Initial commit: Go 1.23 release state

This commit is contained in:
Vorapol Rinsatitnon
2024-09-21 23:49:08 +10:00
commit 17cd57a668
13231 changed files with 3114330 additions and 0 deletions

View File

@@ -0,0 +1,27 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package amd64
import (
"cmd/compile/internal/ssagen"
"cmd/internal/obj/x86"
)
var leaptr = x86.ALEAQ
func Init(arch *ssagen.ArchInfo) {
arch.LinkArch = &x86.Linkamd64
arch.REGSP = x86.REGSP
arch.MAXWIDTH = 1 << 50
arch.ZeroRange = zerorange
arch.Ginsnop = ginsnop
arch.SSAMarkMoves = ssaMarkMoves
arch.SSAGenValue = ssaGenValue
arch.SSAGenBlock = ssaGenBlock
arch.LoadRegResult = loadRegResult
arch.SpillArgReg = spillArgReg
}

View File

@@ -0,0 +1,135 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package amd64
import (
"cmd/compile/internal/ir"
"cmd/compile/internal/objw"
"cmd/compile/internal/types"
"cmd/internal/obj"
"cmd/internal/obj/x86"
"internal/buildcfg"
)
// no floating point in note handlers on Plan 9
var isPlan9 = buildcfg.GOOS == "plan9"
// DUFFZERO consists of repeated blocks of 4 MOVUPSs + LEAQ,
// See runtime/mkduff.go.
const (
dzBlocks = 16 // number of MOV/ADD blocks
dzBlockLen = 4 // number of clears per block
dzBlockSize = 23 // size of instructions in a single block
dzMovSize = 5 // size of single MOV instruction w/ offset
dzLeaqSize = 4 // size of single LEAQ instruction
dzClearStep = 16 // number of bytes cleared by each MOV instruction
dzClearLen = dzClearStep * dzBlockLen // bytes cleared by one block
dzSize = dzBlocks * dzBlockSize
)
// dzOff returns the offset for a jump into DUFFZERO.
// b is the number of bytes to zero.
func dzOff(b int64) int64 {
off := int64(dzSize)
off -= b / dzClearLen * dzBlockSize
tailLen := b % dzClearLen
if tailLen >= dzClearStep {
off -= dzLeaqSize + dzMovSize*(tailLen/dzClearStep)
}
return off
}
// duffzeroDI returns the pre-adjustment to DI for a call to DUFFZERO.
// b is the number of bytes to zero.
func dzDI(b int64) int64 {
tailLen := b % dzClearLen
if tailLen < dzClearStep {
return 0
}
tailSteps := tailLen / dzClearStep
return -dzClearStep * (dzBlockLen - tailSteps)
}
func zerorange(pp *objw.Progs, p *obj.Prog, off, cnt int64, state *uint32) *obj.Prog {
const (
r13 = 1 << iota // if R13 is already zeroed.
)
if cnt == 0 {
return p
}
if cnt == 8 {
p = pp.Append(p, x86.AMOVQ, obj.TYPE_REG, x86.REG_X15, 0, obj.TYPE_MEM, x86.REG_SP, off)
} else if !isPlan9 && cnt <= int64(8*types.RegSize) {
for i := int64(0); i < cnt/16; i++ {
p = pp.Append(p, x86.AMOVUPS, obj.TYPE_REG, x86.REG_X15, 0, obj.TYPE_MEM, x86.REG_SP, off+i*16)
}
if cnt%16 != 0 {
p = pp.Append(p, x86.AMOVUPS, obj.TYPE_REG, x86.REG_X15, 0, obj.TYPE_MEM, x86.REG_SP, off+cnt-int64(16))
}
} else if !isPlan9 && (cnt <= int64(128*types.RegSize)) {
// Save DI to r12. With the amd64 Go register abi, DI can contain
// an incoming parameter, whereas R12 is always scratch.
