Initial commit: Go 1.23 release state

This commit is contained in:
Vorapol Rinsatitnon
2024-09-21 23:49:08 +10:00
commit 17cd57a668
13231 changed files with 3114330 additions and 0 deletions

63
src/internal/dag/alg.go Normal file
View File

@@ -0,0 +1,63 @@
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package dag
// Transpose reverses all edges in g.
func (g *Graph) Transpose() {
old := g.edges
g.edges = make(map[string]map[string]bool)
for _, n := range g.Nodes {
g.edges[n] = make(map[string]bool)
}
for from, tos := range old {
for to := range tos {
g.edges[to][from] = true
}
}
}
// Topo returns a topological sort of g. This function is deterministic.
func (g *Graph) Topo() []string {
topo := make([]string, 0, len(g.Nodes))
marks := make(map[string]bool)
var visit func(n string)
visit = func(n string) {
if marks[n] {
return
}
for _, to := range g.Edges(n) {
visit(to)
}
marks[n] = true
topo = append(topo, n)
}
for _, root := range g.Nodes {
visit(root)
}
for i, j := 0, len(topo)-1; i < j; i, j = i+1, j-1 {
topo[i], topo[j] = topo[j], topo[i]
}
return topo
}
// TransitiveReduction removes edges from g that are transitively
// reachable. g must be transitively closed.
func (g *Graph) TransitiveReduction() {
// For i -> j -> k, if i -> k exists, delete it.
for _, i := range g.Nodes {
for _, j := range g.Nodes {
if g.HasEdge(i, j) {
for _, k := range g.Nodes {
if g.HasEdge(j, k) {
g.DelEdge(i, k)
}
}
}
}
}
}

View File

@@ -0,0 +1,46 @@
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package dag
import (
"reflect"
"strings"
"testing"
)
func TestTranspose(t *testing.T) {
g := mustParse(t, diamond)
g.Transpose()
wantEdges(t, g, "a->b a->c a->d b->d c->d")
}
func TestTopo(t *testing.T) {
g := mustParse(t, diamond)
got := g.Topo()
// "d" is the root, so it's first.
//
// "c" and "b" could be in either order, but Topo is
// deterministic in reverse node definition order.
//
// "a" is a leaf.
wantNodes := strings.Fields("d c b a")
if !reflect.DeepEqual(wantNodes, got) {
t.Fatalf("want topo sort %v, got %v", wantNodes, got)
}
}
func TestTransitiveReduction(t *testing.T) {
t.Run("diamond", func(t *testing.T) {
g := mustParse(t, diamond)
g.TransitiveReduction()
wantEdges(t, g, "b->a c->a d->b d->c")
})
t.Run("chain", func(t *testing.T) {
const chain = `NONE < a < b < c < d; a, d < e;`
g := mustParse(t, chain)
g.TransitiveReduction()
wantEdges(t, g, "e->d d->c c->b b->a")
})
}

