Initial commit: Go 1.23 release state

This commit is contained in:
Vorapol Rinsatitnon
2024-09-21 23:49:08 +10:00
commit 17cd57a668
13231 changed files with 3114330 additions and 0 deletions

View File

@@ -0,0 +1,22 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package suffixarray_test
import (
"fmt"
"index/suffixarray"
)
func ExampleIndex_Lookup() {
index := suffixarray.New([]byte("banana"))
offsets := index.Lookup([]byte("ana"), -1)
for _, off := range offsets {
fmt.Println(off)
}
// Unordered output:
// 1
// 3
}

View File

@@ -0,0 +1,92 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build ignore
// Gen generates sais2.go by duplicating functions in sais.go
// using different input types.
// See the comment at the top of sais.go for details.
package main
import (
"bytes"
"log"
"os"
"strings"
)
func main() {
log.SetPrefix("gen: ")
log.SetFlags(0)
data, err := os.ReadFile("sais.go")
if err != nil {
log.Fatal(err)
}
x := bytes.Index(data, []byte("\n\n"))
if x < 0 {
log.Fatal("cannot find blank line after copyright comment")
}
var buf bytes.Buffer
buf.Write(data[:x])
buf.WriteString("\n\n// Code generated by go generate; DO NOT EDIT.\n\npackage suffixarray\n")
for {
x := bytes.Index(data, []byte("\nfunc "))
if x < 0 {
break
}
data = data[x:]
p := bytes.IndexByte(data, '(')
if p < 0 {
p = len(data)
}
name := string(data[len("\nfunc "):p])
x = bytes.Index(data, []byte("\n}\n"))
if x < 0 {
log.Fatalf("cannot find end of func %s", name)
}
fn := string(data[:x+len("\n}\n")])
data = data[x+len("\n}"):]
if strings.HasSuffix(name, "_32") {
buf.WriteString(fix32.Replace(fn))
}
if strings.HasSuffix(name, "_8_32") {
// x_8_32 -> x_8_64 done above
fn = fix8_32.Replace(stripByteOnly(fn))
buf.WriteString(fn)
buf.WriteString(fix32.Replace(fn))
}
}
if err := os.WriteFile("sais2.go", buf.Bytes(), 0666); err != nil {
log.Fatal(err)
}
}
var fix32 = strings.NewReplacer(
"32", "64",
"int32", "int64",
)
var fix8_32 = strings.NewReplacer(
"_8_32", "_32",
"byte", "int32",
)
func stripByteOnly(s string) string {
lines := strings.SplitAfter(s, "\n")
w := 0
for _, line := range lines {
if !strings.Contains(line, "256") && !strings.Contains(line, "byte-only") {
lines[w] = line
w++
}
}
return strings.Join(lines[:w], "")
}

View File

@@ -0,0 +1,895 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Suffix array construction by induced sorting (SAIS).
// See Ge Nong, Sen Zhang, and Wai Hong Chen,
// "Two Efficient Algorithms for Linear Time Suffix Array Construction",
// especially section 3 (https://ieeexplore.ieee.org/document/5582081).
// See also http://zork.net/~st/jottings/sais.html.
//
// With optimizations inspired by Yuta Mori's sais-lite
// (https://sites.google.com/site/yuta256/sais).
//
// And with other new optimizations.
// Many of these functions are parameterized by the sizes of
// the types they operate on. The generator gen.go makes
// copies of these functions for use with other sizes.
// Specifically:
//
// - A function with a name ending in _8_32 takes []byte and []int32 arguments
// and is duplicated into _32_32, _8_64, and _64_64 forms.
// The _32_32 and _64_64_ suffixes are shortened to plain _32 and _64.
// Any lines in the function body that contain the text "byte-only" or "256"
// are stripped when creating _32_32 and _64_64 forms.
// (Those lines are typically 8-bit-specific optimizations.)
//
// - A function with a name ending only in _32 operates on []int32
// and is duplicated into a _64 form. (Note that it may still take a []byte,
// but there is no need for a version of the function in which the []byte
// is widened to a full integer array.)
// The overall runtime of this code is linear in the input size:
// it runs a sequence of linear passes to reduce the problem to
// a subproblem at most half as big, invokes itself recursively,
// and then runs a sequence of linear passes to turn the answer
// for the subproblem into the answer for the original problem.
// This gives T(N) = O(N) + T(N/2) = O(N) + O(N/2) + O(N/4) + ... = O(N).
//
// The outline of the code, with the forward and backward scans
// through O(N)-sized arrays called out, is:
//
// sais_I_N
// placeLMS_I_B
// bucketMax_I_B
// freq_I_B
// <scan +text> (1)
// <scan +freq> (2)
// <scan -text, random bucket> (3)
// induceSubL_I_B
// bucketMin_I_B
// freq_I_B
// <scan +text, often optimized away> (4)
// <scan +freq> (5)
// <scan +sa, random text, random bucket> (6)
// induceSubS_I_B
// bucketMax_I_B
// freq_I_B
// <scan +text, often optimized away> (7)
// <scan +freq> (8)
// <scan -sa, random text, random bucket> (9)
// assignID_I_B
// <scan +sa, random text substrings> (10)
// map_B
// <scan -sa> (11)
// recurse_B
// (recursive call to sais_B_B for a subproblem of size at most 1/2 input, often much smaller)
// unmap_I_B
// <scan -text> (12)
// <scan +sa> (13)
// expand_I_B
// bucketMax_I_B
// freq_I_B
// <scan +text, often optimized away> (14)
// <scan +freq> (15)
// <scan -sa, random text, random bucket> (16)
// induceL_I_B
// bucketMin_I_B
// freq_I_B
// <scan +text, often optimized away> (17)
// <scan +freq> (18)
// <scan +sa, random text, random bucket> (19)
// induceS_I_B
// bucketMax_I_B
// freq_I_B
// <scan +text, often optimized away> (20)
// <scan +freq> (21)
// <scan -sa, random text, random bucket> (22)
//
// Here, _B indicates the suffix array size (_32 or _64) and _I the input size (_8 or _B).
//
// The outline shows there are in general 22 scans through
// O(N)-sized arrays for a given level of the recursion.
// In the top level, operating on 8-bit input text,
// the six freq scans are fixed size (256) instead of potentially
// input-sized. Also, the frequency is counted once and cached
// whenever there is room to do so (there is nearly always room in general,
// and always room at the top level), which eliminates all but
// the first freq_I_B text scans (that is, 5 of the 6).
// So the top level of the recursion only does 22 - 6 - 5 = 11
// input-sized scans and a typical level does 16 scans.
//
// The linear scans do not cost anywhere near as much as
// the random accesses to the text made during a few of
// the scans (specifically #6, #9, #16, #19, #22 marked above).
// In real texts, there is not much but some locality to
// the accesses, due to the repetitive structure of the text
// (the same reason Burrows-Wheeler compression is so effective).
// For random inputs, there is no locality, which makes those
// accesses even more expensive, especially once the text
// no longer fits in cache.
// For example, running on 50 MB of Go source code, induceSubL_8_32
// (which runs only once, at the top level of the recursion)
// takes 0.44s, while on 50 MB of random input, it takes 2.55s.
// Nearly all the relative slowdown is explained by the text access:
//
// c0, c1 := text[k-1], text[k]
//
// That line runs for 0.23s on the Go text and 2.02s on random text.
//go:generate go run gen.go
package suffixarray
// text_32 returns the suffix array for the input text.
// It requires that len(text) fit in an int32
// and that the caller zero sa.
func text_32(text []byte, sa []int32) {
if int(int32(len(text))) != len(text) || len(text) != len(sa) {
panic("suffixarray: misuse of text_32")
}
sais_8_32(text, 256, sa, make([]int32, 2*256))
}
// sais_8_32 computes the suffix array of text.
