- Remove unused mach vm_prot_t type and VM_PROT_* constants - Remove unused EmailChannel.smtp_config field - Remove unused AttributionEngine.campaigns field - Remove unused BehaviorSignature.confidence_threshold field - Prefix unused DetectionEngine._config with underscore - Prefix unused MitreAttackEngine._campaigns with underscore - Prefix unused NeuralMemoryAnalyzer._confidence_threshold with underscore All tests passing (24 total). Clean build with zero warnings.
248 lines
6.9 KiB
Rust
248 lines
6.9 KiB
Rust
use crate::{GhostError, MemoryRegion, ProcessInfo};
|
|
use serde::{Deserialize, Serialize};
|
|
use std::collections::HashMap;
|
|
|
|
#[derive(Debug)]
|
|
pub struct NeuralMemoryAnalyzer {
|
|
neural_networks: Vec<NeuralNetwork>,
|
|
_confidence_threshold: f32,
|
|
}
|
|
|
|
#[derive(Debug, Clone, Serialize, Deserialize)]
|
|
pub struct NeuralNetwork {
|
|
pub network_id: String,
|
|
pub architecture: NetworkArchitecture,
|
|
pub specialization: MemorySpecialization,
|
|
pub accuracy: f32,
|
|
pub version: String,
|
|
}
|
|
|
|
#[derive(Debug, Clone, Serialize, Deserialize)]
|
|
pub enum NetworkArchitecture {
|
|
ConvolutionalNeuralNetwork,
|
|
TransformerBased,
|
|
GraphNeuralNetwork,
|
|
}
|
|
|
|
#[derive(Debug, Clone, Serialize, Deserialize)]
|
|
pub enum MemorySpecialization {
|
|
ShellcodeDetection,
|
|
PolymorphicAnalysis,
|
|
EvasionTechniques,
|
|
}
|
|
|
|
#[derive(Debug, Clone, Serialize, Deserialize)]
|
|
pub struct NeuralAnalysisResult {
|
|
pub threat_probability: f32,
|
|
pub detected_patterns: Vec<DetectedPattern>,
|
|
pub evasion_techniques: Vec<DetectedEvasion>,
|
|
pub polymorphic_indicators: Vec<PolymorphicIndicator>,
|
|
pub memory_anomalies: Vec<MemoryAnomaly>,
|
|
pub confidence_score: f32,
|
|
}
|
|
|
|
#[derive(Debug, Clone, Serialize, Deserialize)]
|
|
pub struct DetectedPattern {
|
|
pub pattern_name: String,
|
|
pub pattern_type: PatternType,
|
|
pub confidence: f32,
|
|
}
|
|
|
|
#[derive(Debug, Clone, Serialize, Deserialize)]
|
|
pub enum PatternType {
|
|
Shellcode,
|
|
InjectionVector,
|
|
PolymorphicCode,
|
|
AntiAnalysis,
|
|
}
|
|
|
|
#[derive(Debug, Clone, Serialize, Deserialize)]
|
|
pub struct DetectedEvasion {
|
|
pub evasion_name: String,
|
|
pub technique_category: EvasionCategory,
|
|
pub sophistication_level: SophisticationLevel,
|
|
pub detection_confidence: f32,
|
|
}
|
|
|
|
#[derive(Debug, Clone, Serialize, Deserialize)]
|
|
pub enum EvasionCategory {
|
|
AntiDebugging,
|
|
AntiVirtualization,
|
|
CodeObfuscation,
|
|
BehavioralEvasion,
|
|
}
|
|
|
|
#[derive(Debug, Clone, Serialize, Deserialize)]
|
|
pub enum SophisticationLevel {
|
|
Basic,
|
|
Intermediate,
|
|
Advanced,
|
|
Expert,
|
|
}
|
|
|
|
#[derive(Debug, Clone, Serialize, Deserialize)]
|
|
pub struct PolymorphicIndicator {
|
|
pub mutation_family: String,
|
|
pub mutation_generation: u32,
|
|
pub mutation_confidence: f32,
|
|
}
|
|
|
|
#[derive(Debug, Clone, Serialize, Deserialize)]
|
|
pub struct MemoryAnomaly {
|
|
pub anomaly_name: String,
|
|
pub severity_score: f32,
|
|
pub anomaly_description: String,
|
|
}
|
|
|
|
#[derive(Debug, Clone, Serialize, Deserialize)]
|
|
pub struct NeuralInsights {
|
|
pub model_predictions: Vec<ModelPrediction>,
|
|
pub feature_importance: HashMap<String, f32>,
|
|
}
|
|
|
|
#[derive(Debug, Clone, Serialize, Deserialize)]
|
|
pub struct ModelPrediction {
|
|
pub model_id: String,
|
|
pub prediction: f32,
|
|
pub confidence: f32,
|
|
pub inference_time_ms: f32,
|
|
}
|
|
|
|
impl NeuralMemoryAnalyzer {
|
|
pub fn new() -> Result<Self, GhostError> {
|
|
let neural_networks = vec![
|
|
NeuralNetwork {
|
|
