Clean up documentation and rewrite README

Removed unnecessary markdown files that were either outdated or
redundant (BUILD.md, PROJECT_SUMMARY.md, TODO.md, RESEARCH_FRAMEWORK.md).
Most of this info is either completed or captured elsewhere.

Rewrote README in a more natural, conversational style. Less formal,
more straightforward about what the tool does and how to use it.
Kept the technical details but made it more accessible.
This commit is contained in:
Adir Shitrit
2025-11-21 01:02:10 +02:00
parent 5757a15427
commit dd6bdef9d7
6 changed files with 79 additions and 1310 deletions

View File

@@ -1,458 +0,0 @@
# Security Research Framework
## Academic Collaboration & Research
Ghost serves as a research platform for studying process injection techniques and developing novel detection methodologies. This framework supports security researchers, academics, and threat hunters.
## Research Capabilities
### 1. Technique Analysis Database
```rust
use ghost_core::research::{TechniqueDatabase, MitreAttack};
// Map detections to MITRE ATT&CK framework
let technique_db = TechniqueDatabase::new();
technique_db.add_mapping("T1055", "Process Injection");
technique_db.add_mapping("T1055.001", "Dynamic-link Library Injection");
technique_db.add_mapping("T1055.002", "Portable Executable Injection");
```
### 2. Behavioral Pattern Mining
```rust
// Extract behavioral patterns from detection data
pub struct PatternMiner {
sequence_analyzer: SequenceAnalyzer,
anomaly_clusterer: AnomalyClusterer,
temporal_correlator: TemporalCorrelator,
}
impl PatternMiner {
pub fn mine_injection_patterns(&self, events: &[DetectionEvent]) -> Vec<Pattern> {
let sequences = self.sequence_analyzer.extract_sequences(events);
let clusters = self.anomaly_clusterer.cluster_anomalies(&sequences);
self.temporal_correlator.correlate_patterns(clusters)
}
}
```
### 3. Adversarial Testing Framework
```rust
// Test detection capabilities against known techniques
pub struct AdversarialTester {
technique_library: TechniqueLibrary,
evasion_simulator: EvasionSimulator,
effectiveness_measurer: EffectivenessMeasurer,
}
impl AdversarialTester {
pub fn test_detection_coverage(&self) -> CoverageReport {
let techniques = self.technique_library.get_all_techniques();
let mut results = Vec::new();
for technique in techniques {
let evasions = self.evasion_simulator.generate_variants(&technique);
let detection_rate = self.effectiveness_measurer.measure(&evasions);
results.push(TestResult { technique, detection_rate });
}
CoverageReport::new(results)
}
}
```
## Data Collection & Analysis
### Event Correlation Engine
```rust
pub struct CorrelationEngine {
event_buffer: RingBuffer<DetectionEvent>,
correlation_rules: Vec<CorrelationRule>,
timeline_analyzer: TimelineAnalyzer,
}
#[derive(Debug, Clone)]
pub struct DetectionEvent {
pub timestamp: SystemTime,
pub process_id: u32,
pub technique: String,
pub indicators: Vec<String>,
pub context: EventContext,
}
impl CorrelationEngine {
pub fn correlate_events(&mut self, new_event: DetectionEvent) -> Vec<CorrelatedIncident> {
self.event_buffer.push(new_event.clone());
let mut incidents = Vec::new();
for rule in &self.correlation_rules {
if let Some(incident) = rule.evaluate(&self.event_buffer, &new_event) {
incidents.push(incident);
}
}
incidents
}
}
```
### Statistical Analysis Module
```rust
use ndarray::{Array1, Array2};
use linfa::prelude::*;
pub struct StatisticalAnalyzer {
feature_extractor: FeatureExtractor,
dimensionality_reducer: PCA,
classifier: LogisticRegression,
}
impl StatisticalAnalyzer {
pub fn analyze_detection_patterns(&self, data: &[ProcessData]) -> AnalysisReport {
// Extract features for statistical analysis
let features = self.feature_extractor.extract_batch(data);
// Apply dimensionality reduction
let reduced_features = self.dimensionality_reducer.transform(&features);
// Classify injection likelihood
let predictions = self.classifier.predict(&reduced_features);
AnalysisReport {
feature_importance: self.calculate_feature_importance(&features),
classification_accuracy: self.calculate_accuracy(&predictions),
statistical_significance: self.calculate_significance(&features),
recommendations: self.generate_recommendations(&predictions),
}
}
}
```
## Research Datasets
### Synthetic Data Generation
```rust
pub struct SyntheticDataGenerator {
process_simulator: ProcessSimulator,