// The text must contain only values in [0, textMax).
// The suffix array is stored in sa, which the caller
// must ensure is already zeroed.
// The caller must also provide temporary space tmp
// with len(tmp) ≥ textMax. If len(tmp) ≥ 2*textMax
// then the algorithm runs a little faster.
// If sais_8_32 modifies tmp, it sets tmp[0] = -1 on return.
func sais_8_32(text []byte, textMax int, sa, tmp []int32) {
if len(sa) != len(text) || len(tmp) < textMax {
panic("suffixarray: misuse of sais_8_32")
}
// Trivial base cases. Sorting 0 or 1 things is easy.
if len(text) == 0 {
return
}
if len(text) == 1 {
sa[0] = 0
return
}
// Establish slices indexed by text character
// holding character frequency and bucket-sort offsets.
// If there's only enough tmp for one slice,
// we make it the bucket offsets and recompute
// the character frequency each time we need it.
var freq, bucket []int32
if len(tmp) >= 2*textMax {
freq, bucket = tmp[:textMax], tmp[textMax:2*textMax]
freq[0] = -1 // mark as uninitialized
} else {
freq, bucket = nil, tmp[:textMax]
}
// The SAIS algorithm.
// Each of these calls makes one scan through sa.
// See the individual functions for documentation
// about each's role in the algorithm.
numLMS := placeLMS_8_32(text, sa, freq, bucket)
if numLMS <= 1 {
// 0 or 1 items are already sorted. Do nothing.
} else {
induceSubL_8_32(text, sa, freq, bucket)
induceSubS_8_32(text, sa, freq, bucket)
length_8_32(text, sa, numLMS)
maxID := assignID_8_32(text, sa, numLMS)
if maxID < numLMS {
map_32(sa, numLMS)
recurse_32(sa, tmp, numLMS, maxID)
unmap_8_32(text, sa, numLMS)
} else {
// If maxID == numLMS, then each LMS-substring
// is unique, so the relative ordering of two LMS-suffixes
// is determined by just the leading LMS-substring.
// That is, the LMS-suffix sort order matches the
// (simpler) LMS-substring sort order.
// Copy the original LMS-substring order into the
// suffix array destination.
copy(sa, sa[len(sa)-numLMS:])
}
expand_8_32(text, freq, bucket, sa, numLMS)
}
induceL_8_32(text, sa, freq, bucket)
induceS_8_32(text, sa, freq, bucket)
// Mark for caller that we overwrote tmp.
tmp[0] = -1
}
// freq_8_32 returns the character frequencies
// for text, as a slice indexed by character value.
// If freq is nil, freq_8_32 uses and returns bucket.
// If freq is non-nil, freq_8_32 assumes that freq[0] >= 0
// means the frequencies are already computed.
// If the frequency data is overwritten or uninitialized,
// the caller must set freq[0] = -1 to force recomputation
// the next time it is needed.
func freq_8_32(text []byte, freq, bucket []int32) []int32 {
if freq != nil && freq[0] >= 0 {
return freq // already computed
}
if freq == nil {
freq = bucket
}
freq = freq[:256] // eliminate bounds check for freq[c] below
clear(freq)
for _, c := range text {
freq[c]++
}
return freq
}
// bucketMin_8_32 stores into bucket[c] the minimum index
// in the bucket for character c in a bucket-sort of text.
func bucketMin_8_32(text []byte, freq, bucket []int32) {
freq = freq_8_32(text, freq, bucket)
freq = freq[:256] // establish len(freq) = 256, so 0 ≤ i < 256 below
bucket = bucket[:256] // eliminate bounds check for bucket[i] below
total := int32(0)
for i, n := range freq {
bucket[i] = total
total += n
}
}
// bucketMax_8_32 stores into bucket[c] the maximum index
// in the bucket for character c in a bucket-sort of text.
// The bucket indexes for c are [min, max).
// That is, max is one past the final index in that bucket.
func bucketMax_8_32(text []byte, freq, bucket []int32) {
freq = freq_8_32(text, freq, bucket)
freq = freq[:256] // establish len(freq) = 256, so 0 ≤ i < 256 below
bucket = bucket[:256] // eliminate bounds check for bucket[i] below
total := int32(0)
for i, n := range freq {
total += n
bucket[i] = total
}
}
// The SAIS algorithm proceeds in a sequence of scans through sa.
// Each of the following functions implements one scan,
// and the functions appear here in the order they execute in the algorithm.
// placeLMS_8_32 places into sa the indexes of the
// final characters of the LMS substrings of text,
// sorted into the rightmost ends of their correct buckets
// in the suffix array.
//
// The imaginary sentinel character at the end of the text
// is the final character of the final LMS substring, but there
// is no bucket for the imaginary sentinel character,
// which has a smaller value than any real character.
// The caller must therefore pretend that sa[-1] == len(text).
//
// The text indexes of LMS-substring characters are always ≥ 1
// (the first LMS-substring must be preceded by one or more L-type
// characters that are not part of any LMS-substring),
// so using 0 as a “not present” suffix array entry is safe,
// both in this function and in most later functions
// (until induceL_8_32 below).
func placeLMS_8_32(text []byte, sa, freq, bucket []int32) int {
bucketMax_8_32(text, freq, bucket)
numLMS := 0
lastB := int32(-1)
bucket = bucket[:256] // eliminate bounds check for bucket[c1] below
// The next stanza of code (until the blank line) loop backward
// over text, stopping to execute a code body at each position i
// such that text[i] is an L-character and text[i+1] is an S-character.
// That is, i+1 is the position of the start of an LMS-substring.
// These could be hoisted out into a function with a callback,
// but at a significant speed cost. Instead, we just write these
// seven lines a few times in this source file. The copies below
// refer back to the pattern established by this original as the
// "LMS-substring iterator".
//
// In every scan through the text, c0, c1 are successive characters of text.
// In this backward scan, c0 == text[i] and c1 == text[i+1].
// By scanning backward, we can keep track of whether the current
// position is type-S or type-L according to the usual definition:
//
// - position len(text) is type S with text[len(text)] == -1 (the sentinel)
// - position i is type S if text[i] < text[i+1], or if text[i] == text[i+1] && i+1 is type S.
// - position i is type L if text[i] > text[i+1], or if text[i] == text[i+1] && i+1 is type L.
//
// The backward scan lets us maintain the current type,
// update it when we see c0 != c1, and otherwise leave it alone.
// We want to identify all S positions with a preceding L.
// Position len(text) is one such position by definition, but we have
// nowhere to write it down, so we eliminate it by untruthfully
// setting isTypeS = false at the start of the loop.
c0, c1, isTypeS := byte(0), byte(0), false
for i := len(text) - 1; i >= 0; i-- {
c0, c1 = text[i], c0
if c0 < c1 {
isTypeS = true
} else if c0 > c1 && isTypeS {
isTypeS = false
// Bucket the index i+1 for the start of an LMS-substring.
b := bucket[c1] - 1
bucket[c1] = b
sa[b] = int32(i + 1)
lastB = b
numLMS++
}
}
// We recorded the LMS-substring starts but really want the ends.
// Luckily, with two differences, the start indexes and the end indexes are the same.
// The first difference is that the rightmost LMS-substring's end index is len(text),
// so the caller must pretend that sa[-1] == len(text), as noted above.
// The second difference is that the first leftmost LMS-substring start index
// does not end an earlier LMS-substring, so as an optimization we can omit
// that leftmost LMS-substring start index (the last one we wrote).
//
// Exception: if numLMS <= 1, the caller is not going to bother with
// the recursion at all and will treat the result as containing LMS-substring starts.
