Initial commit: Go 1.23 release state

This commit is contained in:
Vorapol Rinsatitnon
2024-09-21 23:49:08 +10:00
commit 17cd57a668
13231 changed files with 3114330 additions and 0 deletions

View File

@@ -0,0 +1,58 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sort_test
import (
"fmt"
"sort"
)
type Person struct {
Name string
Age int
}
func (p Person) String() string {
return fmt.Sprintf("%s: %d", p.Name, p.Age)
}
// ByAge implements sort.Interface for []Person based on
// the Age field.
type ByAge []Person
func (a ByAge) Len() int { return len(a) }
func (a ByAge) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a ByAge) Less(i, j int) bool { return a[i].Age < a[j].Age }
func Example() {
people := []Person{
{"Bob", 31},
{"John", 42},
{"Michael", 17},
{"Jenny", 26},
}
fmt.Println(people)
// There are two ways to sort a slice. First, one can define
// a set of methods for the slice type, as with ByAge, and
// call sort.Sort. In this first example we use that technique.
sort.Sort(ByAge(people))
fmt.Println(people)
// The other way is to use sort.Slice with a custom Less
// function, which can be provided as a closure. In this
// case no methods are needed. (And if they exist, they
// are ignored.) Here we re-sort in reverse order: compare
// the closure with ByAge.Less.
sort.Slice(people, func(i, j int) bool {
return people[i].Age > people[j].Age
})
fmt.Println(people)
// Output:
// [Bob: 31 John: 42 Michael: 17 Jenny: 26]
// [Michael: 17 Jenny: 26 Bob: 31 John: 42]
// [John: 42 Bob: 31 Jenny: 26 Michael: 17]
}

View File

@@ -0,0 +1,96 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sort_test
import (
"fmt"
"sort"
)
// A couple of type definitions to make the units clear.
type earthMass float64
type au float64
// A Planet defines the properties of a solar system object.
type Planet struct {
name string
mass earthMass
distance au
}
// By is the type of a "less" function that defines the ordering of its Planet arguments.
type By func(p1, p2 *Planet) bool
// Sort is a method on the function type, By, that sorts the argument slice according to the function.
func (by By) Sort(planets []Planet) {
ps := &planetSorter{
planets: planets,
by: by, // The Sort method's receiver is the function (closure) that defines the sort order.
}
sort.Sort(ps)
}
// planetSorter joins a By function and a slice of Planets to be sorted.
type planetSorter struct {
planets []Planet
by func(p1, p2 *Planet) bool // Closure used in the Less method.
}
// Len is part of sort.Interface.
func (s *planetSorter) Len() int {
return len(s.planets)
}
// Swap is part of sort.Interface.
func (s *planetSorter) Swap(i, j int) {
s.planets[i], s.planets[j] = s.planets[j], s.planets[i]
}
// Less is part of sort.Interface. It is implemented by calling the "by" closure in the sorter.
func (s *planetSorter) Less(i, j int) bool {
return s.by(&s.planets[i], &s.planets[j])
}
var planets = []Planet{
{"Mercury", 0.055, 0.4},
{"Venus", 0.815, 0.7},
{"Earth", 1.0, 1.0},
{"Mars", 0.107, 1.5},
}
// ExampleSortKeys demonstrates a technique for sorting a struct type using programmable sort criteria.
func Example_sortKeys() {
// Closures that order the Planet structure.
name := func(p1, p2 *Planet) bool {
return p1.name < p2.name
}
mass := func(p1, p2 *Planet) bool {
return p1.mass < p2.mass
}
distance := func(p1, p2 *Planet) bool {
return p1.distance < p2.distance
}
decreasingDistance := func(p1, p2 *Planet) bool {
return distance(p2, p1)
}
// Sort the planets by the various criteria.
By(name).Sort(planets)
fmt.Println("By name:", planets)
By(mass).Sort(planets)
fmt.Println("By mass:", planets)
By(distance).Sort(planets)
fmt.Println("By distance:", planets)
By(decreasingDistance).Sort(planets)
fmt.Println("By decreasing distance:", planets)
// Output: By name: [{Earth 1 1} {Mars 0.107 1.5} {Mercury 0.055 0.4} {Venus 0.815 0.7}]
// By mass: [{Mercury 0.055 0.4} {Mars 0.107 1.5} {Venus 0.815 0.7} {Earth 1 1}]
// By distance: [{Mercury 0.055 0.4} {Venus 0.815 0.7} {Earth 1 1} {Mars 0.107 1.5}]
// By decreasing distance: [{Mars 0.107 1.5} {Earth 1 1} {Venus 0.815 0.7} {Mercury 0.055 0.4}]
}