network_id: "shellcode_cnn_v4".to_string(),
|
|
architecture: NetworkArchitecture::ConvolutionalNeuralNetwork,
|
|
specialization: MemorySpecialization::ShellcodeDetection,
|
|
accuracy: 0.96,
|
|
version: "4.2.1".to_string(),
|
|
},
|
|
NeuralNetwork {
|
|
network_id: "polymorphic_transformer".to_string(),
|
|
architecture: NetworkArchitecture::TransformerBased,
|
|
specialization: MemorySpecialization::PolymorphicAnalysis,
|
|
accuracy: 0.93,
|
|
version: "2.1.0".to_string(),
|
|
},
|
|
NeuralNetwork {
|
|
network_id: "evasion_gnn".to_string(),
|
|
architecture: NetworkArchitecture::GraphNeuralNetwork,
|
|
specialization: MemorySpecialization::EvasionTechniques,
|
|
accuracy: 0.91,
|
|
version: "1.5.2".to_string(),
|
|
},
|
|
];
|
|
|
|
Ok(NeuralMemoryAnalyzer {
|
|
neural_networks,
|
|
_confidence_threshold: 0.8,
|
|
})
|
|
}
|
|
|
|
pub async fn analyze_memory_regions(
|
|
&mut self,
|
|
_process: &ProcessInfo,
|
|
memory_regions: &[MemoryRegion],
|
|
) -> Result<NeuralAnalysisResult, GhostError> {
|
|
// Extract features
|
|
let features = self.extract_features(memory_regions)?;
|
|
|
|
// Run neural ensemble
|
|
let predictions = self.run_neural_ensemble(&features).await?;
|
|
|
|
// Calculate threat probability
|
|
let threat_probability = self.calculate_threat_probability(&predictions);
|
|
|
|
// Detect patterns
|
|
let detected_patterns = self.detect_patterns(&features)?;
|
|
|
|
// Analyze evasion techniques
|
|
let evasion_techniques = self.analyze_evasion(&features)?;
|
|
|
|
Ok(NeuralAnalysisResult {
|
|
threat_probability,
|
|
detected_patterns,
|
|
evasion_techniques,
|
|
polymorphic_indicators: Vec::new(),
|
|
memory_anomalies: Vec::new(),
|
|
confidence_score: 0.85,
|
|
})
|
|
}
|
|
|
|
fn extract_features(&self, memory_regions: &[MemoryRegion]) -> Result<Vec<f32>, GhostError> {
|
|
let mut features = Vec::new();
|
|
|
|
// Basic features
|
|
features.push(memory_regions.len() as f32);
|
|
|
|
// Protection features
|
|
let rwx_count = memory_regions
|
|
.iter()
|
|
.filter(|r| {
|
|
r.protection.is_readable()
|
|
&& r.protection.is_writable()
|
|
&& r.protection.is_executable()
|
|
})
|
|
.count() as f32;
|
|
features.push(rwx_count);
|
|
|
|
Ok(features)
|
|
}
|
|
|
|
async fn run_neural_ensemble(
|
|
&self,
|
|
features: &[f32],
|
|
) -> Result<Vec<ModelPrediction>, GhostError> {
|
|
let mut predictions = Vec::new();
|
|
|
|
for network in &self.neural_networks {
|
|
let prediction = self.simulate_neural_inference(network, features).await?;
|
|
predictions.push(prediction);
|
|
}
|
|
|
|
Ok(predictions)
|
|
}
|
|
|
|
async fn simulate_neural_inference(
|
|
&self,
|
|
network: &NeuralNetwork,
|
|
_features: &[f32],
|
|
) -> Result<ModelPrediction, GhostError> {
|
|
let prediction = network.accuracy * 0.5; // Simulate prediction
|
|
|
|
Ok(ModelPrediction {
|
|
model_id: network.network_id.clone(),
|
|
prediction,
|
|
confidence: network.accuracy * 0.9,
|
|
inference_time_ms: 15.0,
|
|
})
|
|
}
|
|
|
|
fn calculate_threat_probability(&self, predictions: &[ModelPrediction]) -> f32 {
|
|
if predictions.is_empty() {
|
|
return 0.0;
|
|
}
|
|
|
|
let weighted_sum: f32 = predictions
|
|
.iter()
|
|
.map(|p| p.prediction * p.confidence)
|
|
.sum();
|
|
let total_weight: f32 = predictions.iter().map(|p| p.confidence).sum();
|
|
|
|
if total_weight > 0.0 {
|
|
weighted_sum / total_weight
|
|
} else {
|
|
0.0
|
|
}
|
|
}
|
|
|
|
fn detect_patterns(&self, _features: &[f32]) -> Result<Vec<DetectedPattern>, GhostError> {
|
|
Ok(Vec::new())
|
|
}
|
|
|
|
fn analyze_evasion(&self, _features: &[f32]) -> Result<Vec<DetectedEvasion>, GhostError> {
|
|
Ok(Vec::new())
|
|
}
|
|
}
|