// In that case, we don't remove the final entry.
if numLMS > 1 {
sa[lastB] = 0
}
return numLMS
}
// induceSubL_8_32 inserts the L-type text indexes of LMS-substrings
// into sa, assuming that the final characters of the LMS-substrings
// are already inserted into sa, sorted by final character, and at the
// right (not left) end of the corresponding character bucket.
// Each LMS-substring has the form (as a regexp) /S+L+S/:
// one or more S-type, one or more L-type, final S-type.
// induceSubL_8_32 leaves behind only the leftmost L-type text
// index for each LMS-substring. That is, it removes the final S-type
// indexes that are present on entry, and it inserts but then removes
// the interior L-type indexes too.
// (Only the leftmost L-type index is needed by induceSubS_8_32.)
func induceSubL_8_32(text []byte, sa, freq, bucket []int32) {
// Initialize positions for left side of character buckets.
bucketMin_8_32(text, freq, bucket)
bucket = bucket[:256] // eliminate bounds check for bucket[cB] below
// As we scan the array left-to-right, each sa[i] = j > 0 is a correctly
// sorted suffix array entry (for text[j:]) for which we know that j-1 is type L.
// Because j-1 is type L, inserting it into sa now will sort it correctly.
// But we want to distinguish a j-1 with j-2 of type L from type S.
// We can process the former but want to leave the latter for the caller.
// We record the difference by negating j-1 if it is preceded by type S.
// Either way, the insertion (into the text[j-1] bucket) is guaranteed to
// happen at sa[i´] for some i´ > i, that is, in the portion of sa we have
// yet to scan. A single pass therefore sees indexes j, j-1, j-2, j-3,
// and so on, in sorted but not necessarily adjacent order, until it finds
// one preceded by an index of type S, at which point it must stop.
//
// As we scan through the array, we clear the worked entries (sa[i] > 0) to zero,
// and we flip sa[i] < 0 to -sa[i], so that the loop finishes with sa containing
// only the indexes of the leftmost L-type indexes for each LMS-substring.
//
// The suffix array sa therefore serves simultaneously as input, output,
// and a miraculously well-tailored work queue.
// placeLMS_8_32 left out the implicit entry sa[-1] == len(text),
// corresponding to the identified type-L index len(text)-1.
// Process it before the left-to-right scan of sa proper.
// See body in loop for commentary.
k := len(text) - 1
c0, c1 := text[k-1], text[k]
if c0 < c1 {
k = -k
}
// Cache recently used bucket index:
// we're processing suffixes in sorted order
// and accessing buckets indexed by the
// byte before the sorted order, which still
// has very good locality.
// Invariant: b is cached, possibly dirty copy of bucket[cB].
cB := c1
b := bucket[cB]
sa[b] = int32(k)
b++
for i := 0; i < len(sa); i++ {
j := int(sa[i])
if j == 0 {
// Skip empty entry.
continue
}
if j < 0 {
// Leave discovered type-S index for caller.
sa[i] = int32(-j)
continue
}
sa[i] = 0
// Index j was on work queue, meaning k := j-1 is L-type,
// so we can now place k correctly into sa.
// If k-1 is L-type, queue k for processing later in this loop.
// If k-1 is S-type (text[k-1] < text[k]), queue -k to save for the caller.
k := j - 1
c0, c1 := text[k-1], text[k]
if c0 < c1 {
k = -k
}
if cB != c1 {
bucket[cB] = b
cB = c1
b = bucket[cB]
}
sa[b] = int32(k)
b++
}
}
// induceSubS_8_32 inserts the S-type text indexes of LMS-substrings
// into sa, assuming that the leftmost L-type text indexes are already
// inserted into sa, sorted by LMS-substring suffix, and at the
// left end of the corresponding character bucket.
// Each LMS-substring has the form (as a regexp) /S+L+S/:
// one or more S-type, one or more L-type, final S-type.
// induceSubS_8_32 leaves behind only the leftmost S-type text
// index for each LMS-substring, in sorted order, at the right end of sa.
// That is, it removes the L-type indexes that are present on entry,
// and it inserts but then removes the interior S-type indexes too,
// leaving the LMS-substring start indexes packed into sa[len(sa)-numLMS:].
// (Only the LMS-substring start indexes are processed by the recursion.)
func induceSubS_8_32(text []byte, sa, freq, bucket []int32) {
// Initialize positions for right side of character buckets.
bucketMax_8_32(text, freq, bucket)
bucket = bucket[:256] // eliminate bounds check for bucket[cB] below
// Analogous to induceSubL_8_32 above,
// as we scan the array right-to-left, each sa[i] = j > 0 is a correctly
// sorted suffix array entry (for text[j:]) for which we know that j-1 is type S.
// Because j-1 is type S, inserting it into sa now will sort it correctly.
// But we want to distinguish a j-1 with j-2 of type S from type L.
// We can process the former but want to leave the latter for the caller.
// We record the difference by negating j-1 if it is preceded by type L.
// Either way, the insertion (into the text[j-1] bucket) is guaranteed to
// happen at sa[i´] for some i´ < i, that is, in the portion of sa we have
// yet to scan. A single pass therefore sees indexes j, j-1, j-2, j-3,
// and so on, in sorted but not necessarily adjacent order, until it finds
// one preceded by an index of type L, at which point it must stop.
// That index (preceded by one of type L) is an LMS-substring start.
//
// As we scan through the array, we clear the worked entries (sa[i] > 0) to zero,
// and we flip sa[i] < 0 to -sa[i] and compact into the top of sa,
// so that the loop finishes with the top of sa containing exactly
// the LMS-substring start indexes, sorted by LMS-substring.
// Cache recently used bucket index:
cB := byte(0)
b := bucket[cB]
top := len(sa)
for i := len(sa) - 1; i >= 0; i-- {
j := int(sa[i])
if j == 0 {
// Skip empty entry.
continue
}
sa[i] = 0
if j < 0 {
// Leave discovered LMS-substring start index for caller.
top--
sa[top] = int32(-j)
continue
}
// Index j was on work queue, meaning k := j-1 is S-type,
// so we can now place k correctly into sa.
// If k-1 is S-type, queue k for processing later in this loop.
// If k-1 is L-type (text[k-1] > text[k]), queue -k to save for the caller.
k := j - 1
c1 := text[k]
c0 := text[k-1]
if c0 > c1 {
k = -k
}
if cB != c1 {
bucket[cB] = b
cB = c1
b = bucket[cB]
}
b--
sa[b] = int32(k)
}
}
// length_8_32 computes and records the length of each LMS-substring in text.
// The length of the LMS-substring at index j is stored at sa[j/2],
// avoiding the LMS-substring indexes already stored in the top half of sa.
// (If index j is an LMS-substring start, then index j-1 is type L and cannot be.)
// There are two exceptions, made for optimizations in name_8_32 below.
//
// First, the final LMS-substring is recorded as having length 0, which is otherwise
// impossible, instead of giving it a length that includes the implicit sentinel.
// This ensures the final LMS-substring has length unequal to all others
// and therefore can be detected as different without text comparison
// (it is unequal because it is the only one that ends in the implicit sentinel,
// and the text comparison would be problematic since the implicit sentinel
// is not actually present at text[len(text)]).
//
// Second, to avoid text comparison entirely, if an LMS-substring is very short,
// sa[j/2] records its actual text instead of its length, so that if two such
// substrings have matching “length,” the text need not be read at all.
// The definition of “very short” is that the text bytes must pack into a uint32,
// and the unsigned encoding e must be ≥ len(text), so that it can be
// distinguished from a valid length.
func length_8_32(text []byte, sa []int32, numLMS int) {
end := 0 // index of current LMS-substring end (0 indicates final LMS-substring)
// The encoding of N text bytes into a “length” word
// adds 1 to each byte, packs them into the bottom
// N*8 bits of a word, and then bitwise inverts the result.