p = pp.Append(p, x86.AMOVQ, obj.TYPE_REG, x86.REG_DI, 0, obj.TYPE_REG, x86.REG_R12, 0)
// Emit duffzero call
p = pp.Append(p, leaptr, obj.TYPE_MEM, x86.REG_SP, off+dzDI(cnt), obj.TYPE_REG, x86.REG_DI, 0)
p = pp.Append(p, obj.ADUFFZERO, obj.TYPE_NONE, 0, 0, obj.TYPE_ADDR, 0, dzOff(cnt))
p.To.Sym = ir.Syms.Duffzero
if cnt%16 != 0 {
p = pp.Append(p, x86.AMOVUPS, obj.TYPE_REG, x86.REG_X15, 0, obj.TYPE_MEM, x86.REG_DI, -int64(8))
}
// Restore DI from r12
p = pp.Append(p, x86.AMOVQ, obj.TYPE_REG, x86.REG_R12, 0, obj.TYPE_REG, x86.REG_DI, 0)
} else {
// When the register ABI is in effect, at this point in the
// prolog we may have live values in all of RAX,RDI,RCX. Save
// them off to registers before the REPSTOSQ below, then
// restore. Note that R12 and R13 are always available as
// scratch regs; here we also use R15 (this is safe to do
// since there won't be any globals accessed in the prolog).
// See rewriteToUseGot() in obj6.go for more on r15 use.
// Save rax/rdi/rcx
p = pp.Append(p, x86.AMOVQ, obj.TYPE_REG, x86.REG_DI, 0, obj.TYPE_REG, x86.REG_R12, 0)
p = pp.Append(p, x86.AMOVQ, obj.TYPE_REG, x86.REG_AX, 0, obj.TYPE_REG, x86.REG_R13, 0)
p = pp.Append(p, x86.AMOVQ, obj.TYPE_REG, x86.REG_CX, 0, obj.TYPE_REG, x86.REG_R15, 0)
// Set up the REPSTOSQ and kick it off.
p = pp.Append(p, x86.AXORL, obj.TYPE_REG, x86.REG_AX, 0, obj.TYPE_REG, x86.REG_AX, 0)
p = pp.Append(p, x86.AMOVQ, obj.TYPE_CONST, 0, cnt/int64(types.RegSize), obj.TYPE_REG, x86.REG_CX, 0)
p = pp.Append(p, leaptr, obj.TYPE_MEM, x86.REG_SP, off, obj.TYPE_REG, x86.REG_DI, 0)
p = pp.Append(p, x86.AREP, obj.TYPE_NONE, 0, 0, obj.TYPE_NONE, 0, 0)
p = pp.Append(p, x86.ASTOSQ, obj.TYPE_NONE, 0, 0, obj.TYPE_NONE, 0, 0)
// Restore rax/rdi/rcx
p = pp.Append(p, x86.AMOVQ, obj.TYPE_REG, x86.REG_R12, 0, obj.TYPE_REG, x86.REG_DI, 0)
p = pp.Append(p, x86.AMOVQ, obj.TYPE_REG, x86.REG_R13, 0, obj.TYPE_REG, x86.REG_AX, 0)
p = pp.Append(p, x86.AMOVQ, obj.TYPE_REG, x86.REG_R15, 0, obj.TYPE_REG, x86.REG_CX, 0)
// Record the fact that r13 is no longer zero.
*state &= ^uint32(r13)
}
return p
}
func ginsnop(pp *objw.Progs) *obj.Prog {
// This is a hardware nop (1-byte 0x90) instruction,
// even though we describe it as an explicit XCHGL here.
// Particularly, this does not zero the high 32 bits
// like typical *L opcodes.
// (gas assembles "xchg %eax,%eax" to 0x87 0xc0, which
// does zero the high 32 bits.)
p := pp.Prog(x86.AXCHGL)
p.From.Type = obj.TYPE_REG
p.From.Reg = x86.REG_AX
p.To.Type = obj.TYPE_REG
p.To.Reg = x86.REG_AX
return p
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,433 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// When using GOEXPERIMENT=boringcrypto, the test program links in the boringcrypto syso,
// which does not respect GOAMD64, so we skip the test if boringcrypto is enabled.
//go:build !boringcrypto
package amd64_test
import (
"bufio"
"debug/elf"
"debug/macho"
"errors"
"fmt"
"go/build"
"internal/testenv"
"io"
"math"
"math/bits"
"os"
"os/exec"
"regexp"
"runtime"
"strconv"
"strings"
"testing"
)
// Test to make sure that when building for GOAMD64=v1, we don't
// use any >v1 instructions.
