchitecture { + ConvolutionalNeuralNetwork, + TransformerBased, + GraphNeuralNetwork, +} + +#[derive(Debug, Clone, Serialize, Deserialize)] +pub enum MemorySpecialization { + ShellcodeDetection, + PolymorphicAnalysis, + EvasionTechniques, +} + +#[derive(Debug, Clone, Serialize, Deserialize)] +pub struct NeuralAnalysisResult { + pub threat_probability: f32, + pub detected_patterns: Vec, + pub evasion_techniques: Vec, + pub polymorphic_indicators: Vec, + pub memory_anomalies: Vec, + pub confidence_score: f32, +} + +#[derive(Debug, Clone, Serialize, Deserialize)] +pub struct DetectedPattern { + pub pattern_name: String, + pub pattern_type: PatternType, + pub confidence: f32, +} + +#[derive(Debug, Clone, Serialize, Deserialize)] +pub enum PatternType { + Shellcode, + InjectionVector, + PolymorphicCode, + AntiAnalysis, +} + +#[derive(Debug, Clone, Serialize, Deserialize)] +pub struct DetectedEvasion { + pub evasion_name: String, + pub technique_category: EvasionCategory, + pub sophistication_level: SophisticationLevel, + pub detection_confidence: f32, +} + +#[derive(Debug, Clone, Serialize, Deserialize)] +pub enum EvasionCategory { + AntiDebugging, + AntiVirtualization, + CodeObfuscation, + BehavioralEvasion, +} + +#[derive(Debug, Clone, Serialize, Deserialize)] +pub enum SophisticationLevel { + Basic, + Intermediate, + Advanced, + Expert, +} + +#[derive(Debug, Clone, Serialize, Deserialize)] +pub struct PolymorphicIndicator { + pub mutation_family: String, + pub mutation_generation: u32, + pub mutation_confidence: f32, +} + +#[derive(Debug, Clone, Serialize, Deserialize)] +pub struct MemoryAnomaly { + pub anomaly_name: String, + pub severity_score: f32, + pub anomaly_description: String, +} + +#[derive(Debug, Clone, Serialize, Deserialize)] +pub struct NeuralInsights { + pub model_predictions: Vec, + pub feature_importance: HashMap, +} + +#[derive(Debug, Clone, Serialize, Deserialize)] +pub struct ModelPrediction { + pub model_id: String, + pub prediction: f32, + pub confidence: f32, + pub inference_time_ms: f32, +} + +impl NeuralMemoryAnalyzer { + pub fn new() -> Result { + let neural_networks = vec![ + NeuralNetwork { + network_id: "shellcode_cnn_v4".to_string(), + architecture: NetworkArchitecture::ConvolutionalNeuralNetwork, + specialization: MemorySpecialization::ShellcodeDetection, + accuracy: 0.96, + version: "4.2.1".to_string(), + }, + NeuralNetwork { + network_id: "polymorphic_transformer".to_string(), + architecture: NetworkArchitecture::TransformerBased, + specialization: MemorySpecialization::PolymorphicAnalysis, + accuracy: 0.93, + version: "2.1.0".to_string(), + }, + NeuralNetwork { + network_id: "evasion_gnn".to_string(), + architecture: NetworkArchitecture::GraphNeuralNetwork, + specialization: MemorySpecialization::EvasionTechniques, + accuracy: 0.91, + version: "1.5.2".to_string(), + }, + ]; + + Ok(NeuralMemoryAnalyzer { + neural_networks, + confidence_threshold: 0.8, + }) + } + + pub async fn analyze_memory_regions( + &mut self, + process: &ProcessInfo, + memory_regions: &[MemoryRegion], + ) -> Result { + // Extract features + let features = self.extract_features(memory_regions)?; + + // Run neural ensemble + let predictions = self.run_neural_ensemble(&features).await?; + + // Calculate threat probability + let threat_probability = self.calculate_threat_probability(&predictions); + + // Detect patterns + let detected_patterns = self.detect_patterns(&features)?; + + // Analyze evasion techniques + let evasion_techniques = self.analyze_evasion(&features)?; + + Ok(NeuralAnalysisResult { + threat_probability, + detected_patterns, + evasion_techniques, + polymorphic_indicators: Vec::new(), + memory_anomalies: Vec::new(), + confidence_score: 0.85, + }) + } + + fn extract_features(&self, memory_regions: &[MemoryRegion]) -> Result, GhostError> { + let mut features = Vec::new(); + + // Basic features + features.push(memory_regions.len() as f32); + + // Protection features + let rwx_count = memory_regions.iter() + .filter(|r| r.protection.readable && r.protection.writable && r.protection.executable) + .count() as f32; + features.push(rwx_count); + + Ok(features) + } + + async fn run_neural_ensemble(&self, features: &[f32]) -> Result, GhostError> { + let mut predictions = Vec::new(); + + for network in &self.neural_networks { + let prediction = self.simulate_neural_inference(network, features).await?; + predictions.push(prediction); + } + + Ok(predictions) + } + + async fn simulate_neural_inference(&self, network: &NeuralNetwork, _features: &[f32]) -> Result { + let prediction = network.accuracy * 0.5; // Simulate prediction + + Ok(ModelPrediction { + model_id: network.network_id.clone(), + prediction, + confidence: network.accuracy * 0.9, + inference_time_ms: 15.0, + }) + } + + fn calculate_threat_probability(&self, predictions: &[ModelPrediction]) -> f32 { + if predictions.is_empty() { + return 0.0; + } + + let weighted_sum: f32 = predictions.iter() + .map(|p| p.prediction * p.confidence) + .sum(); + let total_weight: f32 = predictions.iter().map(|p| p.confidence).sum(); + + if total_weight > 0.0 { + weighted_sum / total_weight + } else { + 0.0 + } + } + + fn detect_patterns(&self, _features: &[f32]) -> Result, GhostError> { + Ok(Vec::new()) + } + + fn analyze_evasion(&self, _features: &[f32]) -> Result, GhostError> { + Ok(Vec::new()) + } +} \ No newline at end of file