injection_simulator: InjectionSimulator,
noise_generator: NoiseGenerator,
}
impl SyntheticDataGenerator {
pub fn generate_training_dataset(&self, config: DatasetConfig) -> Dataset {
let mut samples = Vec::new();
// Generate clean processes
for _ in 0..config.clean_samples {
let process = self.process_simulator.generate_clean_process();
samples.push(LabeledSample {
data: process,
label: Label::Clean,
});
}
// Generate injected processes
for technique in &config.injection_techniques {
for _ in 0..config.samples_per_technique {
let process = self.injection_simulator.simulate_injection(technique);
samples.push(LabeledSample {
data: process,
label: Label::Injected(technique.clone()),
});
}
}
// Add realistic noise
for sample in &mut samples {
self.noise_generator.add_noise(&mut sample.data);
}
Dataset::new(samples)
}
}
```
### Benchmark Datasets
```rust
// Standard benchmark datasets for research comparison
pub struct BenchmarkDatasets;
impl BenchmarkDatasets {
pub fn load_mitre_dataset() -> Result<Dataset, Error> {
// Load MITRE ATT&CK evaluation dataset
unimplemented!("Load standardized MITRE evaluation data")
}
pub fn load_academic_dataset(name: &str) -> Result<Dataset, Error> {
// Load academic research datasets
match name {
"injection_patterns_2024" => self.load_injection_patterns(),
"evasion_techniques_2024" => self.load_evasion_techniques(),
"behavioral_anomalies_2024" => self.load_behavioral_anomalies(),
_ => Err(Error::DatasetNotFound),
}
}
}
```
## Publication & Collaboration
### Research Metrics
```rust
pub struct ResearchMetrics {
detection_rates: HashMap<String, f64>,
false_positive_rates: HashMap<String, f64>,
performance_metrics: PerformanceMetrics,
coverage_analysis: CoverageAnalysis,
}
impl ResearchMetrics {
pub fn generate_publication_data(&self) -> PublicationData {
PublicationData {
methodology: self.describe_methodology(),
experimental_setup: self.describe_setup(),
results: self.compile_results(),
statistical_analysis: self.perform_statistical_tests(),
reproducibility_package: self.create_reproducibility_package(),
}
}
pub fn export_for_publication(&self, format: PublicationFormat) -> String {
match format {
PublicationFormat::LaTeX => self.generate_latex_tables(),
PublicationFormat::CSV => self.export_csv_data(),
PublicationFormat::JSON => self.export_json_data(),
}
}
}
```
### Collaborative Research Platform
```rust
pub struct CollaborationPlatform {
experiment_registry: ExperimentRegistry,
data_sharing_service: DataSharingService,
result_verification: ResultVerification,
}
impl CollaborationPlatform {
pub fn register_experiment(&mut self, experiment: Experiment) -> ExperimentId {
let id = self.experiment_registry.register(experiment);
self.data_sharing_service.create_workspace(id);
id
}
pub fn share_results(&self, experiment_id: ExperimentId, results: Results) -> Result<(), Error> {
// Verify result integrity
self.result_verification.verify(&results)?;
// Share with registered collaborators
self.data_sharing_service.publish_results(experiment_id, results)?;
Ok(())
}
}
```
## Educational Components
### Interactive Learning Modules
```rust
pub struct EducationalFramework {
technique_simulator: TechniqueSimulator,
guided_analysis: GuidedAnalysis,
assessment_engine: AssessmentEngine,
}
impl EducationalFramework {
pub fn create_learning_scenario(&self, technique: &str) -> LearningScenario {
LearningScenario {
description: self.get_technique_description(technique),
simulated_environment: self.technique_simulator.create_scenario(technique),
analysis_steps: self.guided_analysis.generate_steps(technique),
assessment_criteria: self.assessment_engine.get_criteria(technique),
}
}
pub fn evaluate_student_analysis(&self, scenario_id: u64, analysis: StudentAnalysis) -> Assessment {
let criteria = self.assessment_engine.get_criteria_for_scenario(scenario_id);
self.assessment_engine.evaluate(analysis, criteria)
}
}
```
### Technique Documentation Generator
```rust
pub struct TechniqueDocGenerator {
technique_analyzer: TechniqueAnalyzer,
documentation_builder: DocumentationBuilder,
example_generator: ExampleGenerator,
}
impl TechniqueDocGenerator {
pub fn generate_technique_guide(&self, technique: &InjectionTechnique) -> TechniqueGuide {
TechniqueGuide {
overview: self.technique_analyzer.analyze_technique(technique),
detection_methods: self.technique_analyzer.get_detection_methods(technique),