// That is, the text sequence A B C (hex 41 42 43)
// encodes as ^uint32(0x42_43_44).
// LMS-substrings can never start or end with 0xFF.
// Adding 1 ensures the encoded byte sequence never
// starts or ends with 0x00, so that present bytes can be
// distinguished from zero-padding in the top bits,
// so the length need not be separately encoded.
// Inverting the bytes increases the chance that a
// 4-byte encoding will still be ≥ len(text).
// In particular, if the first byte is ASCII (<= 0x7E, so +1 <= 0x7F)
// then the high bit of the inversion will be set,
// making it clearly not a valid length (it would be a negative one).
//
// cx holds the pre-inverted encoding (the packed incremented bytes).
cx := uint32(0) // byte-only
// This stanza (until the blank line) is the "LMS-substring iterator",
// described in placeLMS_8_32 above, with one line added to maintain cx.
c0, c1, isTypeS := byte(0), byte(0), false
for i := len(text) - 1; i >= 0; i-- {
c0, c1 = text[i], c0
cx = cx<<8 | uint32(c1+1) // byte-only
if c0 < c1 {
isTypeS = true
} else if c0 > c1 && isTypeS {
isTypeS = false
// Index j = i+1 is the start of an LMS-substring.
// Compute length or encoded text to store in sa[j/2].
j := i + 1
var code int32
if end == 0 {
code = 0
} else {
code = int32(end - j)
if code <= 32/8 && ^cx >= uint32(len(text)) { // byte-only
code = int32(^cx) // byte-only
} // byte-only
}
sa[j>>1] = code
end = j + 1
cx = uint32(c1 + 1) // byte-only
}
}
}
// assignID_8_32 assigns a dense ID numbering to the
// set of LMS-substrings respecting string ordering and equality,
// returning the maximum assigned ID.
// For example given the input "ababab", the LMS-substrings
// are "aba", "aba", and "ab", renumbered as 2 2 1.
// sa[len(sa)-numLMS:] holds the LMS-substring indexes
// sorted in string order, so to assign numbers we can
// consider each in turn, removing adjacent duplicates.
// The new ID for the LMS-substring at index j is written to sa[j/2],
// overwriting the length previously stored there (by length_8_32 above).
func assignID_8_32(text []byte, sa []int32, numLMS int) int {
id := 0
lastLen := int32(-1) // impossible
lastPos := int32(0)
for _, j := range sa[len(sa)-numLMS:] {
// Is the LMS-substring at index j new, or is it the same as the last one we saw?
n := sa[j/2]
if n != lastLen {
goto New
}
if uint32(n) >= uint32(len(text)) {
// “Length” is really encoded full text, and they match.
goto Same
}
{
// Compare actual texts.
n := int(n)
this := text[j:][:n]
last := text[lastPos:][:n]
for i := 0; i < n; i++ {
if this[i] != last[i] {
goto New
}
}
goto Same
}
New:
id++
lastPos = j
lastLen = n
Same:
sa[j/2] = int32(id)
}
return id
}
// map_32 maps the LMS-substrings in text to their new IDs,
// producing the subproblem for the recursion.
// The mapping itself was mostly applied by assignID_8_32:
// sa[i] is either 0, the ID for the LMS-substring at index 2*i,
// or the ID for the LMS-substring at index 2*i+1.
// To produce the subproblem we need only remove the zeros
// and change ID into ID-1 (our IDs start at 1, but text chars start at 0).
//
// map_32 packs the result, which is the input to the recursion,
// into the top of sa, so that the recursion result can be stored
// in the bottom of sa, which sets up for expand_8_32 well.
func map_32(sa []int32, numLMS int) {
w := len(sa)
for i := len(sa) / 2; i >= 0; i-- {
j := sa[i]
if j > 0 {
w--
sa[w] = j - 1
}
}
}
// recurse_32 calls sais_32 recursively to solve the subproblem we've built.
// The subproblem is at the right end of sa, the suffix array result will be
// written at the left end of sa, and the middle of sa is available for use as
// temporary frequency and bucket storage.
func recurse_32(sa, oldTmp []int32, numLMS, maxID int) {
dst, saTmp, text := sa[:numLMS], sa[numLMS:len(sa)-numLMS], sa[len(sa)-numLMS:]
// Set up temporary space for recursive call.
// We must pass sais_32 a tmp buffer with at least maxID entries.
//
// The subproblem is guaranteed to have length at most len(sa)/2,
// so that sa can hold both the subproblem and its suffix array.
// Nearly all the time, however, the subproblem has length < len(sa)/3,
// in which case there is a subproblem-sized middle of sa that
// we can reuse for temporary space (saTmp).
// When recurse_32 is called from sais_8_32, oldTmp is length 512
// (from text_32), and saTmp will typically be much larger, so we'll use saTmp.
// When deeper recursions come back to recurse_32, now oldTmp is
// the saTmp from the top-most recursion, it is typically larger than
// the current saTmp (because the current sa gets smaller and smaller
// as the recursion gets deeper), and we keep reusing that top-most
// large saTmp instead of the offered smaller ones.
//
// Why is the subproblem length so often just under len(sa)/3?
// See Nong, Zhang, and Chen, section 3.6 for a plausible explanation.
// In brief, the len(sa)/2 case would correspond to an SLSLSLSLSLSL pattern
// in the input, perfect alternation of larger and smaller input bytes.
// Real text doesn't do that. If each L-type index is randomly followed
// by either an L-type or S-type index, then half the substrings will
// be of the form SLS, but the other half will be longer. Of that half,
// half (a quarter overall) will be SLLS; an eighth will be SLLLS, and so on.
// Not counting the final S in each (which overlaps the first S in the next),
// This works out to an average length 2×½ + 3×¼ + 4×⅛ + ... = 3.
// The space we need is further reduced by the fact that many of the
// short patterns like SLS will often be the same character sequences
// repeated throughout the text, reducing maxID relative to numLMS.
//
// For short inputs, the averages may not run in our favor, but then we
// can often fall back to using the length-512 tmp available in the
// top-most call. (Also a short allocation would not be a big deal.)
//
// For pathological inputs, we fall back to allocating a new tmp of length
// max(maxID, numLMS/2). This level of the recursion needs maxID,
// and all deeper levels of the recursion will need no more than numLMS/2,
// so this one allocation is guaranteed to suffice for the entire stack
// of recursive calls.
tmp := oldTmp
if len(tmp) < len(saTmp) {
tmp = saTmp
}
if len(tmp) < numLMS {
// TestSAIS/forcealloc reaches this code.
n := maxID
if n < numLMS/2 {
n = numLMS / 2
}
tmp = make([]int32, n)
}
// sais_32 requires that the caller arrange to clear dst,
// because in general the caller may know dst is
// freshly-allocated and already cleared. But this one is not.
clear(dst)
sais_32(text, maxID, dst, tmp)
}
// unmap_8_32 unmaps the subproblem back to the original.
// sa[:numLMS] is the LMS-substring numbers, which don't matter much anymore.
// sa[len(sa)-numLMS:] is the sorted list of those LMS-substring numbers.
// The key part is that if the list says K that means the K'th substring.
// We can replace sa[:numLMS] with the indexes of the LMS-substrings.
// Then if the list says K it really means sa[K].