View File

@@ -0,0 +1,132 @@
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sort_test
import (
"fmt"
"sort"
)
// A Change is a record of source code changes, recording user, language, and delta size.
type Change struct {
user string
language string
lines int
}
type lessFunc func(p1, p2 *Change) bool
// multiSorter implements the Sort interface, sorting the changes within.
type multiSorter struct {
changes []Change
less []lessFunc
}
// Sort sorts the argument slice according to the less functions passed to OrderedBy.
func (ms *multiSorter) Sort(changes []Change) {
ms.changes = changes
sort.Sort(ms)
}
// OrderedBy returns a Sorter that sorts using the less functions, in order.
// Call its Sort method to sort the data.
func OrderedBy(less ...lessFunc) *multiSorter {
return &multiSorter{
less: less,
}
}
// Len is part of sort.Interface.
func (ms *multiSorter) Len() int {
return len(ms.changes)
}
// Swap is part of sort.Interface.
func (ms *multiSorter) Swap(i, j int) {
ms.changes[i], ms.changes[j] = ms.changes[j], ms.changes[i]
}
// Less is part of sort.Interface. It is implemented by looping along the
// less functions until it finds a comparison that discriminates between
// the two items (one is less than the other). Note that it can call the
// less functions twice per call. We could change the functions to return
// -1, 0, 1 and reduce the number of calls for greater efficiency: an
// exercise for the reader.
func (ms *multiSorter) Less(i, j int) bool {
p, q := &ms.changes[i], &ms.changes[j]
// Try all but the last comparison.
var k int
for k = 0; k < len(ms.less)-1; k++ {
less := ms.less[k]
switch {
case less(p, q):
// p < q, so we have a decision.
return true
case less(q, p):
// p > q, so we have a decision.
return false
}
// p == q; try the next comparison.
}
// All comparisons to here said "equal", so just return whatever
// the final comparison reports.
return ms.less[k](p, q)
}
var changes = []Change{
{"gri", "Go", 100},
{"ken", "C", 150},
{"glenda", "Go", 200},
{"rsc", "Go", 200},
{"r", "Go", 100},
{"ken", "Go", 200},
{"dmr", "C", 100},
{"r", "C", 150},
{"gri", "Smalltalk", 80},
}
// ExampleMultiKeys demonstrates a technique for sorting a struct type using different
// sets of multiple fields in the comparison. We chain together "Less" functions, each of
// which compares a single field.
func Example_sortMultiKeys() {
// Closures that order the Change structure.
user := func(c1, c2 *Change) bool {
return c1.user < c2.user
}
language := func(c1, c2 *Change) bool {
return c1.language < c2.language
}
increasingLines := func(c1, c2 *Change) bool {
return c1.lines < c2.lines
}
decreasingLines := func(c1, c2 *Change) bool {
return c1.lines > c2.lines // Note: > orders downwards.
}
// Simple use: Sort by user.
OrderedBy(user).Sort(changes)
fmt.Println("By user:", changes)
// More examples.
OrderedBy(user, increasingLines).Sort(changes)
fmt.Println("By user,<lines:", changes)
OrderedBy(user, decreasingLines).Sort(changes)
fmt.Println("By user,>lines:", changes)
OrderedBy(language, increasingLines).Sort(changes)
fmt.Println("By language,<lines:", changes)
OrderedBy(language, increasingLines, user).Sort(changes)
fmt.Println("By language,<lines,user:", changes)
// Output:
// By user: [{dmr C 100} {glenda Go 200} {gri Go 100} {gri Smalltalk 80} {ken C 150} {ken Go 200} {r Go 100} {r C 150} {rsc Go 200}]
// By user,<lines: [{dmr C 100} {glenda Go 200} {gri Smalltalk 80} {gri Go 100} {ken C 150} {ken Go 200} {r Go 100} {r C 150} {rsc Go 200}]
// By user,>lines: [{dmr C 100} {glenda Go 200} {gri Go 100} {gri Smalltalk 80} {ken Go 200} {ken C 150} {r C 150} {r Go 100} {rsc Go 200}]
// By language,<lines: [{dmr C 100} {ken C 150} {r C 150} {gri Go 100} {r Go 100} {glenda Go 200} {ken Go 200} {rsc Go 200} {gri Smalltalk 80}]
// By language,<lines,user: [{dmr C 100} {ken C 150} {r C 150} {gri Go 100} {r Go 100} {glenda Go 200} {ken Go 200} {rsc Go 200} {gri Smalltalk 80}]
}

View File

@@ -0,0 +1,95 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sort_test
import (
"fmt"
"sort"
"strings"
)
// This example demonstrates searching a list sorted in ascending order.
func ExampleSearch() {
a := []int{1, 3, 6, 10, 15, 21, 28, 36, 45, 55}
x := 6
i := sort.Search(len(a), func(i int) bool { return a[i] >= x })
if i < len(a) && a[i] == x {
fmt.Printf("found %d at index %d in %v\n", x, i, a)
} else {
fmt.Printf("%d not found in %v\n", x, a)
}
// Output:
// found 6 at index 2 in [1 3 6 10 15 21 28 36 45 55]
}
// This example demonstrates searching a list sorted in descending order.
// The approach is the same as searching a list in ascending order,
// but with the condition inverted.
func ExampleSearch_descendingOrder() {
a := []int{55, 45, 36, 28, 21, 15, 10, 6, 3, 1}
x := 6
i := sort.Search(len(a), func(i int) bool { return a[i] <= x })
if i < len(a) && a[i] == x {
fmt.Printf("found %d at index %d in %v\n", x, i, a)
} else {
fmt.Printf("%d not found in %v\n", x, a)
}
// Output:
// found 6 at index 7 in [55 45 36 28 21 15 10 6 3 1]
}
// This example demonstrates finding a string in a list sorted in ascending order.
func ExampleFind() {
a := []string{"apple", "banana", "lemon", "mango", "pear", "strawberry"}
for _, x := range []string{"banana", "orange"} {
i, found := sort.Find(len(a), func(i int) int {
return strings.Compare(x, a[i])
})
if found {
fmt.Printf("found %s at index %d\n", x, i)
} else {
fmt.Printf("%s not found, would insert at %d\n", x, i)
}
}
// Output:
// found banana at index 1
// orange not found, would insert at 4
}
// This example demonstrates searching for float64 in a list sorted in ascending order.
func ExampleSearchFloat64s() {
a := []float64{1.0, 2.0, 3.3, 4.6, 6.1, 7.2, 8.0}
x := 2.0
i := sort.SearchFloat64s(a, x)
fmt.Printf("found %g at index %d in %v\n", x, i, a)
x = 0.5
i = sort.SearchFloat64s(a, x)
fmt.Printf("%g not found, can be inserted at index %d in %v\n", x, i, a)
// Output:
// found 2 at index 1 in [1 2 3.3 4.6 6.1 7.2 8]
// 0.5 not found, can be inserted at index 0 in [1 2 3.3 4.6 6.1 7.2 8]
}
// This example demonstrates searching for int in a list sorted in ascending order.
func ExampleSearchInts() {
a := []int{1, 2, 3, 4, 6, 7, 8}
x := 2
i := sort.SearchInts(a, x)
fmt.Printf("found %d at index %d in %v\n", x, i, a)
x = 5
i = sort.SearchInts(a, x)
fmt.Printf("%d not found, can be inserted at index %d in %v\n", x, i, a)
// Output:
// found 2 at index 1 in [1 2 3 4 6 7 8]
// 5 not found, can be inserted at index 4 in [1 2 3 4 6 7 8]
}