func TestGoAMD64v1(t *testing.T) {
if runtime.GOARCH != "amd64" {
t.Skip("amd64-only test")
}
if runtime.GOOS != "linux" && runtime.GOOS != "darwin" {
t.Skip("test only works on elf or macho platforms")
}
for _, tag := range build.Default.ToolTags {
if tag == "amd64.v2" {
t.Skip("compiling for GOAMD64=v2 or higher")
}
}
if os.Getenv("TESTGOAMD64V1") != "" {
t.Skip("recursive call")
}
// Make a binary which will be a modified version of the
// currently running binary.
dst, err := os.CreateTemp("", "TestGoAMD64v1")
if err != nil {
t.Fatalf("failed to create temp file: %v", err)
}
defer os.Remove(dst.Name())
dst.Chmod(0500) // make executable
// Clobber all the non-v1 opcodes.
opcodes := map[string]bool{}
var features []string
for feature, opcodeList := range featureToOpcodes {
if runtimeFeatures[feature] {
features = append(features, fmt.Sprintf("cpu.%s=off", feature))
}
for _, op := range opcodeList {
opcodes[op] = true
}
}
clobber(t, os.Args[0], dst, opcodes)
if err = dst.Close(); err != nil {
t.Fatalf("can't close binary: %v", err)
}
// Run the resulting binary.
cmd := testenv.Command(t, dst.Name())
testenv.CleanCmdEnv(cmd)
cmd.Env = append(cmd.Env, "TESTGOAMD64V1=yes")
cmd.Env = append(cmd.Env, fmt.Sprintf("GODEBUG=%s", strings.Join(features, ",")))
out, err := cmd.CombinedOutput()
if err != nil {
t.Fatalf("couldn't execute test: %s", err)
}
// Expect to see output of the form "PASS\n", unless the test binary
// was compiled for coverage (in which case there will be an extra line).
success := false
lines := strings.Split(string(out), "\n")
if len(lines) == 2 {
success = lines[0] == "PASS" && lines[1] == ""
} else if len(lines) == 3 {
success = lines[0] == "PASS" &&
strings.HasPrefix(lines[1], "coverage") && lines[2] == ""
}
if !success {
t.Fatalf("test reported error: %s lines=%+v", string(out), lines)
}
}
// Clobber copies the binary src to dst, replacing all the instructions in opcodes with
// faulting instructions.
func clobber(t *testing.T, src string, dst *os.File, opcodes map[string]bool) {
// Run objdump to get disassembly.
var re *regexp.Regexp
var disasm io.Reader
if false {
// TODO: go tool objdump doesn't disassemble the bmi1 instructions
// in question correctly. See issue 48584.
cmd := testenv.Command(t, "go", "tool", "objdump", src)
var err error
disasm, err = cmd.StdoutPipe()
if err != nil {
t.Fatal(err)
}
if err := cmd.Start(); err != nil {
t.Fatal(err)
}
t.Cleanup(func() {
if err := cmd.Wait(); err != nil {
t.Error(err)
}
})
re = regexp.MustCompile(`^[^:]*:[-\d]+\s+0x([\da-f]+)\s+([\da-f]+)\s+([A-Z]+)`)
} else {
// TODO: we're depending on platform-native objdump here. Hence the Skipf
// below if it doesn't run for some reason.
cmd := testenv.Command(t, "objdump", "-d", src)
var err error
disasm, err = cmd.StdoutPipe()
if err != nil {
t.Fatal(err)
}
if err := cmd.Start(); err != nil {
if errors.Is(err, exec.ErrNotFound) {
t.Skipf("can't run test due to missing objdump: %s", err)
}
t.Fatal(err)
}
t.Cleanup(func() {
if err := cmd.Wait(); err != nil {
t.Error(err)
}
})
re = regexp.MustCompile(`^\s*([\da-f]+):\s*((?:[\da-f][\da-f] )+)\s*([a-z\d]+)`)
}
// Find all the instruction addresses we need to edit.
virtualEdits := map[uint64]bool{}
scanner := bufio.NewScanner(disasm)
for scanner.Scan() {
line := scanner.Text()
parts := re.FindStringSubmatch(line)
if len(parts) == 0 {
continue
}
addr, err := strconv.ParseUint(parts[1], 16, 64)
if err != nil {
continue // not a hex address
}
opcode := strings.ToLower(parts[3])
if !opcodes[opcode] {
continue
}
t.Logf("clobbering instruction %s", line)
n := (len(parts[2]) - strings.Count(parts[2], " ")) / 2 // number of bytes in instruction encoding
for i := 0; i < n; i++ {
// Only really need to make the first byte faulting, but might
// as well make all the bytes faulting.