code_examples: self.example_generator.generate_examples(technique),
countermeasures: self.technique_analyzer.get_countermeasures(technique),
references: self.technique_analyzer.get_academic_references(technique),
}
}
}
```
## Research APIs
### Data Export API
```rust
use serde::{Serialize, Deserialize};
#[derive(Serialize, Deserialize)]
pub struct ResearchDataExport {
pub metadata: ExperimentMetadata,
pub detection_events: Vec<DetectionEvent>,
pub performance_metrics: PerformanceMetrics,
pub statistical_summary: StatisticalSummary,
}
impl ResearchDataExport {
pub fn export_to_format(&self, format: ExportFormat) -> Result<String, Error> {
match format {
ExportFormat::JSON => serde_json::to_string_pretty(self).map_err(Error::from),
ExportFormat::CSV => self.to_csv(),
ExportFormat::Parquet => self.to_parquet(),
ExportFormat::HDF5 => self.to_hdf5(),
}
}
}
```
### Analysis Pipeline API
```rust
pub trait AnalysisPipeline {
fn process_detection_data(&self, data: &[DetectionEvent]) -> AnalysisResult;
fn extract_features(&self, events: &[DetectionEvent]) -> FeatureMatrix;
fn apply_ml_models(&self, features: &FeatureMatrix) -> PredictionResults;
fn generate_insights(&self, predictions: &PredictionResults) -> Vec<Insight>;
}
pub struct StandardAnalysisPipeline {
feature_extractor: FeatureExtractor,
ml_models: Vec<Box<dyn MLModel>>,
insight_generator: InsightGenerator,
}
impl AnalysisPipeline for StandardAnalysisPipeline {
fn process_detection_data(&self, data: &[DetectionEvent]) -> AnalysisResult {
let features = self.extract_features(data);
let predictions = self.apply_ml_models(&features);
let insights = self.generate_insights(&predictions);
AnalysisResult {
features,
predictions,
insights,
metadata: self.generate_metadata(),
}
}
}
```
## Citation & Attribution
When using Ghost for research, please cite:
```bibtex
@software{ghost_detection_framework,
title={Ghost: Cross-Platform Process Injection Detection Framework},
author={Security Research Team},
year={2024},
url={https://github.com/pandaadir05/ghost},
version={1.0.0}
}
```
## Research Ethics & Responsible Disclosure
### Ethical Guidelines
1. **Responsible Research**: Use Ghost only for legitimate security research
2. **Data Privacy**: Anonymize sensitive data in publications
3. **Disclosure Policy**: Report vulnerabilities through proper channels
4. **Academic Integrity**: Properly attribute prior work and collaborations
### Data Handling
```rust
pub struct EthicalDataHandler {
anonymizer: DataAnonymizer,
consent_manager: ConsentManager,
audit_logger: AuditLogger,
}
impl EthicalDataHandler {
pub fn handle_research_data(&self, data: RawData) -> Result<AnonymizedData, Error> {
// Verify consent for data usage
self.consent_manager.verify_consent(&data)?;
// Anonymize sensitive information
let anonymized = self.anonymizer.anonymize(data)?;
// Log handling for audit trail
self.audit_logger.log_data_handling(&anonymized);
Ok(anonymized)
}
}
```
## Community Contributions
### Research Collaboration
- **Open Source Contributions**: Submit improvements via GitHub
- **Academic Partnerships**: Collaborate on research projects
- **Industry Collaboration**: Partner with security vendors
- **Conference Presentations**: Present findings at security conferences
### Contribution Guidelines
1. **Code Quality**: Follow Rust best practices
2. **Documentation**: Comprehensive documentation required
3. **Testing**: Include unit and integration tests
4. **Benchmarking**: Provide performance benchmarks
5. **Research Value**: Demonstrate novel research contributions
## Future Research Directions
### Emerging Techniques
- **AI-Powered Evasion**: Detection of AI-generated injection techniques
- **Hardware-Assisted Injection**: Analysis of hardware-based attacks
- **Cloud-Native Threats**: Container and serverless injection techniques
- **IoT Security**: Process injection in embedded systems
### Advanced Analytics
- **Graph Neural Networks**: Process relationship modeling
- **Temporal Analysis**: Time-series detection modeling
- **Federated Learning**: Distributed detection model training
- **Adversarial ML**: Robust ML models against evasion
For additional research resources, see:
- [Academic Papers](docs/research/PAPERS.md)
- [Dataset Specifications](docs/research/DATASETS.md)
- [Collaboration Guidelines](docs/research/COLLABORATION.md)