122
src/sort/example_test.go Normal file
View File

@@ -0,0 +1,122 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sort_test
import (
"fmt"
"math"
"sort"
)
func ExampleInts() {
s := []int{5, 2, 6, 3, 1, 4} // unsorted
sort.Ints(s)
fmt.Println(s)
// Output: [1 2 3 4 5 6]
}
func ExampleIntsAreSorted() {
s := []int{1, 2, 3, 4, 5, 6} // sorted ascending
fmt.Println(sort.IntsAreSorted(s))
s = []int{6, 5, 4, 3, 2, 1} // sorted descending
fmt.Println(sort.IntsAreSorted(s))
s = []int{3, 2, 4, 1, 5} // unsorted
fmt.Println(sort.IntsAreSorted(s))
// Output: true
// false
// false
}
func ExampleFloat64s() {
s := []float64{5.2, -1.3, 0.7, -3.8, 2.6} // unsorted
sort.Float64s(s)
fmt.Println(s)
s = []float64{math.Inf(1), math.NaN(), math.Inf(-1), 0.0} // unsorted
sort.Float64s(s)
fmt.Println(s)
// Output: [-3.8 -1.3 0.7 2.6 5.2]
// [NaN -Inf 0 +Inf]
}
func ExampleFloat64sAreSorted() {
s := []float64{0.7, 1.3, 2.6, 3.8, 5.2} // sorted ascending
fmt.Println(sort.Float64sAreSorted(s))
s = []float64{5.2, 3.8, 2.6, 1.3, 0.7} // sorted descending
fmt.Println(sort.Float64sAreSorted(s))
s = []float64{5.2, 1.3, 0.7, 3.8, 2.6} // unsorted
fmt.Println(sort.Float64sAreSorted(s))
// Output: true
// false
// false
}
func ExampleReverse() {
s := []int{5, 2, 6, 3, 1, 4} // unsorted
sort.Sort(sort.Reverse(sort.IntSlice(s)))
fmt.Println(s)
// Output: [6 5 4 3 2 1]
}
func ExampleSlice() {
people := []struct {
Name string
Age int
}{
{"Gopher", 7},
{"Alice", 55},
{"Vera", 24},
{"Bob", 75},
}
sort.Slice(people, func(i, j int) bool { return people[i].Name < people[j].Name })
fmt.Println("By name:", people)
sort.Slice(people, func(i, j int) bool { return people[i].Age < people[j].Age })
fmt.Println("By age:", people)
// Output: By name: [{Alice 55} {Bob 75} {Gopher 7} {Vera 24}]
// By age: [{Gopher 7} {Vera 24} {Alice 55} {Bob 75}]
}
func ExampleSliceStable() {
people := []struct {
Name string
Age int
}{
{"Alice", 25},
{"Elizabeth", 75},
{"Alice", 75},
{"Bob", 75},
{"Alice", 75},
{"Bob", 25},
{"Colin", 25},
{"Elizabeth", 25},
}
// Sort by name, preserving original order
sort.SliceStable(people, func(i, j int) bool { return people[i].Name < people[j].Name })
fmt.Println("By name:", people)
// Sort by age preserving name order
sort.SliceStable(people, func(i, j int) bool { return people[i].Age < people[j].Age })
fmt.Println("By age,name:", people)
// Output: By name: [{Alice 25} {Alice 75} {Alice 75} {Bob 75} {Bob 25} {Colin 25} {Elizabeth 75} {Elizabeth 25}]
// By age,name: [{Alice 25} {Bob 25} {Colin 25} {Elizabeth 25} {Alice 75} {Alice 75} {Bob 75} {Elizabeth 75}]
}
func ExampleStrings() {
s := []string{"Go", "Bravo", "Gopher", "Alpha", "Grin", "Delta"}
sort.Strings(s)
fmt.Println(s)
// Output: [Alpha Bravo Delta Go Gopher Grin]
}

View File

@@ -0,0 +1,77 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sort_test
import (
"fmt"
"sort"
)
type Grams int
func (g Grams) String() string { return fmt.Sprintf("%dg", int(g)) }
type Organ struct {
Name string
Weight Grams
}
type Organs []*Organ
func (s Organs) Len() int { return len(s) }
func (s Organs) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
// ByName implements sort.Interface by providing Less and using the Len and
// Swap methods of the embedded Organs value.
type ByName struct{ Organs }
func (s ByName) Less(i, j int) bool { return s.Organs[i].Name < s.Organs[j].Name }
// ByWeight implements sort.Interface by providing Less and using the Len and
// Swap methods of the embedded Organs value.
type ByWeight struct{ Organs }
func (s ByWeight) Less(i, j int) bool { return s.Organs[i].Weight < s.Organs[j].Weight }
func Example_sortWrapper() {
s := []*Organ{
{"brain", 1340},
{"heart", 290},
{"liver", 1494},
{"pancreas", 131},
{"prostate", 62},
{"spleen", 162},
}
sort.Sort(ByWeight{s})
fmt.Println("Organs by weight:")
printOrgans(s)
sort.Sort(ByName{s})
fmt.Println("Organs by name:")
printOrgans(s)
// Output:
// Organs by weight:
// prostate (62g)
// pancreas (131g)
// spleen (162g)
// heart (290g)
// brain (1340g)
// liver (1494g)
// Organs by name:
// brain (1340g)
// heart (290g)
// liver (1494g)
// pancreas (131g)
// prostate (62g)
// spleen (162g)
}
func printOrgans(s []*Organ) {
for _, o := range s {
fmt.Printf("%-8s (%v)\n", o.Name, o.Weight)
}
}

13
src/sort/export_test.go Normal file
View File

@@ -0,0 +1,13 @@
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sort
func Heapsort(data Interface) {
heapSort(data, 0, data.Len())
}
func ReverseRange(data Interface, a, b int) {
reverseRange(data, a, b)
}