virtualEdits[addr+uint64(i)] = true
}
}
// Figure out where in the binary the edits must be done.
physicalEdits := map[uint64]bool{}
if e, err := elf.Open(src); err == nil {
for _, sec := range e.Sections {
vaddr := sec.Addr
paddr := sec.Offset
size := sec.Size
for a := range virtualEdits {
if a >= vaddr && a < vaddr+size {
physicalEdits[paddr+(a-vaddr)] = true
}
}
}
} else if m, err2 := macho.Open(src); err2 == nil {
for _, sec := range m.Sections {
vaddr := sec.Addr
paddr := uint64(sec.Offset)
size := sec.Size
for a := range virtualEdits {
if a >= vaddr && a < vaddr+size {
physicalEdits[paddr+(a-vaddr)] = true
}
}
}
} else {
t.Log(err)
t.Log(err2)
t.Fatal("executable format not elf or macho")
}
if len(virtualEdits) != len(physicalEdits) {
t.Fatal("couldn't find an instruction in text sections")
}
// Copy source to destination, making edits along the way.
f, err := os.Open(src)
if err != nil {
t.Fatal(err)
}
r := bufio.NewReader(f)
w := bufio.NewWriter(dst)
a := uint64(0)
done := 0
for {
b, err := r.ReadByte()
if err == io.EOF {
break
}
if err != nil {
t.Fatal("can't read")
}
if physicalEdits[a] {
b = 0xcc // INT3 opcode
done++
}
err = w.WriteByte(b)
if err != nil {
t.Fatal("can't write")
}
a++
}
if done != len(physicalEdits) {
t.Fatal("physical edits remaining")
}
w.Flush()
f.Close()
}
func setOf(keys ...string) map[string]bool {
m := make(map[string]bool, len(keys))
for _, key := range keys {
m[key] = true
}
return m
}
var runtimeFeatures = setOf(
"adx", "aes", "avx", "avx2", "bmi1", "bmi2", "erms", "fma",
"pclmulqdq", "popcnt", "rdtscp", "sse3", "sse41", "sse42", "ssse3",
)
var featureToOpcodes = map[string][]string{
// Note: we include *q, *l, and plain opcodes here.
// go tool objdump doesn't include a [QL] on popcnt instructions, until CL 351889
// native objdump doesn't include [QL] on linux.
"popcnt": {"popcntq", "popcntl", "popcnt"},
"bmi1": {
"andnq", "andnl", "andn",
"blsiq", "blsil", "blsi",
"blsmskq", "blsmskl", "blsmsk",
"blsrq", "blsrl", "blsr",
"tzcntq", "tzcntl", "tzcnt",
},
"bmi2": {
"sarxq", "sarxl", "sarx",
"shlxq", "shlxl", "shlx",
"shrxq", "shrxl", "shrx",
},
"sse41": {
"roundsd",
"pinsrq", "pinsrl", "pinsrd", "pinsrb", "pinsr",
"pextrq", "pextrl", "pextrd", "pextrb", "pextr",
"pminsb", "pminsd", "pminuw", "pminud", // Note: ub and sw are ok.