// Having mapped the list back to LMS-substring indexes,
// we can place those into the right buckets.
func unmap_8_32(text []byte, sa []int32, numLMS int) {
unmap := sa[len(sa)-numLMS:]
j := len(unmap)
// "LMS-substring iterator" (see placeLMS_8_32 above).
c0, c1, isTypeS := byte(0), byte(0), false
for i := len(text) - 1; i >= 0; i-- {
c0, c1 = text[i], c0
if c0 < c1 {
isTypeS = true
} else if c0 > c1 && isTypeS {
isTypeS = false
// Populate inverse map.
j--
unmap[j] = int32(i + 1)
}
}
// Apply inverse map to subproblem suffix array.
sa = sa[:numLMS]
for i := 0; i < len(sa); i++ {
sa[i] = unmap[sa[i]]
}
}
// expand_8_32 distributes the compacted, sorted LMS-suffix indexes
// from sa[:numLMS] into the tops of the appropriate buckets in sa,
// preserving the sorted order and making room for the L-type indexes
// to be slotted into the sorted sequence by induceL_8_32.
func expand_8_32(text []byte, freq, bucket, sa []int32, numLMS int) {
bucketMax_8_32(text, freq, bucket)
bucket = bucket[:256] // eliminate bound check for bucket[c] below
// Loop backward through sa, always tracking
// the next index to populate from sa[:numLMS].
// When we get to one, populate it.
// Zero the rest of the slots; they have dead values in them.
x := numLMS - 1
saX := sa[x]
c := text[saX]
b := bucket[c] - 1
bucket[c] = b
for i := len(sa) - 1; i >= 0; i-- {
if i != int(b) {
sa[i] = 0
continue
}
sa[i] = saX
// Load next entry to put down (if any).
if x > 0 {
x--
saX = sa[x] // TODO bounds check
c = text[saX]
b = bucket[c] - 1
bucket[c] = b
}
}
}
// induceL_8_32 inserts L-type text indexes into sa,
// assuming that the leftmost S-type indexes are inserted
// into sa, in sorted order, in the right bucket halves.
// It leaves all the L-type indexes in sa, but the
// leftmost L-type indexes are negated, to mark them
// for processing by induceS_8_32.
func induceL_8_32(text []byte, sa, freq, bucket []int32) {
// Initialize positions for left side of character buckets.
bucketMin_8_32(text, freq, bucket)
bucket = bucket[:256] // eliminate bounds check for bucket[cB] below
// This scan is similar to the one in induceSubL_8_32 above.
// That one arranges to clear all but the leftmost L-type indexes.
// This scan leaves all the L-type indexes and the original S-type
// indexes, but it negates the positive leftmost L-type indexes
// (the ones that induceS_8_32 needs to process).
// expand_8_32 left out the implicit entry sa[-1] == len(text),
// corresponding to the identified type-L index len(text)-1.
// Process it before the left-to-right scan of sa proper.
// See body in loop for commentary.
k := len(text) - 1
c0, c1 := text[k-1], text[k]
if c0 < c1 {
k = -k
}
// Cache recently used bucket index.
cB := c1
b := bucket[cB]
sa[b] = int32(k)
b++
for i := 0; i < len(sa); i++ {
j := int(sa[i])
if j <= 0 {
// Skip empty or negated entry (including negated zero).
continue
}
// Index j was on work queue, meaning k := j-1 is L-type,
// so we can now place k correctly into sa.
// If k-1 is L-type, queue k for processing later in this loop.
// If k-1 is S-type (text[k-1] < text[k]), queue -k to save for the caller.
// If k is zero, k-1 doesn't exist, so we only need to leave it
// for the caller. The caller can't tell the difference between
// an empty slot and a non-empty zero, but there's no need
// to distinguish them anyway: the final suffix array will end up
// with one zero somewhere, and that will be a real zero.
k := j - 1
c1 := text[k]
if k > 0 {
if c0 := text[k-1]; c0 < c1 {
k = -k
}
}
if cB != c1 {
bucket[cB] = b
cB = c1
b = bucket[cB]
}
sa[b] = int32(k)
b++
}
}
func induceS_8_32(text []byte, sa, freq, bucket []int32) {
// Initialize positions for right side of character buckets.
bucketMax_8_32(text, freq, bucket)
bucket = bucket[:256] // eliminate bounds check for bucket[cB] below
cB := byte(0)
b := bucket[cB]
for i := len(sa) - 1; i >= 0; i-- {
j := int(sa[i])
if j >= 0 {
// Skip non-flagged entry.
// (This loop can't see an empty entry; 0 means the real zero index.)
continue
}
// Negative j is a work queue entry; rewrite to positive j for final suffix array.
j = -j
sa[i] = int32(j)
// Index j was on work queue (encoded as -j but now decoded),
// meaning k := j-1 is L-type,
// so we can now place k correctly into sa.
// If k-1 is S-type, queue -k for processing later in this loop.
// If k-1 is L-type (text[k-1] > text[k]), queue k to save for the caller.
// If k is zero, k-1 doesn't exist, so we only need to leave it
// for the caller.
k := j - 1
c1 := text[k]
if k > 0 {
if c0 := text[k-1]; c0 <= c1 {
k = -k
}
}
if cB != c1 {
bucket[cB] = b
cB = c1
b = bucket[cB]
}
b--
sa[b] = int32(k)
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,382 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package suffixarray implements substring search in logarithmic time using
// an in-memory suffix array.
//
// Example use:
//
// // create index for some data
// index := suffixarray.New(data)
//
// // lookup byte slice s
// offsets1 := index.Lookup(s, -1) // the list of all indices where s occurs in data
// offsets2 := index.Lookup(s, 3) // the list of at most 3 indices where s occurs in data
package suffixarray
import (
"bytes"
"encoding/binary"
"errors"
"io"
"math"
"regexp"
"slices"
"sort"
)
// Can change for testing
var maxData32 int = realMaxData32
const realMaxData32 = math.MaxInt32
// Index implements a suffix array for fast substring search.
type Index struct {
data []byte
sa ints // suffix array for data; sa.len() == len(data)
}
// An ints is either an []int32 or an []int64.
// That is, one of them is empty, and one is the real data.
// The int64 form is used when len(data) > maxData32
type ints struct {
int32 []int32
int64 []int64
}
func (a *ints) len() int {
return len(a.int32) + len(a.int64)
}
func (a *ints) get(i int) int64 {
if a.int32 != nil {
return int64(a.int32[i])
}
return a.int64[i]
}
func (a *ints) set(i int, v int64) {
if a.int32 != nil {
a.int32[i] = int32(v)
} else {
a.int64[i] = v
}
}
func (a *ints) slice(i, j int) ints {
if a.int32 != nil {
return ints{a.int32[i:j], nil}
}
return ints{nil, a.int64[i:j]}
}
// New creates a new [Index] for data.
// [Index] creation time is O(N) for N = len(data).
func New(data []byte) *Index {
ix := &Index{data: data}
if len(data) <= maxData32 {
ix.sa.int32 = make([]int32, len(data))
text_32(data, ix.sa.int32)
} else {
ix.sa.int64 = make([]int64, len(data))
text_64(data, ix.sa.int64)
}
return ix
}
// writeInt writes an int x to w using buf to buffer the write.
func writeInt(w io.Writer, buf []byte, x int) error {
binary.PutVarint(buf, int64(x))
_, err := w.Write(buf[0:binary.MaxVarintLen64])
return err
}
// readInt reads an int x from r using buf to buffer the read and returns x.
func readInt(r io.Reader, buf []byte) (int64, error) {
_, err := io.ReadFull(r, buf[0:binary.MaxVarintLen64]) // ok to continue with error
x, _ := binary.Varint(buf)
return x, err
}
// writeSlice writes data[:n] to w and returns n.
// It uses buf to buffer the write.
func writeSlice(w io.Writer, buf []byte, data ints) (n int, err error) {
// encode as many elements as fit into buf
p := binary.MaxVarintLen64
m := data.len()
for ; n < m && p+binary.MaxVarintLen64 <= len(buf); n++ {
p += binary.PutUvarint(buf[p:], uint64(data.get(n)))
}
// update buffer size
binary.PutVarint(buf, int64(p))
// write buffer
_, err = w.Write(buf[0:p])
return
}
var errTooBig = errors.New("suffixarray: data too large")
// readSlice reads data[:n] from r and returns n.