View File

@@ -0,0 +1,717 @@
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build ignore
// This program is run via "go generate" (via a directive in sort.go)
// to generate implementation variants of the underlying sorting algorithm.
// When passed the -generic flag it generates generic variants of sorting;
// otherwise it generates the non-generic variants used by the sort package.
package main
import (
"bytes"
"flag"
"fmt"
"go/format"
"log"
"os"
"text/template"
)
type Variant struct {
// Name is the variant name: should be unique among variants.
Name string
// Path is the file path into which the generator will emit the code for this
// variant.
Path string
// Package is the package this code will be emitted into.
Package string
// Imports is the imports needed for this package.
Imports string
// FuncSuffix is appended to all function names in this variant's code. All
// suffixes should be unique within a package.
FuncSuffix string
// DataType is the type of the data parameter of functions in this variant's
// code.
DataType string
// TypeParam is the optional type parameter for the function.
TypeParam string
// ExtraParam is an extra parameter to pass to the function. Should begin with
// ", " to separate from other params.
ExtraParam string
// ExtraArg is an extra argument to pass to calls between functions; typically
// it invokes ExtraParam. Should begin with ", " to separate from other args.
ExtraArg string
// Funcs is a map of functions used from within the template. The following
// functions are expected to exist:
//
// Less (name, i, j):
// emits a comparison expression that checks if the value `name` at
// index `i` is smaller than at index `j`.
//
// Swap (name, i, j):
// emits a statement that performs a data swap between elements `i` and
// `j` of the value `name`.
Funcs template.FuncMap
}
var (
traditionalVariants = []Variant{
Variant{
Name: "interface",
Path: "zsortinterface.go",
Package: "sort",
Imports: "",
FuncSuffix: "",
TypeParam: "",
ExtraParam: "",
ExtraArg: "",
DataType: "Interface",
Funcs: template.FuncMap{
"Less": func(name, i, j string) string {
return fmt.Sprintf("%s.Less(%s, %s)", name, i, j)
},
"Swap": func(name, i, j string) string {
return fmt.Sprintf("%s.Swap(%s, %s)", name, i, j)
},
},
},
Variant{
Name: "func",
Path: "zsortfunc.go",
Package: "sort",
Imports: "",
FuncSuffix: "_func",
TypeParam: "",
ExtraParam: "",
ExtraArg: "",
DataType: "lessSwap",
Funcs: template.FuncMap{
"Less": func(name, i, j string) string {
return fmt.Sprintf("%s.Less(%s, %s)", name, i, j)
},
"Swap": func(name, i, j string) string {
return fmt.Sprintf("%s.Swap(%s, %s)", name, i, j)
},
},
},
}
genericVariants = []Variant{
Variant{
Name: "generic_ordered",
Path: "zsortordered.go",
Package: "slices",
Imports: "import \"cmp\"\n",
FuncSuffix: "Ordered",
TypeParam: "[E cmp.Ordered]",
ExtraParam: "",
ExtraArg: "",
DataType: "[]E",
Funcs: template.FuncMap{
"Less": func(name, i, j string) string {
return fmt.Sprintf("cmp.Less(%s[%s], %s[%s])", name, i, name, j)
},
"Swap": func(name, i, j string) string {
return fmt.Sprintf("%s[%s], %s[%s] = %s[%s], %s[%s]", name, i, name, j, name, j, name, i)
},
},
},
Variant{
Name: "generic_func",
Path: "zsortanyfunc.go",
Package: "slices",
FuncSuffix: "CmpFunc",
TypeParam: "[E any]",
ExtraParam: ", cmp func(a, b E) int",
ExtraArg: ", cmp",
DataType: "[]E",
Funcs: template.FuncMap{
"Less": func(name, i, j string) string {
return fmt.Sprintf("(cmp(%s[%s], %s[%s]) < 0)", name, i, name, j)
},
"Swap": func(name, i, j string) string {
return fmt.Sprintf("%s[%s], %s[%s] = %s[%s], %s[%s]", name, i, name, j, name, j, name, i)
},
},
},
}
expVariants = []Variant{
Variant{
Name: "exp_ordered",
Path: "zsortordered.go",
Package: "slices",
Imports: "import \"golang.org/x/exp/constraints\"\n",
FuncSuffix: "Ordered",
TypeParam: "[E constraints.Ordered]",
ExtraParam: "",
ExtraArg: "",
DataType: "[]E",
Funcs: template.FuncMap{
"Less": func(name, i, j string) string {
return fmt.Sprintf("cmpLess(%s[%s], %s[%s])", name, i, name, j)
},
"Swap": func(name, i, j string) string {
return fmt.Sprintf("%s[%s], %s[%s] = %s[%s], %s[%s]", name, i, name, j, name, j, name, i)
},
},
},
Variant{
Name: "exp_func",
Path: "zsortanyfunc.go",
Package: "slices",
FuncSuffix: "CmpFunc",
TypeParam: "[E any]",
ExtraParam: ", cmp func(a, b E) int",
ExtraArg: ", cmp",
DataType: "[]E",
Funcs: template.FuncMap{
"Less": func(name, i, j string) string {
return fmt.Sprintf("(cmp(%s[%s], %s[%s]) < 0)", name, i, name, j)
},
"Swap": func(name, i, j string) string {
return fmt.Sprintf("%s[%s], %s[%s] = %s[%s], %s[%s]", name, i, name, j, name, j, name, i)
