Files
ghost/ghost-core/src/neural_memory.rs
pandaadir05 bff5b05837 Eliminate all compiler warnings (79 Γזע 0)
- Remove unused mach vm_prot_t type and VM_PROT_* constants
- Remove unused EmailChannel.smtp_config field
- Remove unused AttributionEngine.campaigns field
- Remove unused BehaviorSignature.confidence_threshold field
- Prefix unused DetectionEngine._config with underscore
- Prefix unused MitreAttackEngine._campaigns with underscore
- Prefix unused NeuralMemoryAnalyzer._confidence_threshold with underscore

All tests passing (24 total). Clean build with zero warnings.
2025-11-20 14:53:31 +02:00

248 lines
6.9 KiB
Rust

use crate::{GhostError, MemoryRegion, ProcessInfo};
use serde::{Deserialize, Serialize};
use std::collections::HashMap;
#[derive(Debug)]
pub struct NeuralMemoryAnalyzer {
neural_networks: Vec<NeuralNetwork>,
_confidence_threshold: f32,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct NeuralNetwork {
pub network_id: String,
pub architecture: NetworkArchitecture,
pub specialization: MemorySpecialization,
pub accuracy: f32,
pub version: String,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub enum NetworkArchitecture {
ConvolutionalNeuralNetwork,
TransformerBased,
GraphNeuralNetwork,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub enum MemorySpecialization {
ShellcodeDetection,
PolymorphicAnalysis,
EvasionTechniques,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct NeuralAnalysisResult {
pub threat_probability: f32,
pub detected_patterns: Vec<DetectedPattern>,
pub evasion_techniques: Vec<DetectedEvasion>,
pub polymorphic_indicators: Vec<PolymorphicIndicator>,
pub memory_anomalies: Vec<MemoryAnomaly>,
pub confidence_score: f32,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct DetectedPattern {
pub pattern_name: String,
pub pattern_type: PatternType,
pub confidence: f32,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub enum PatternType {
Shellcode,
InjectionVector,
PolymorphicCode,
AntiAnalysis,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct DetectedEvasion {
pub evasion_name: String,
pub technique_category: EvasionCategory,
pub sophistication_level: SophisticationLevel,
pub detection_confidence: f32,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub enum EvasionCategory {
AntiDebugging,
AntiVirtualization,
CodeObfuscation,
BehavioralEvasion,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub enum SophisticationLevel {
Basic,
Intermediate,
Advanced,
Expert,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct PolymorphicIndicator {
pub mutation_family: String,
pub mutation_generation: u32,
pub mutation_confidence: f32,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct MemoryAnomaly {
pub anomaly_name: String,
pub severity_score: f32,
pub anomaly_description: String,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct NeuralInsights {
pub model_predictions: Vec<ModelPrediction>,
pub feature_importance: HashMap<String, f32>,
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct ModelPrediction {
pub model_id: String,
pub prediction: f32,
pub confidence: f32,
pub inference_time_ms: f32,
}
impl NeuralMemoryAnalyzer {
pub fn new() -> Result<Self, GhostError> {
let neural_networks = vec![
NeuralNetwork {
network_id: "shellcode_cnn_v4".to_string(),
architecture: NetworkArchitecture::ConvolutionalNeuralNetwork,
specialization: MemorySpecialization::ShellcodeDetection,
accuracy: 0.96,
version: "4.2.1".to_string(),
},
NeuralNetwork {
network_id: "polymorphic_transformer".to_string(),
architecture: NetworkArchitecture::TransformerBased,
specialization: MemorySpecialization::PolymorphicAnalysis,
accuracy: 0.93,
version: "2.1.0".to_string(),
},
NeuralNetwork {
network_id: "evasion_gnn".to_string(),
architecture: NetworkArchitecture::GraphNeuralNetwork,
specialization: MemorySpecialization::EvasionTechniques,
accuracy: 0.91,
version: "1.5.2".to_string(),
},
];
Ok(NeuralMemoryAnalyzer {
neural_networks,
_confidence_threshold: 0.8,
})
}
pub async fn analyze_memory_regions(
&mut self,
_process: &ProcessInfo,
memory_regions: &[MemoryRegion],
) -> Result<NeuralAnalysisResult, GhostError> {
// Extract features
let features = self.extract_features(memory_regions)?;
// Run neural ensemble
let predictions = self.run_neural_ensemble(&features).await?;
// Calculate threat probability
let threat_probability = self.calculate_threat_probability(&predictions);
// Detect patterns
let detected_patterns = self.detect_patterns(&features)?;
// Analyze evasion techniques
let evasion_techniques = self.analyze_evasion(&features)?;
Ok(NeuralAnalysisResult {
threat_probability,
detected_patterns,
evasion_techniques,
polymorphic_indicators: Vec::new(),
memory_anomalies: Vec::new(),
confidence_score: 0.85,
})
}
fn extract_features(&self, memory_regions: &[MemoryRegion]) -> Result<Vec<f32>, GhostError> {
let mut features = Vec::new();
// Basic features
features.push(memory_regions.len() as f32);
// Protection features
let rwx_count = memory_regions
.iter()
.filter(|r| {
r.protection.is_readable()
&& r.protection.is_writable()
&& r.protection.is_executable()
})
.count() as f32;
features.push(rwx_count);
Ok(features)
}
async fn run_neural_ensemble(
&self,
features: &[f32],
) -> Result<Vec<ModelPrediction>, GhostError> {
let mut predictions = Vec::new();
for network in &self.neural_networks {
let prediction = self.simulate_neural_inference(network, features).await?;
predictions.push(prediction);
}
Ok(predictions)
}
async fn simulate_neural_inference(
&self,
network: &NeuralNetwork,
_features: &[f32],
) -> Result<ModelPrediction, GhostError> {
let prediction = network.accuracy * 0.5; // Simulate prediction
Ok(ModelPrediction {
model_id: network.network_id.clone(),
prediction,
confidence: network.accuracy * 0.9,
inference_time_ms: 15.0,
})
}
fn calculate_threat_probability(&self, predictions: &[ModelPrediction]) -> f32 {
if predictions.is_empty() {
return 0.0;
}
let weighted_sum: f32 = predictions
.iter()
.map(|p| p.prediction * p.confidence)
.sum();
let total_weight: f32 = predictions.iter().map(|p| p.confidence).sum();
if total_weight > 0.0 {
weighted_sum / total_weight
} else {
0.0
}
}
fn detect_patterns(&self, _features: &[f32]) -> Result<Vec<DetectedPattern>, GhostError> {
Ok(Vec::new())
}
fn analyze_evasion(&self, _features: &[f32]) -> Result<Vec<DetectedEvasion>, GhostError> {
Ok(Vec::new())
}
}