// It uses buf to buffer the read.
func readSlice(r io.Reader, buf []byte, data ints) (n int, err error) {
// read buffer size
var size64 int64
size64, err = readInt(r, buf)
if err != nil {
return
}
if int64(int(size64)) != size64 || int(size64) < 0 {
// We never write chunks this big anyway.
return 0, errTooBig
}
size := int(size64)
// read buffer w/o the size
if _, err = io.ReadFull(r, buf[binary.MaxVarintLen64:size]); err != nil {
return
}
// decode as many elements as present in buf
for p := binary.MaxVarintLen64; p < size; n++ {
x, w := binary.Uvarint(buf[p:])
data.set(n, int64(x))
p += w
}
return
}
const bufSize = 16 << 10 // reasonable for BenchmarkSaveRestore
// Read reads the index from r into x; x must not be nil.
func (x *Index) Read(r io.Reader) error {
// buffer for all reads
buf := make([]byte, bufSize)
// read length
n64, err := readInt(r, buf)
if err != nil {
return err
}
if int64(int(n64)) != n64 || int(n64) < 0 {
return errTooBig
}
n := int(n64)
// allocate space
if 2*n < cap(x.data) || cap(x.data) < n || x.sa.int32 != nil && n > maxData32 || x.sa.int64 != nil && n <= maxData32 {
// new data is significantly smaller or larger than
// existing buffers - allocate new ones
x.data = make([]byte, n)
x.sa.int32 = nil
x.sa.int64 = nil
if n <= maxData32 {
x.sa.int32 = make([]int32, n)
} else {
x.sa.int64 = make([]int64, n)
}
} else {
// re-use existing buffers
x.data = x.data[0:n]
x.sa = x.sa.slice(0, n)
}
// read data
if _, err := io.ReadFull(r, x.data); err != nil {
return err
}
// read index
sa := x.sa
for sa.len() > 0 {
n, err := readSlice(r, buf, sa)
if err != nil {
return err
}
sa = sa.slice(n, sa.len())
}
return nil
}
// Write writes the index x to w.
func (x *Index) Write(w io.Writer) error {
// buffer for all writes
buf := make([]byte, bufSize)
// write length
if err := writeInt(w, buf, len(x.data)); err != nil {
return err
}
// write data
if _, err := w.Write(x.data); err != nil {
return err
}
// write index
sa := x.sa
for sa.len() > 0 {
n, err := writeSlice(w, buf, sa)
if err != nil {
return err
}
sa = sa.slice(n, sa.len())
}
return nil
}
// Bytes returns the data over which the index was created.
// It must not be modified.
func (x *Index) Bytes() []byte {
return x.data
}
func (x *Index) at(i int) []byte {
return x.data[x.sa.get(i):]
}
// lookupAll returns a slice into the matching region of the index.
// The runtime is O(log(N)*len(s)).
func (x *Index) lookupAll(s []byte) ints {
// find matching suffix index range [i:j]
// find the first index where s would be the prefix
i := sort.Search(x.sa.len(), func(i int) bool { return bytes.Compare(x.at(i), s) >= 0 })
// starting at i, find the first index at which s is not a prefix
j := i + sort.Search(x.sa.len()-i, func(j int) bool { return !bytes.HasPrefix(x.at(j+i), s) })
return x.sa.slice(i, j)
}
// Lookup returns an unsorted list of at most n indices where the byte string s
// occurs in the indexed data. If n < 0, all occurrences are returned.
// The result is nil if s is empty, s is not found, or n == 0.
// Lookup time is O(log(N)*len(s) + len(result)) where N is the
// size of the indexed data.
func (x *Index) Lookup(s []byte, n int) (result []int) {
if len(s) > 0 && n != 0 {
matches := x.lookupAll(s)
count := matches.len()
if n < 0 || count < n {
n = count
}
// 0 <= n <= count
if n > 0 {
result = make([]int, n)
if matches.int32 != nil {
for i := range result {
result[i] = int(matches.int32[i])
}
} else {
for i := range result {
result[i] = int(matches.int64[i])
}
}
}
}
return
}
// FindAllIndex returns a sorted list of non-overlapping matches of the
// regular expression r, where a match is a pair of indices specifying
// the matched slice of x.Bytes(). If n < 0, all matches are returned
// in successive order. Otherwise, at most n matches are returned and
// they may not be successive. The result is nil if there are no matches,
// or if n == 0.
func (x *Index) FindAllIndex(r *regexp.Regexp, n int) (result [][]int) {
// a non-empty literal prefix is used to determine possible
// match start indices with Lookup
prefix, complete := r.LiteralPrefix()
lit := []byte(prefix)
// worst-case scenario: no literal prefix
if prefix == "" {
return r.FindAllIndex(x.data, n)
}
// if regexp is a literal just use Lookup and convert its
// result into match pairs
if complete {
// Lookup returns indices that may belong to overlapping matches.
// After eliminating them, we may end up with fewer than n matches.
// If we don't have enough at the end, redo the search with an
// increased value n1, but only if Lookup returned all the requested
// indices in the first place (if it returned fewer than that then
// there cannot be more).
for n1 := n; ; n1 += 2 * (n - len(result)) /* overflow ok */ {
indices := x.Lookup(lit, n1)
if len(indices) == 0 {
return
}
slices.Sort(indices)
pairs := make([]int, 2*len(indices))
result = make([][]int, len(indices))
count := 0
prev := 0
for _, i := range indices {
if count == n {
break
}
// ignore indices leading to overlapping matches
if prev <= i {
j := 2 * count
pairs[j+0] = i
pairs[j+1] = i + len(lit)
result[count] = pairs[j : j+2]
count++
prev = i + len(lit)
}
}
result = result[0:count]
if len(result) >= n || len(indices) != n1 {
// found all matches or there's no chance to find more
// (n and n1 can be negative)
break
}
}
if len(result) == 0 {
result = nil
}
return
}
// regexp has a non-empty literal prefix; Lookup(lit) computes
// the indices of possible complete matches; use these as starting
// points for anchored searches
// (regexp "^" matches beginning of input, not beginning of line)
r = regexp.MustCompile("^" + r.String()) // compiles because r compiled
// same comment about Lookup applies here as in the loop above
for n1 := n; ; n1 += 2 * (n - len(result)) /* overflow ok */ {
indices := x.Lookup(lit, n1)
if len(indices) == 0 {
return
}
slices.Sort(indices)
result = result[0:0]
prev := 0
for _, i := range indices {
if len(result) == n {
break
}
m := r.FindIndex(x.data[i:]) // anchored search - will not run off
// ignore indices leading to overlapping matches
if m != nil && prev <= i {
m[0] = i // correct m
m[1] += i
result = append(result, m)
prev = m[1]
}
}
if len(result) >= n || len(indices) != n1 {
// found all matches or there's no chance to find more
// (n and n1 can be negative)
break
}
}
if len(result) == 0 {
result = nil
}
return
}

View File

@@ -0,0 +1,616 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package suffixarray
import (
"bytes"
"fmt"
"io/fs"
"math/rand"
"os"
"path/filepath"
"regexp"
"slices"
"sort"
"strings"
"testing"
)
type testCase struct {
name string // name of test case
source string // source to index
patterns []string // patterns to lookup
}
var testCases = []testCase{
{
"empty string",