},
},
},
}
)
func main() {
genGeneric := flag.Bool("generic", false, "generate generic versions")
genExp := flag.Bool("exp", false, "generate x/exp/slices versions")
flag.Parse()
var variants []Variant
if *genExp {
variants = expVariants
} else if *genGeneric {
variants = genericVariants
} else {
variants = traditionalVariants
}
for i := range variants {
generate(&variants[i])
}
}
// generate generates the code for variant `v` into a file named by `v.Path`.
func generate(v *Variant) {
// Parse templateCode anew for each variant because Parse requires Funcs to be
// registered, and it helps type-check the funcs.
tmpl, err := template.New("gen").Funcs(v.Funcs).Parse(templateCode)
if err != nil {
log.Fatal("template Parse:", err)
}
var out bytes.Buffer
err = tmpl.Execute(&out, v)
if err != nil {
log.Fatal("template Execute:", err)
}
formatted, err := format.Source(out.Bytes())
if err != nil {
log.Fatal("format:", err)
}
if err := os.WriteFile(v.Path, formatted, 0644); err != nil {
log.Fatal("WriteFile:", err)
}
}
var templateCode = `// Code generated by gen_sort_variants.go; DO NOT EDIT.
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package {{.Package}}
{{.Imports}}
// insertionSort{{.FuncSuffix}} sorts data[a:b] using insertion sort.
func insertionSort{{.FuncSuffix}}{{.TypeParam}}(data {{.DataType}}, a, b int {{.ExtraParam}}) {
for i := a + 1; i < b; i++ {
for j := i; j > a && {{Less "data" "j" "j-1"}}; j-- {
{{Swap "data" "j" "j-1"}}
}
}
}
// siftDown{{.FuncSuffix}} implements the heap property on data[lo:hi].
// first is an offset into the array where the root of the heap lies.
func siftDown{{.FuncSuffix}}{{.TypeParam}}(data {{.DataType}}, lo, hi, first int {{.ExtraParam}}) {
root := lo
for {
child := 2*root + 1
if child >= hi {
break
}
if child+1 < hi && {{Less "data" "first+child" "first+child+1"}} {
child++
}
if !{{Less "data" "first+root" "first+child"}} {
return
}
{{Swap "data" "first+root" "first+child"}}
root = child
}
}
func heapSort{{.FuncSuffix}}{{.TypeParam}}(data {{.DataType}}, a, b int {{.ExtraParam}}) {
first := a
lo := 0
hi := b - a
// Build heap with greatest element at top.
for i := (hi - 1) / 2; i >= 0; i-- {
siftDown{{.FuncSuffix}}(data, i, hi, first {{.ExtraArg}})
}
// Pop elements, largest first, into end of data.
for i := hi - 1; i >= 0; i-- {
{{Swap "data" "first" "first+i"}}
siftDown{{.FuncSuffix}}(data, lo, i, first {{.ExtraArg}})
}
}
// pdqsort{{.FuncSuffix}} sorts data[a:b].
// The algorithm based on pattern-defeating quicksort(pdqsort), but without the optimizations from BlockQuicksort.
// pdqsort paper: https://arxiv.org/pdf/2106.05123.pdf
// C++ implementation: https://github.com/orlp/pdqsort
// Rust implementation: https://docs.rs/pdqsort/latest/pdqsort/
// limit is the number of allowed bad (very unbalanced) pivots before falling back to heapsort.
func pdqsort{{.FuncSuffix}}{{.TypeParam}}(data {{.DataType}}, a, b, limit int {{.ExtraParam}}) {
const maxInsertion = 12
var (
wasBalanced = true // whether the last partitioning was reasonably balanced
wasPartitioned = true // whether the slice was already partitioned
)
for {
length := b - a
if length <= maxInsertion {
insertionSort{{.FuncSuffix}}(data, a, b {{.ExtraArg}})
return
}
// Fall back to heapsort if too many bad choices were made.
if limit == 0 {
heapSort{{.FuncSuffix}}(data, a, b {{.ExtraArg}})
return
}
// If the last partitioning was imbalanced, we need to breaking patterns.
if !wasBalanced {
breakPatterns{{.FuncSuffix}}(data, a, b {{.ExtraArg}})
limit--
}
pivot, hint := choosePivot{{.FuncSuffix}}(data, a, b {{.ExtraArg}})
if hint == decreasingHint {
reverseRange{{.FuncSuffix}}(data, a, b {{.ExtraArg}})
// The chosen pivot was pivot-a elements after the start of the array.
// After reversing it is pivot-a elements before the end of the array.
// The idea came from Rust's implementation.
pivot = (b - 1) - (pivot - a)
hint = increasingHint
}
// The slice is likely already sorted.
if wasBalanced && wasPartitioned && hint == increasingHint {
if partialInsertionSort{{.FuncSuffix}}(data, a, b {{.ExtraArg}}) {
return
}
}
// Probably the slice contains many duplicate elements, partition the slice into
// elements equal to and elements greater than the pivot.
if a > 0 && !{{Less "data" "a-1" "pivot"}} {
mid := partitionEqual{{.FuncSuffix}}(data, a, b, pivot {{.ExtraArg}})
a = mid
continue
}
mid, alreadyPartitioned := partition{{.FuncSuffix}}(data, a, b, pivot {{.ExtraArg}})
wasPartitioned = alreadyPartitioned
leftLen, rightLen := mid-a, b-mid
balanceThreshold := length / 8
if leftLen < rightLen {
wasBalanced = leftLen >= balanceThreshold
