Standardize import ordering and code formatting

This commit is contained in:
pandaadir05
2025-11-20 14:25:44 +02:00
parent 34007d11c1
commit e44f58e308
14 changed files with 823 additions and 546 deletions

View File

@@ -1,7 +1,6 @@
use crate::{ProcessInfo, MemoryRegion, GhostError};
use crate::{GhostError, MemoryRegion, ProcessInfo};
use serde::{Deserialize, Serialize};
use std::collections::HashMap;
use std::time::{SystemTime, Duration};
#[derive(Debug)]
pub struct NeuralMemoryAnalyzer {
@@ -143,24 +142,24 @@ impl NeuralMemoryAnalyzer {
pub async fn analyze_memory_regions(
&mut self,
process: &ProcessInfo,
_process: &ProcessInfo,
memory_regions: &[MemoryRegion],
) -> Result<NeuralAnalysisResult, GhostError> {
// Extract features
let features = self.extract_features(memory_regions)?;
// Run neural ensemble
let predictions = self.run_neural_ensemble(&features).await?;
// Calculate threat probability
let threat_probability = self.calculate_threat_probability(&predictions);
// Detect patterns
let detected_patterns = self.detect_patterns(&features)?;
// Analyze evasion techniques
let evasion_techniques = self.analyze_evasion(&features)?;
Ok(NeuralAnalysisResult {
threat_probability,
detected_patterns,
@@ -173,33 +172,45 @@ impl NeuralMemoryAnalyzer {
fn extract_features(&self, memory_regions: &[MemoryRegion]) -> Result<Vec<f32>, GhostError> {
let mut features = Vec::new();
// Basic features
features.push(memory_regions.len() as f32);
// Protection features
let rwx_count = memory_regions.iter()
.filter(|r| r.protection.is_readable() && r.protection.is_writable() && r.protection.is_executable())
let rwx_count = memory_regions
.iter()
.filter(|r| {
r.protection.is_readable()
&& r.protection.is_writable()
&& r.protection.is_executable()
})
.count() as f32;
features.push(rwx_count);
Ok(features)
}
async fn run_neural_ensemble(&self, features: &[f32]) -> Result<Vec<ModelPrediction>, GhostError> {
async fn run_neural_ensemble(
&self,
features: &[f32],
) -> Result<Vec<ModelPrediction>, GhostError> {
let mut predictions = Vec::new();
for network in &self.neural_networks {
let prediction = self.simulate_neural_inference(network, features).await?;
predictions.push(prediction);
}
Ok(predictions)
}
async fn simulate_neural_inference(&self, network: &NeuralNetwork, _features: &[f32]) -> Result<ModelPrediction, GhostError> {
async fn simulate_neural_inference(
&self,
network: &NeuralNetwork,
_features: &[f32],
) -> Result<ModelPrediction, GhostError> {
let prediction = network.accuracy * 0.5; // Simulate prediction
Ok(ModelPrediction {
model_id: network.network_id.clone(),
prediction,
@@ -207,17 +218,18 @@ impl NeuralMemoryAnalyzer {
inference_time_ms: 15.0,
})
}
fn calculate_threat_probability(&self, predictions: &[ModelPrediction]) -> f32 {
if predictions.is_empty() {
return 0.0;
}
let weighted_sum: f32 = predictions.iter()
let weighted_sum: f32 = predictions
.iter()
.map(|p| p.prediction * p.confidence)
.sum();
let total_weight: f32 = predictions.iter().map(|p| p.confidence).sum();
if total_weight > 0.0 {
weighted_sum / total_weight
} else {
@@ -232,4 +244,4 @@ impl NeuralMemoryAnalyzer {
fn analyze_evasion(&self, _features: &[f32]) -> Result<Vec<DetectedEvasion>, GhostError> {
Ok(Vec::new())
}
}
}