"",
[]string{
"",
"foo",
"(foo)",
".*",
"a*",
},
},
{
"all a's",
"aaaaaaaaaa", // 10 a's
[]string{
"",
"a",
"aa",
"aaa",
"aaaa",
"aaaaa",
"aaaaaa",
"aaaaaaa",
"aaaaaaaa",
"aaaaaaaaa",
"aaaaaaaaaa",
"aaaaaaaaaaa", // 11 a's
".",
".*",
"a+",
"aa+",
"aaaa[b]?",
"aaa*",
},
},
{
"abc",
"abc",
[]string{
"a",
"b",
"c",
"ab",
"bc",
"abc",
"a.c",
"a(b|c)",
"abc?",
},
},
{
"barbara*3",
"barbarabarbarabarbara",
[]string{
"a",
"bar",
"rab",
"arab",
"barbar",
"bara?bar",
},
},
{
"typing drill",
"Now is the time for all good men to come to the aid of their country.",
[]string{
"Now",
"the time",
"to come the aid",
"is the time for all good men to come to the aid of their",
"to (come|the)?",
},
},
{
"godoc simulation",
"package main\n\nimport(\n \"rand\"\n ",
[]string{},
},
}
// find all occurrences of s in source; report at most n occurrences
func find(src, s string, n int) []int {
var res []int
if s != "" && n != 0 {
// find at most n occurrences of s in src
for i := -1; n < 0 || len(res) < n; {
j := strings.Index(src[i+1:], s)
if j < 0 {
break
}
i += j + 1
res = append(res, i)
}
}
return res
}
func testLookup(t *testing.T, tc *testCase, x *Index, s string, n int) {
res := x.Lookup([]byte(s), n)
exp := find(tc.source, s, n)
// check that the lengths match
if len(res) != len(exp) {
t.Errorf("test %q, lookup %q (n = %d): expected %d results; got %d", tc.name, s, n, len(exp), len(res))
}
// if n >= 0 the number of results is limited --- unless n >= all results,
// we may obtain different positions from the Index and from find (because
// Index may not find the results in the same order as find) => in general
// we cannot simply check that the res and exp lists are equal
// check that each result is in fact a correct match and there are no duplicates
slices.Sort(res)
for i, r := range res {
if r < 0 || len(tc.source) <= r {
t.Errorf("test %q, lookup %q, result %d (n = %d): index %d out of range [0, %d[", tc.name, s, i, n, r, len(tc.source))
} else if !strings.HasPrefix(tc.source[r:], s) {
t.Errorf("test %q, lookup %q, result %d (n = %d): index %d not a match", tc.name, s, i, n, r)
}
if i > 0 && res[i-1] == r {
t.Errorf("test %q, lookup %q, result %d (n = %d): found duplicate index %d", tc.name, s, i, n, r)
}
}
if n < 0 {
// all results computed - sorted res and exp must be equal
for i, r := range res {
e := exp[i]
if r != e {
t.Errorf("test %q, lookup %q, result %d: expected index %d; got %d", tc.name, s, i, e, r)
}
}
}
}
func testFindAllIndex(t *testing.T, tc *testCase, x *Index, rx *regexp.Regexp, n int) {
res := x.FindAllIndex(rx, n)
exp := rx.FindAllStringIndex(tc.source, n)
// check that the lengths match
if len(res) != len(exp) {
t.Errorf("test %q, FindAllIndex %q (n = %d): expected %d results; got %d", tc.name, rx, n, len(exp), len(res))
}
// if n >= 0 the number of results is limited --- unless n >= all results,
// we may obtain different positions from the Index and from regexp (because
// Index may not find the results in the same order as regexp) => in general
// we cannot simply check that the res and exp lists are equal
// check that each result is in fact a correct match and the result is sorted
for i, r := range res {
if r[0] < 0 || r[0] > r[1] || len(tc.source) < r[1] {
t.Errorf("test %q, FindAllIndex %q, result %d (n == %d): illegal match [%d, %d]", tc.name, rx, i, n, r[0], r[1])
} else if !rx.MatchString(tc.source[r[0]:r[1]]) {
t.Errorf("test %q, FindAllIndex %q, result %d (n = %d): [%d, %d] not a match", tc.name, rx, i, n, r[0], r[1])
}
}
if n < 0 {
// all results computed - sorted res and exp must be equal
for i, r := range res {
e := exp[i]
if r[0] != e[0] || r[1] != e[1] {
t.Errorf("test %q, FindAllIndex %q, result %d: expected match [%d, %d]; got [%d, %d]",
tc.name, rx, i, e[0], e[1], r[0], r[1])
}
}
}
}
func testLookups(t *testing.T, tc *testCase, x *Index, n int) {
for _, pat := range tc.patterns {
testLookup(t, tc, x, pat, n)
if rx, err := regexp.Compile(pat); err == nil {
testFindAllIndex(t, tc, x, rx, n)
}
}
}
// index is used to hide the sort.Interface
type index Index
func (x *index) Len() int { return x.sa.len() }
func (x *index) Less(i, j int) bool { return bytes.Compare(x.at(i), x.at(j)) < 0 }
func (x *index) Swap(i, j int) {
if x.sa.int32 != nil {
x.sa.int32[i], x.sa.int32[j] = x.sa.int32[j], x.sa.int32[i]
} else {
x.sa.int64[i], x.sa.int64[j] = x.sa.int64[j], x.sa.int64[i]
}
}
func (x *index) at(i int) []byte {
return x.data[x.sa.get(i):]
}
func testConstruction(t *testing.T, tc *testCase, x *Index) {
if !sort.IsSorted((*index)(x)) {
t.Errorf("failed testConstruction %s", tc.name)
}
}
func equal(x, y *Index) bool {
if !bytes.Equal(x.data, y.data) {
return false
}
if x.sa.len() != y.sa.len() {
return false
}
n := x.sa.len()
for i := 0; i < n; i++ {
if x.sa.get(i) != y.sa.get(i) {
return false
}
}
return true
}
// returns the serialized index size
func testSaveRestore(t *testing.T, tc *testCase, x *Index) int {
var buf bytes.Buffer
if err := x.Write(&buf); err != nil {
t.Errorf("failed writing index %s (%s)", tc.name, err)
}
size := buf.Len()
var y Index
if err := y.Read(bytes.NewReader(buf.Bytes())); err != nil {
t.Errorf("failed reading index %s (%s)", tc.name, err)
}
if !equal(x, &y) {
t.Errorf("restored index doesn't match saved index %s", tc.name)
}
old := maxData32
defer func() {
maxData32 = old
}()
// Reread as forced 32.
y = Index{}
maxData32 = realMaxData32
if err := y.Read(bytes.NewReader(buf.Bytes())); err != nil {
t.Errorf("failed reading index %s (%s)", tc.name, err)
}
if !equal(x, &y) {
t.Errorf("restored index doesn't match saved index %s", tc.name)
}
// Reread as forced 64.
y = Index{}
maxData32 = -1
if err := y.Read(bytes.NewReader(buf.Bytes())); err != nil {
t.Errorf("failed reading index %s (%s)", tc.name, err)
}
if !equal(x, &y) {
t.Errorf("restored index doesn't match saved index %s", tc.name)
}
return size
}
func testIndex(t *testing.T) {
for _, tc := range testCases {
x := New([]byte(tc.source))
testConstruction(t, &tc, x)
testSaveRestore(t, &tc, x)
testLookups(t, &tc, x, 0)
testLookups(t, &tc, x, 1)
testLookups(t, &tc, x, 10)
testLookups(t, &tc, x, 2e9)
testLookups(t, &tc, x, -1)
}
}
func TestIndex32(t *testing.T) {
testIndex(t)
}
func TestIndex64(t *testing.T) {
maxData32 = -1
defer func() {
maxData32 = realMaxData32
}()
testIndex(t)
}
func TestNew32(t *testing.T) {
test(t, func(x []byte) []int {
sa := make([]int32, len(x))
text_32(x, sa)
out := make([]int, len(sa))
for i, v := range sa {
out[i] = int(v)
}
return out
})
}
func TestNew64(t *testing.T) {
test(t, func(x []byte) []int {
sa := make([]int64, len(x))
text_64(x, sa)
out := make([]int, len(sa))
for i, v := range sa {
out[i] = int(v)
}
return out
})
}
// test tests an arbitrary suffix array construction function.