pdqsort{{.FuncSuffix}}(data, a, mid, limit {{.ExtraArg}})
a = mid + 1
} else {
wasBalanced = rightLen >= balanceThreshold
pdqsort{{.FuncSuffix}}(data, mid+1, b, limit {{.ExtraArg}})
b = mid
}
}
}
// partition{{.FuncSuffix}} does one quicksort partition.
// Let p = data[pivot]
// Moves elements in data[a:b] around, so that data[i]<p and data[j]>=p for i<newpivot and j>newpivot.
// On return, data[newpivot] = p
func partition{{.FuncSuffix}}{{.TypeParam}}(data {{.DataType}}, a, b, pivot int {{.ExtraParam}}) (newpivot int, alreadyPartitioned bool) {
{{Swap "data" "a" "pivot"}}
i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
for i <= j && {{Less "data" "i" "a"}} {
i++
}
for i <= j && !{{Less "data" "j" "a"}} {
j--
}
if i > j {
{{Swap "data" "j" "a"}}
return j, true
}
{{Swap "data" "i" "j"}}
i++
j--
for {
for i <= j && {{Less "data" "i" "a"}} {
i++
}
for i <= j && !{{Less "data" "j" "a"}} {
j--
}
if i > j {
break
}
{{Swap "data" "i" "j"}}
i++
j--
}
{{Swap "data" "j" "a"}}
return j, false
}
// partitionEqual{{.FuncSuffix}} partitions data[a:b] into elements equal to data[pivot] followed by elements greater than data[pivot].
// It assumed that data[a:b] does not contain elements smaller than the data[pivot].
func partitionEqual{{.FuncSuffix}}{{.TypeParam}}(data {{.DataType}}, a, b, pivot int {{.ExtraParam}}) (newpivot int) {
{{Swap "data" "a" "pivot"}}
i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
for {
for i <= j && !{{Less "data" "a" "i"}} {
i++
}
for i <= j && {{Less "data" "a" "j"}} {
j--
}
if i > j {
break
}
{{Swap "data" "i" "j"}}
i++
j--
}
return i
}
// partialInsertionSort{{.FuncSuffix}} partially sorts a slice, returns true if the slice is sorted at the end.
func partialInsertionSort{{.FuncSuffix}}{{.TypeParam}}(data {{.DataType}}, a, b int {{.ExtraParam}}) bool {
const (
maxSteps = 5 // maximum number of adjacent out-of-order pairs that will get shifted
shortestShifting = 50 // don't shift any elements on short arrays
)
i := a + 1
for j := 0; j < maxSteps; j++ {
for i < b && !{{Less "data" "i" "i-1"}} {
i++
}
if i == b {
return true
}
if b-a < shortestShifting {
return false
}
{{Swap "data" "i" "i-1"}}
// Shift the smaller one to the left.
if i-a >= 2 {
for j := i - 1; j >= 1; j-- {
if !{{Less "data" "j" "j-1"}} {
break
}
{{Swap "data" "j" "j-1"}}
}
}
// Shift the greater one to the right.
if b-i >= 2 {
for j := i + 1; j < b; j++ {
if !{{Less "data" "j" "j-1"}} {
break
}
{{Swap "data" "j" "j-1"}}
}
}
}
return false
}
// breakPatterns{{.FuncSuffix}} scatters some elements around in an attempt to break some patterns
// that might cause imbalanced partitions in quicksort.
func breakPatterns{{.FuncSuffix}}{{.TypeParam}}(data {{.DataType}}, a, b int {{.ExtraParam}}) {
length := b - a
if length >= 8 {
random := xorshift(length)
modulus := nextPowerOfTwo(length)
for idx := a + (length/4)*2 - 1; idx <= a + (length/4)*2 + 1; idx++ {
other := int(uint(random.Next()) & (modulus - 1))
if other >= length {
other -= length
}
{{Swap "data" "idx" "a+other"}}
}
}
}
// choosePivot{{.FuncSuffix}} chooses a pivot in data[a:b].
//
// [0,8): chooses a static pivot.
// [8,shortestNinther): uses the simple median-of-three method.
// [shortestNinther,∞): uses the Tukey ninther method.
func choosePivot{{.FuncSuffix}}{{.TypeParam}}(data {{.DataType}}, a, b int {{.ExtraParam}}) (pivot int, hint sortedHint) {
const (
shortestNinther = 50
maxSwaps = 4 * 3
)
l := b - a
var (
swaps int
i = a + l/4*1
j = a + l/4*2
k = a + l/4*3
)
if l >= 8 {
if l >= shortestNinther {
// Tukey ninther method, the idea came from Rust's implementation.
i = medianAdjacent{{.FuncSuffix}}(data, i, &swaps {{.ExtraArg}})
j = medianAdjacent{{.FuncSuffix}}(data, j, &swaps {{.ExtraArg}})
k = medianAdjacent{{.FuncSuffix}}(data, k, &swaps {{.ExtraArg}})
}
// Find the median among i, j, k and stores it into j.
j = median{{.FuncSuffix}}(data, i, j, k, &swaps {{.ExtraArg}})
}
switch swaps {
case 0:
return j, increasingHint
case maxSwaps:
return j, decreasingHint
default:
return j, unknownHint
}
}
// order2{{.FuncSuffix}} returns x,y where data[x] <= data[y], where x,y=a,b or x,y=b,a.
func order2{{.FuncSuffix}}{{.TypeParam}}(data {{.DataType}}, a, b int, swaps *int {{.ExtraParam}}) (int, int) {
if {{Less "data" "b" "a"}} {
*swaps++
return b, a
}
return a, b
}
// median{{.FuncSuffix}} returns x where data[x] is the median of data[a],data[b],data[c], where x is a, b, or c.
func median{{.FuncSuffix}}{{.TypeParam}}(data {{.DataType}}, a, b, c int, swaps *int {{.ExtraParam}}) int {
a, b = order2{{.FuncSuffix}}(data, a, b, swaps {{.ExtraArg}})