"pmaxsb", "pmaxsd", "pmaxuw", "pmaxud",
"pmovzxbw", "pmovzxbd", "pmovzxbq", "pmovzxwd", "pmovzxwq", "pmovzxdq",
"pmovsxbw", "pmovsxbd", "pmovsxbq", "pmovsxwd", "pmovsxwq", "pmovsxdq",
"pblendvb",
},
"fma": {"vfmadd231sd"},
"movbe": {"movbeqq", "movbeq", "movbell", "movbel", "movbe"},
"lzcnt": {"lzcntq", "lzcntl", "lzcnt"},
}
// Test to use POPCNT instruction, if available
func TestPopCnt(t *testing.T) {
for _, tt := range []struct {
x uint64
want int
}{
{0b00001111, 4},
{0b00001110, 3},
{0b00001100, 2},
{0b00000000, 0},
} {
if got := bits.OnesCount64(tt.x); got != tt.want {
t.Errorf("OnesCount64(%#x) = %d, want %d", tt.x, got, tt.want)
}
if got := bits.OnesCount32(uint32(tt.x)); got != tt.want {
t.Errorf("OnesCount32(%#x) = %d, want %d", tt.x, got, tt.want)
}
}
}
// Test to use ANDN, if available
func TestAndNot(t *testing.T) {
for _, tt := range []struct {
x, y, want uint64
}{
{0b00001111, 0b00000011, 0b1100},
{0b00001111, 0b00001100, 0b0011},
{0b00000000, 0b00000000, 0b0000},
} {
if got := tt.x &^ tt.y; got != tt.want {
t.Errorf("%#x &^ %#x = %#x, want %#x", tt.x, tt.y, got, tt.want)
}
if got := uint32(tt.x) &^ uint32(tt.y); got != uint32(tt.want) {
t.Errorf("%#x &^ %#x = %#x, want %#x", tt.x, tt.y, got, tt.want)
}
}
}
// Test to use BLSI, if available
func TestBLSI(t *testing.T) {
for _, tt := range []struct {
x, want uint64
}{
{0b00001111, 0b001},
{0b00001110, 0b010},
{0b00001100, 0b100},
{0b11000110, 0b010},
{0b00000000, 0b000},
} {
if got := tt.x & -tt.x; got != tt.want {
t.Errorf("%#x & (-%#x) = %#x, want %#x", tt.x, tt.x, got, tt.want)
}
if got := uint32(tt.x) & -uint32(tt.x); got != uint32(tt.want) {
t.Errorf("%#x & (-%#x) = %#x, want %#x", tt.x, tt.x, got, tt.want)
}
}
}
// Test to use BLSMSK, if available
func TestBLSMSK(t *testing.T) {
for _, tt := range []struct {
x, want uint64
}{
{0b00001111, 0b001},
{0b00001110, 0b011},
{0b00001100, 0b111},
{0b11000110, 0b011},
{0b00000000, 1<<64 - 1},
} {
if got := tt.x ^ (tt.x - 1); got != tt.want {
t.Errorf("%#x ^ (%#x-1) = %#x, want %#x", tt.x, tt.x, got, tt.want)
}
if got := uint32(tt.x) ^ (uint32(tt.x) - 1); got != uint32(tt.want) {
t.Errorf("%#x ^ (%#x-1) = %#x, want %#x", tt.x, tt.x, got, uint32(tt.want))
}
}
}
// Test to use BLSR, if available
func TestBLSR(t *testing.T) {
for _, tt := range []struct {
x, want uint64
}{
{0b00001111, 0b00001110},
{0b00001110, 0b00001100},
{0b00001100, 0b00001000},
{0b11000110, 0b11000100},
{0b00000000, 0b00000000},
} {
if got := tt.x & (tt.x - 1); got != tt.want {
t.Errorf("%#x & (%#x-1) = %#x, want %#x", tt.x, tt.x, got, tt.want)
}
if got := uint32(tt.x) & (uint32(tt.x) - 1); got != uint32(tt.want) {
t.Errorf("%#x & (%#x-1) = %#x, want %#x", tt.x, tt.x, got, tt.want)
}
}
}
func TestTrailingZeros(t *testing.T) {
for _, tt := range []struct {
x uint64
want int
}{
{0b00001111, 0},
{0b00001110, 1},
{0b00001100, 2},
{0b00001000, 3},
{0b00000000, 64},
} {
if got := bits.TrailingZeros64(tt.x); got != tt.want {
t.Errorf("TrailingZeros64(%#x) = %d, want %d", tt.x, got, tt.want)
}
want := tt.want
if want == 64 {
want = 32
}
if got := bits.TrailingZeros32(uint32(tt.x)); got != want {
t.Errorf("TrailingZeros64(%#x) = %d, want %d", tt.x, got, want)
}
}
}
func TestRound(t *testing.T) {
for _, tt := range []struct {
x, want float64
}{
{1.4, 1},
{1.5, 2},
{1.6, 2},
{2.4, 2},
{2.5, 2},
{2.6, 3},
} {
if got := math.RoundToEven(tt.x); got != tt.want {
t.Errorf("RoundToEven(%f) = %f, want %f", tt.x, got, tt.want)
}
}
}
func TestFMA(t *testing.T) {
for _, tt := range []struct {
x, y, z, want float64
}{
{2, 3, 4, 10},
{3, 4, 5, 17},
} {
if got := math.FMA(tt.x, tt.y, tt.z); got != tt.want {
t.Errorf("FMA(%f,%f,%f) = %f, want %f", tt.x, tt.y, tt.z, got, tt.want)
}
}
}