// Generates many inputs, builds and checks suffix arrays.
func test(t *testing.T, build func([]byte) []int) {
t.Run("ababab...", func(t *testing.T) {
// Very repetitive input has numLMS = len(x)/2-1
// at top level, the largest it can be.
// But maxID is only two (aba and ab$).
size := 100000
if testing.Short() {
size = 10000
}
x := make([]byte, size)
for i := range x {
x[i] = "ab"[i%2]
}
testSA(t, x, build)
})
t.Run("forcealloc", func(t *testing.T) {
// Construct a pathological input that forces
// recurse_32 to allocate a new temporary buffer.
// The input must have more than N/3 LMS-substrings,
// which we arrange by repeating an SLSLSLSLSLSL pattern
// like ababab... above, but then we must also arrange
// for a large number of distinct LMS-substrings.
// We use this pattern:
// 1 255 1 254 1 253 1 ... 1 2 1 255 2 254 2 253 2 252 2 ...
// This gives approximately 2¹⁵ distinct LMS-substrings.
// We need to repeat at least one substring, though,
// or else the recursion can be bypassed entirely.
x := make([]byte, 100000, 100001)
lo := byte(1)
hi := byte(255)
for i := range x {
if i%2 == 0 {
x[i] = lo
} else {
x[i] = hi
hi--
if hi <= lo {
lo++
if lo == 0 {
lo = 1
}
hi = 255
}
}
}
x[:cap(x)][len(x)] = 0 // for sais.New
testSA(t, x, build)
})
t.Run("exhaustive2", func(t *testing.T) {
// All inputs over {0,1} up to length 21.
// Runs in about 10 seconds on my laptop.
x := make([]byte, 30)
numFail := 0
for n := 0; n <= 21; n++ {
if n > 12 && testing.Short() {
break
}
x[n] = 0 // for sais.New
testRec(t, x[:n], 0, 2, &numFail, build)
}
})
t.Run("exhaustive3", func(t *testing.T) {
// All inputs over {0,1,2} up to length 14.
// Runs in about 10 seconds on my laptop.
x := make([]byte, 30)
numFail := 0
for n := 0; n <= 14; n++ {
if n > 8 && testing.Short() {
break
}
x[n] = 0 // for sais.New
testRec(t, x[:n], 0, 3, &numFail, build)
}
})
}
// testRec fills x[i:] with all possible combinations of values in [1,max]
// and then calls testSA(t, x, build) for each one.
func testRec(t *testing.T, x []byte, i, max int, numFail *int, build func([]byte) []int) {
if i < len(x) {
for x[i] = 1; x[i] <= byte(max); x[i]++ {
testRec(t, x, i+1, max, numFail, build)
}
return
}
if !testSA(t, x, build) {
*numFail++
if *numFail >= 10 {
t.Errorf("stopping after %d failures", *numFail)
t.FailNow()
}
}
}
// testSA tests the suffix array build function on the input x.
// It constructs the suffix array and then checks that it is correct.
func testSA(t *testing.T, x []byte, build func([]byte) []int) bool {
defer func() {
if e := recover(); e != nil {
t.Logf("build %v", x)
panic(e)
}
}()
sa := build(x)
if len(sa) != len(x) {
t.Errorf("build %v: len(sa) = %d, want %d", x, len(sa), len(x))
return false
}
for i := 0; i+1 < len(sa); i++ {
if sa[i] < 0 || sa[i] >= len(x) || sa[i+1] < 0 || sa[i+1] >= len(x) {
t.Errorf("build %s: sa out of range: %v\n", x, sa)
return false
}
if bytes.Compare(x[sa[i]:], x[sa[i+1]:]) >= 0 {
t.Errorf("build %v -> %v\nsa[%d:] = %d,%d out of order", x, sa, i, sa[i], sa[i+1])
return false
}
}
return true
}
var (
benchdata = make([]byte, 1e6)
benchrand = make([]byte, 1e6)
)
// Of all possible inputs, the random bytes have the least amount of substring
// repetition, and the repeated bytes have the most. For most algorithms,
// the running time of every input will be between these two.
func benchmarkNew(b *testing.B, random bool) {
b.ReportAllocs()
b.StopTimer()
data := benchdata
if random {
data = benchrand
if data[0] == 0 {
for i := range data {
data[i] = byte(rand.Intn(256))
}
}
}
b.StartTimer()
b.SetBytes(int64(len(data)))
for i := 0; i < b.N; i++ {
New(data)
}
}
func makeText(name string) ([]byte, error) {
var data []byte
switch name {
case "opticks":
var err error
data, err = os.ReadFile("../../testdata/Isaac.Newton-Opticks.txt")
if err != nil {
return nil, err
}
case "go":
err := filepath.WalkDir("../..", func(path string, info fs.DirEntry, err error) error {
if err == nil && strings.HasSuffix(path, ".go") && !info.IsDir() {
file, err := os.ReadFile(path)
if err != nil {
return err
}
data = append(data, file...)
}
return nil
})
if err != nil {
return nil, err
}
case "zero":
data = make([]byte, 50e6)
case "rand":
data = make([]byte, 50e6)
for i := range data {
data[i] = byte(rand.Intn(256))
}
}
return data, nil
}
func setBits(bits int) (cleanup func()) {
if bits == 32 {
maxData32 = realMaxData32
} else {
maxData32 = -1 // force use of 64-bit code
}
return func() {
maxData32 = realMaxData32
}
}
func BenchmarkNew(b *testing.B) {
for _, text := range []string{"opticks", "go", "zero", "rand"} {
b.Run("text="+text, func(b *testing.B) {
data, err := makeText(text)
if err != nil {
b.Fatal(err)
}
if testing.Short() && len(data) > 5e6 {
data = data[:5e6]
}
for _, size := range []int{100e3, 500e3, 1e6, 5e6, 10e6, 50e6} {
if len(data) < size {
continue
}
data := data[:size]
name := fmt.Sprintf("%dK", size/1e3)
if size >= 1e6 {
name = fmt.Sprintf("%dM", size/1e6)
}
b.Run("size="+name, func(b *testing.B) {
for _, bits := range []int{32, 64} {
if ^uint(0) == 0xffffffff && bits == 64 {
continue
}
b.Run(fmt.Sprintf("bits=%d", bits), func(b *testing.B) {
cleanup := setBits(bits)
defer cleanup()
b.SetBytes(int64(len(data)))
b.ReportAllocs()
for i := 0; i < b.N; i++ {
New(data)
}
})
}
})
}
})
}
}
func BenchmarkSaveRestore(b *testing.B) {
r := rand.New(rand.NewSource(0x5a77a1)) // guarantee always same sequence
data := make([]byte, 1<<20) // 1MB of data to index
for i := range data {
data[i] = byte(r.Intn(256))
}
for _, bits := range []int{32, 64} {
if ^uint(0) == 0xffffffff && bits == 64 {
continue
}
b.Run(fmt.Sprintf("bits=%d", bits), func(b *testing.B) {
cleanup := setBits(bits)
defer cleanup()
b.StopTimer()
x := New(data)
size := testSaveRestore(nil, nil, x) // verify correctness
buf := bytes.NewBuffer(make([]byte, size)) // avoid growing
b.SetBytes(int64(size))
b.StartTimer()
b.ReportAllocs()
for i := 0; i < b.N; i++ {
buf.Reset()
if err := x.Write(buf); err != nil {
b.Fatal(err)
}
var y Index
if err := y.Read(buf); err != nil {
b.Fatal(err)
}
}
})
}
}