b, c = order2{{.FuncSuffix}}(data, b, c, swaps {{.ExtraArg}})
a, b = order2{{.FuncSuffix}}(data, a, b, swaps {{.ExtraArg}})
return b
}
// medianAdjacent{{.FuncSuffix}} finds the median of data[a - 1], data[a], data[a + 1] and stores the index into a.
func medianAdjacent{{.FuncSuffix}}{{.TypeParam}}(data {{.DataType}}, a int, swaps *int {{.ExtraParam}}) int {
return median{{.FuncSuffix}}(data, a-1, a, a+1, swaps {{.ExtraArg}})
}
func reverseRange{{.FuncSuffix}}{{.TypeParam}}(data {{.DataType}}, a, b int {{.ExtraParam}}) {
i := a
j := b - 1
for i < j {
{{Swap "data" "i" "j"}}
i++
j--
}
}
func swapRange{{.FuncSuffix}}{{.TypeParam}}(data {{.DataType}}, a, b, n int {{.ExtraParam}}) {
for i := 0; i < n; i++ {
{{Swap "data" "a+i" "b+i"}}
}
}
func stable{{.FuncSuffix}}{{.TypeParam}}(data {{.DataType}}, n int {{.ExtraParam}}) {
blockSize := 20 // must be > 0
a, b := 0, blockSize
for b <= n {
insertionSort{{.FuncSuffix}}(data, a, b {{.ExtraArg}})
a = b
b += blockSize
}
insertionSort{{.FuncSuffix}}(data, a, n {{.ExtraArg}})
for blockSize < n {
a, b = 0, 2*blockSize
for b <= n {
symMerge{{.FuncSuffix}}(data, a, a+blockSize, b {{.ExtraArg}})
a = b
b += 2 * blockSize
}
if m := a + blockSize; m < n {
symMerge{{.FuncSuffix}}(data, a, m, n {{.ExtraArg}})
}
blockSize *= 2
}
}
// symMerge{{.FuncSuffix}} merges the two sorted subsequences data[a:m] and data[m:b] using
// the SymMerge algorithm from Pok-Son Kim and Arne Kutzner, "Stable Minimum
// Storage Merging by Symmetric Comparisons", in Susanne Albers and Tomasz
// Radzik, editors, Algorithms - ESA 2004, volume 3221 of Lecture Notes in
// Computer Science, pages 714-723. Springer, 2004.
//
// Let M = m-a and N = b-n. Wolog M < N.
// The recursion depth is bound by ceil(log(N+M)).
// The algorithm needs O(M*log(N/M + 1)) calls to data.Less.
// The algorithm needs O((M+N)*log(M)) calls to data.Swap.
//
// The paper gives O((M+N)*log(M)) as the number of assignments assuming a
// rotation algorithm which uses O(M+N+gcd(M+N)) assignments. The argumentation
// in the paper carries through for Swap operations, especially as the block
// swapping rotate uses only O(M+N) Swaps.
//
// symMerge assumes non-degenerate arguments: a < m && m < b.
// Having the caller check this condition eliminates many leaf recursion calls,
// which improves performance.
func symMerge{{.FuncSuffix}}{{.TypeParam}}(data {{.DataType}}, a, m, b int {{.ExtraParam}}) {
// Avoid unnecessary recursions of symMerge
// by direct insertion of data[a] into data[m:b]
// if data[a:m] only contains one element.
if m-a == 1 {
// Use binary search to find the lowest index i
// such that data[i] >= data[a] for m <= i < b.
// Exit the search loop with i == b in case no such index exists.
i := m
j := b
for i < j {
h := int(uint(i+j) >> 1)
if {{Less "data" "h" "a"}} {
i = h + 1
} else {
j = h
}
}
// Swap values until data[a] reaches the position before i.
for k := a; k < i-1; k++ {
{{Swap "data" "k" "k+1"}}
}
return
}
// Avoid unnecessary recursions of symMerge
// by direct insertion of data[m] into data[a:m]
// if data[m:b] only contains one element.
if b-m == 1 {
// Use binary search to find the lowest index i
// such that data[i] > data[m] for a <= i < m.
// Exit the search loop with i == m in case no such index exists.
i := a
j := m
for i < j {
h := int(uint(i+j) >> 1)
if !{{Less "data" "m" "h"}} {
i = h + 1
} else {
j = h
}
}
// Swap values until data[m] reaches the position i.
for k := m; k > i; k-- {
{{Swap "data" "k" "k-1"}}
}
return
}
mid := int(uint(a+b) >> 1)
n := mid + m
var start, r int
if m > mid {
start = n - b
r = mid
} else {
start = a
r = m
}
p := n - 1
for start < r {
c := int(uint(start+r) >> 1)
if !{{Less "data" "p-c" "c"}} {
start = c + 1
} else {
r = c
}
}
end := n - start
if start < m && m < end {
rotate{{.FuncSuffix}}(data, start, m, end {{.ExtraArg}})
}
if a < start && start < mid {
symMerge{{.FuncSuffix}}(data, a, start, mid {{.ExtraArg}})
}
if mid < end && end < b {
symMerge{{.FuncSuffix}}(data, mid, end, b {{.ExtraArg}})
}
}
// rotate{{.FuncSuffix}} rotates two consecutive blocks u = data[a:m] and v = data[m:b] in data:
// Data of the form 'x u v y' is changed to 'x v u y'.
// rotate performs at most b-a many calls to data.Swap,
// and it assumes non-degenerate arguments: a < m && m < b.
func rotate{{.FuncSuffix}}{{.TypeParam}}(data {{.DataType}}, a, m, b int {{.ExtraParam}}) {
i := m - a
j := b - m
for i != j {
if i > j {
swapRange{{.FuncSuffix}}(data, m-i, m, j {{.ExtraArg}})
i -= j
} else {
swapRange{{.FuncSuffix}}(data, m-i, m+j-i, i {{.ExtraArg}})
j -= i
}
}
// i == j
swapRange{{.FuncSuffix}}(data, m-i, m, i {{.ExtraArg}})
}
`