317
src/internal/dag/parse.go Normal file
View File

@@ -0,0 +1,317 @@
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package dag implements a language for expressing directed acyclic
// graphs.
//
// The general syntax of a rule is:
//
// a, b < c, d;
//
// which means c and d come after a and b in the partial order
// (that is, there are edges from c and d to a and b),
// but doesn't provide a relative order between a vs b or c vs d.
//
// The rules can chain together, as in:
//
// e < f, g < h;
//
// which is equivalent to
//
// e < f, g;
// f, g < h;
//
// Except for the special bottom element "NONE", each name
// must appear exactly once on the right-hand side of any rule.
// That rule serves as the definition of the allowed successor
// for that name. The definition must appear before any uses
// of the name on the left-hand side of a rule. (That is, the
// rules themselves must be ordered according to the partial
// order, for easier reading by people.)
//
// Negative assertions double-check the partial order:
//
// i !< j
//
// means that it must NOT be the case that i < j.
// Negative assertions may appear anywhere in the rules,
// even before i and j have been defined.
//
// Comments begin with #.
package dag
import (
"cmp"
"fmt"
"slices"
"strings"
)
type Graph struct {
Nodes []string
byLabel map[string]int
edges map[string]map[string]bool
}
func newGraph() *Graph {
return &Graph{byLabel: map[string]int{}, edges: map[string]map[string]bool{}}
}
func (g *Graph) addNode(label string) bool {
if _, ok := g.byLabel[label]; ok {
return false
}
g.byLabel[label] = len(g.Nodes)
g.Nodes = append(g.Nodes, label)
g.edges[label] = map[string]bool{}
return true
}
func (g *Graph) AddEdge(from, to string) {
g.edges[from][to] = true
}
func (g *Graph) DelEdge(from, to string) {
delete(g.edges[from], to)
}
func (g *Graph) HasEdge(from, to string) bool {
return g.edges[from] != nil && g.edges[from][to]
}
func (g *Graph) Edges(from string) []string {
edges := make([]string, 0, 16)
for k := range g.edges[from] {
edges = append(edges, k)
}
slices.SortFunc(edges, func(a, b string) int {
return cmp.Compare(g.byLabel[a], g.byLabel[b])
})
return edges
}
// Parse parses the DAG language and returns the transitive closure of
// the described graph. In the returned graph, there is an edge from "b"
// to "a" if b < a (or a > b) in the partial order.
func Parse(dag string) (*Graph, error) {
g := newGraph()
disallowed := []rule{}
rules, err := parseRules(dag)
if err != nil {
return nil, err
}
// TODO: Add line numbers to errors.
var errors []string
errorf := func(format string, a ...any) {
errors = append(errors, fmt.Sprintf(format, a...))
}
for _, r := range rules {
if r.op == "!<" {
disallowed = append(disallowed, r)
continue
}
for _, def := range r.def {
if def == "NONE" {
errorf("NONE cannot be a predecessor")
continue
}
if !g.addNode(def) {
errorf("multiple definitions for %s", def)
}
for _, less := range r.less {
if less == "NONE" {
continue
}
if _, ok := g.byLabel[less]; !ok {
errorf("use of %s before its definition", less)
} else {
g.AddEdge(def, less)
}
}
}
}
// Check for missing definition.
for _, tos := range g.edges {
for to := range tos {
if g.edges[to] == nil {
errorf("missing definition for %s", to)
}
}
}
// Complete transitive closure.
for _, k := range g.Nodes {
for _, i := range g.Nodes {
for _, j := range g.Nodes {
if i != k && k != j && g.HasEdge(i, k) && g.HasEdge(k, j) {
if i == j {
// Can only happen along with a "use of X before deps" error above,
// but this error is more specific - it makes clear that reordering the
// rules will not be enough to fix the problem.
errorf("graph cycle: %s < %s < %s", j, k, i)
}
g.AddEdge(i, j)
}
}
}
}
// Check negative assertions against completed allowed graph.
for _, bad := range disallowed {
for _, less := range bad.less {
for _, def := range bad.def {
if g.HasEdge(def, less) {
errorf("graph edge assertion failed: %s !< %s", less, def)
}
}
}
}
if len(errors) > 0 {
return nil, fmt.Errorf("%s", strings.Join(errors, "\n"))
}
return g, nil
}
// A rule is a line in the DAG language where "less < def" or "less !< def".
type rule struct {
less []string
op string // Either "<" or "!<"
def []string
}
type syntaxError string
func (e syntaxError) Error() string {
return string(e)
}
// parseRules parses the rules of a DAG.
func parseRules(rules string) (out []rule, err error) {
defer func() {
e := recover()
switch e := e.(type) {
case nil:
return
case syntaxError:
err = e
default:
panic(e)
}
}()
p := &rulesParser{lineno: 1, text: rules}
var prev []string
var op string
for {
list, tok := p.nextList()
if tok == "" {
if prev == nil {
break
}
p.syntaxError("unexpected EOF")
}
if prev != nil {
out = append(out, rule{prev, op, list})
}
prev = list
if tok == ";" {
prev = nil
op = ""
continue
}
if tok != "<" && tok != "!<" {
p.syntaxError("missing <")
}
op = tok
}
return out, err
}
// A rulesParser parses the depsRules syntax described above.
type rulesParser struct {
lineno int
lastWord string
text string
}
// syntaxError reports a parsing error.
func (p *rulesParser) syntaxError(msg string) {
panic(syntaxError(fmt.Sprintf("parsing graph: line %d: syntax error: %s near %s", p.lineno, msg, p.lastWord)))
}
// nextList parses and returns a comma-separated list of names.
func (p *rulesParser) nextList() (list []string, token string) {
for {
tok := p.nextToken()
switch tok {
case "":
if len(list) == 0 {
return nil, ""
}
fallthrough
case ",", "<", "!<", ";":
p.syntaxError("bad list syntax")
}
list = append(list, tok)
tok = p.nextToken()
if tok != "," {
return list, tok
}
}
}
// nextToken returns the next token in the deps rules,
// one of ";" "," "<" "!<" or a name.
func (p *rulesParser) nextToken() string {
for {
if p.text == "" {
return ""
}
switch p.text[0] {
case ';', ',', '<':
t := p.text[:1]
p.text = p.text[1:]
return t
case '!':
if len(p.text) < 2 || p.text[1] != '<' {
p.syntaxError("unexpected token !")
}
p.text = p.text[2:]
return "!<"
case '#':
i := strings.Index(p.text, "\n")
if i < 0 {
i = len(p.text)
}
p.text = p.text[i:]
continue
case '\n':
p.lineno++
fallthrough
case ' ', '\t':
p.text = p.text[1:]
continue
default:
i := strings.IndexAny(p.text, "!;,<#\n \t")
if i < 0 {
i = len(p.text)
}
t := p.text[:i]
p.text = p.text[i:]
p.lastWord = t
return t
}
}
}

View File

@@ -0,0 +1,61 @@
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package dag
import (
"reflect"
"strings"
"testing"
)
const diamond = `
NONE < a < b, c < d;
`
func mustParse(t *testing.T, dag string) *Graph {
t.Helper()
g, err := Parse(dag)
if err != nil {
t.Fatal(err)
}
return g
}
func wantEdges(t *testing.T, g *Graph, edges string) {
t.Helper()
wantEdges := strings.Fields(edges)
wantEdgeMap := make(map[string]bool)
for _, e := range wantEdges {
wantEdgeMap[e] = true
}
for _, n1 := range g.Nodes {
for _, n2 := range g.Nodes {
got := g.HasEdge(n1, n2)
want := wantEdgeMap[n1+"->"+n2]
if got && want {
t.Logf("%s->%s", n1, n2)
} else if got && !want {
t.Errorf("%s->%s present but not expected", n1, n2)
} else if want && !got {
t.Errorf("%s->%s missing but expected", n1, n2)
}
}
}
}
func TestParse(t *testing.T) {
// Basic smoke test for graph parsing.
g := mustParse(t, diamond)
wantNodes := strings.Fields("a b c d")
if !reflect.DeepEqual(wantNodes, g.Nodes) {
t.Fatalf("want nodes %v, got %v", wantNodes, g.Nodes)
}
// Parse returns the transitive closure, so it adds d->a.
wantEdges(t, g, "b->a c->a d->a d->b d->c")
}