Standardize import ordering and code formatting
This commit is contained in:
@@ -1,7 +1,6 @@
|
||||
use crate::{ProcessInfo, MemoryRegion, GhostError};
|
||||
use crate::{GhostError, MemoryRegion, ProcessInfo};
|
||||
use serde::{Deserialize, Serialize};
|
||||
use std::collections::HashMap;
|
||||
use std::time::{SystemTime, Duration};
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct NeuralMemoryAnalyzer {
|
||||
@@ -143,24 +142,24 @@ impl NeuralMemoryAnalyzer {
|
||||
|
||||
pub async fn analyze_memory_regions(
|
||||
&mut self,
|
||||
process: &ProcessInfo,
|
||||
_process: &ProcessInfo,
|
||||
memory_regions: &[MemoryRegion],
|
||||
) -> Result<NeuralAnalysisResult, GhostError> {
|
||||
// Extract features
|
||||
let features = self.extract_features(memory_regions)?;
|
||||
|
||||
|
||||
// Run neural ensemble
|
||||
let predictions = self.run_neural_ensemble(&features).await?;
|
||||
|
||||
|
||||
// Calculate threat probability
|
||||
let threat_probability = self.calculate_threat_probability(&predictions);
|
||||
|
||||
|
||||
// Detect patterns
|
||||
let detected_patterns = self.detect_patterns(&features)?;
|
||||
|
||||
|
||||
// Analyze evasion techniques
|
||||
let evasion_techniques = self.analyze_evasion(&features)?;
|
||||
|
||||
|
||||
Ok(NeuralAnalysisResult {
|
||||
threat_probability,
|
||||
detected_patterns,
|
||||
@@ -173,33 +172,45 @@ impl NeuralMemoryAnalyzer {
|
||||
|
||||
fn extract_features(&self, memory_regions: &[MemoryRegion]) -> Result<Vec<f32>, GhostError> {
|
||||
let mut features = Vec::new();
|
||||
|
||||
|
||||
// Basic features
|
||||
features.push(memory_regions.len() as f32);
|
||||
|
||||
|
||||
// Protection features
|
||||
let rwx_count = memory_regions.iter()
|
||||
.filter(|r| r.protection.is_readable() && r.protection.is_writable() && r.protection.is_executable())
|
||||
let rwx_count = memory_regions
|
||||
.iter()
|
||||
.filter(|r| {
|
||||
r.protection.is_readable()
|
||||
&& r.protection.is_writable()
|
||||
&& r.protection.is_executable()
|
||||
})
|
||||
.count() as f32;
|
||||
features.push(rwx_count);
|
||||
|
||||
|
||||
Ok(features)
|
||||
}
|
||||
|
||||
async fn run_neural_ensemble(&self, features: &[f32]) -> Result<Vec<ModelPrediction>, GhostError> {
|
||||
async fn run_neural_ensemble(
|
||||
&self,
|
||||
features: &[f32],
|
||||
) -> Result<Vec<ModelPrediction>, GhostError> {
|
||||
let mut predictions = Vec::new();
|
||||
|
||||
|
||||
for network in &self.neural_networks {
|
||||
let prediction = self.simulate_neural_inference(network, features).await?;
|
||||
predictions.push(prediction);
|
||||
}
|
||||
|
||||
|
||||
Ok(predictions)
|
||||
}
|
||||
|
||||
async fn simulate_neural_inference(&self, network: &NeuralNetwork, _features: &[f32]) -> Result<ModelPrediction, GhostError> {
|
||||
async fn simulate_neural_inference(
|
||||
&self,
|
||||
network: &NeuralNetwork,
|
||||
_features: &[f32],
|
||||
) -> Result<ModelPrediction, GhostError> {
|
||||
let prediction = network.accuracy * 0.5; // Simulate prediction
|
||||
|
||||
|
||||
Ok(ModelPrediction {
|
||||
model_id: network.network_id.clone(),
|
||||
prediction,
|
||||
@@ -207,17 +218,18 @@ impl NeuralMemoryAnalyzer {
|
||||
inference_time_ms: 15.0,
|
||||
})
|
||||
}
|
||||
|
||||
|
||||
fn calculate_threat_probability(&self, predictions: &[ModelPrediction]) -> f32 {
|
||||
if predictions.is_empty() {
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
let weighted_sum: f32 = predictions.iter()
|
||||
|
||||
let weighted_sum: f32 = predictions
|
||||
.iter()
|
||||
.map(|p| p.prediction * p.confidence)
|
||||
.sum();
|
||||
let total_weight: f32 = predictions.iter().map(|p| p.confidence).sum();
|
||||
|
||||
|
||||
if total_weight > 0.0 {
|
||||
weighted_sum / total_weight
|
||||
} else {
|
||||
@@ -232,4 +244,4 @@ impl NeuralMemoryAnalyzer {
|
||||
fn analyze_evasion(&self, _features: &[f32]) -> Result<Vec<DetectedEvasion>, GhostError> {
|
||||
Ok(Vec::new())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user