150
src/sort/search.go Normal file
View File

@@ -0,0 +1,150 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements binary search.
package sort
// Search uses binary search to find and return the smallest index i
// in [0, n) at which f(i) is true, assuming that on the range [0, n),
// f(i) == true implies f(i+1) == true. That is, Search requires that
// f is false for some (possibly empty) prefix of the input range [0, n)
// and then true for the (possibly empty) remainder; Search returns
// the first true index. If there is no such index, Search returns n.
// (Note that the "not found" return value is not -1 as in, for instance,
// strings.Index.)
// Search calls f(i) only for i in the range [0, n).
//
// A common use of Search is to find the index i for a value x in
// a sorted, indexable data structure such as an array or slice.
// In this case, the argument f, typically a closure, captures the value
// to be searched for, and how the data structure is indexed and
// ordered.
//
// For instance, given a slice data sorted in ascending order,
// the call Search(len(data), func(i int) bool { return data[i] >= 23 })
// returns the smallest index i such that data[i] >= 23. If the caller
// wants to find whether 23 is in the slice, it must test data[i] == 23
// separately.
//
// Searching data sorted in descending order would use the <=
// operator instead of the >= operator.
//
// To complete the example above, the following code tries to find the value
// x in an integer slice data sorted in ascending order:
//
// x := 23
// i := sort.Search(len(data), func(i int) bool { return data[i] >= x })
// if i < len(data) && data[i] == x {
// // x is present at data[i]
// } else {
// // x is not present in data,
// // but i is the index where it would be inserted.
// }
//
// As a more whimsical example, this program guesses your number:
//
// func GuessingGame() {
// var s string
// fmt.Printf("Pick an integer from 0 to 100.\n")
// answer := sort.Search(100, func(i int) bool {
// fmt.Printf("Is your number <= %d? ", i)
// fmt.Scanf("%s", &s)
// return s != "" && s[0] == 'y'
// })
// fmt.Printf("Your number is %d.\n", answer)
// }
func Search(n int, f func(int) bool) int {
// Define f(-1) == false and f(n) == true.
// Invariant: f(i-1) == false, f(j) == true.
i, j := 0, n
for i < j {
h := int(uint(i+j) >> 1) // avoid overflow when computing h
// i ≤ h < j
if !f(h) {
i = h + 1 // preserves f(i-1) == false
} else {
j = h // preserves f(j) == true
}
}
// i == j, f(i-1) == false, and f(j) (= f(i)) == true => answer is i.
return i
}
// Find uses binary search to find and return the smallest index i in [0, n)
// at which cmp(i) <= 0. If there is no such index i, Find returns i = n.
// The found result is true if i < n and cmp(i) == 0.
// Find calls cmp(i) only for i in the range [0, n).
//
// To permit binary search, Find requires that cmp(i) > 0 for a leading
// prefix of the range, cmp(i) == 0 in the middle, and cmp(i) < 0 for
// the final suffix of the range. (Each subrange could be empty.)
// The usual way to establish this condition is to interpret cmp(i)
// as a comparison of a desired target value t against entry i in an
// underlying indexed data structure x, returning <0, 0, and >0
// when t < x[i], t == x[i], and t > x[i], respectively.
//
// For example, to look for a particular string in a sorted, random-access
// list of strings:
//
// i, found := sort.Find(x.Len(), func(i int) int {
// return strings.Compare(target, x.At(i))
// })
// if found {
// fmt.Printf("found %s at entry %d\n", target, i)
// } else {
// fmt.Printf("%s not found, would insert at %d", target, i)
// }
func Find(n int, cmp func(int) int) (i int, found bool) {
// The invariants here are similar to the ones in Search.
// Define cmp(-1) > 0 and cmp(n) <= 0
// Invariant: cmp(i-1) > 0, cmp(j) <= 0
i, j := 0, n
for i < j {
h := int(uint(i+j) >> 1) // avoid overflow when computing h
// i ≤ h < j
if cmp(h) > 0 {
i = h + 1 // preserves cmp(i-1) > 0
} else {
j = h // preserves cmp(j) <= 0
}
}
// i == j, cmp(i-1) > 0 and cmp(j) <= 0
return i, i < n && cmp(i) == 0
}
// Convenience wrappers for common cases.
// SearchInts searches for x in a sorted slice of ints and returns the index
// as specified by [Search]. The return value is the index to insert x if x is
// not present (it could be len(a)).
// The slice must be sorted in ascending order.
func SearchInts(a []int, x int) int {
return Search(len(a), func(i int) bool { return a[i] >= x })
}
// SearchFloat64s searches for x in a sorted slice of float64s and returns the index
// as specified by [Search]. The return value is the index to insert x if x is not
// present (it could be len(a)).
// The slice must be sorted in ascending order.
func SearchFloat64s(a []float64, x float64) int {
return Search(len(a), func(i int) bool { return a[i] >= x })
}
// SearchStrings searches for x in a sorted slice of strings and returns the index
// as specified by Search. The return value is the index to insert x if x is not
// present (it could be len(a)).
// The slice must be sorted in ascending order.
func SearchStrings(a []string, x string) int {
return Search(len(a), func(i int) bool { return a[i] >= x })
}
// Search returns the result of applying [SearchInts] to the receiver and x.
func (p IntSlice) Search(x int) int { return SearchInts(p, x) }
// Search returns the result of applying [SearchFloat64s] to the receiver and x.
func (p Float64Slice) Search(x float64) int { return SearchFloat64s(p, x) }
// Search returns the result of applying [SearchStrings] to the receiver and x.
func (p StringSlice) Search(x string) int { return SearchStrings(p, x) }

266
src/sort/search_test.go Normal file
View File

@@ -0,0 +1,266 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sort_test
import (
"runtime"
. "sort"
stringspkg "strings"
"testing"
)
func f(a []int, x int) func(int) bool {
return func(i int) bool {
return a[i] >= x
}
}
var data = []int{0: -10, 1: -5, 2: 0, 3: 1, 4: 2, 5: 3, 6: 5, 7: 7, 8: 11, 9: 100, 10: 100, 11: 100, 12: 1000, 13: 10000}
var tests = []struct {
name string
n int
f func(int) bool
i int
}{
{"empty", 0, nil, 0},
{"1 1", 1, func(i int) bool { return i >= 1 }, 1},
{"1 true", 1, func(i int) bool { return true }, 0},
{"1 false", 1, func(i int) bool { return false }, 1},
{"1e9 991", 1e9, func(i int) bool { return i >= 991 }, 991},
{"1e9 true", 1e9, func(i int) bool { return true }, 0},
{"1e9 false", 1e9, func(i int) bool { return false }, 1e9},
{"data -20", len(data), f(data, -20), 0},
{"data -10", len(data), f(data, -10), 0},
{"data -9", len(data), f(data, -9), 1},
{"data -6", len(data), f(data, -6), 1},
{"data -5", len(data), f(data, -5), 1},
{"data 3", len(data), f(data, 3), 5},
{"data 11", len(data), f(data, 11), 8},
{"data 99", len(data), f(data, 99), 9},
{"data 100", len(data), f(data, 100), 9},
{"data 101", len(data), f(data, 101), 12},
{"data 10000", len(data), f(data, 10000), 13},
{"data 10001", len(data), f(data, 10001), 14},
{"descending a", 7, func(i int) bool { return []int{99, 99, 59, 42, 7, 0, -1, -1}[i] <= 7 }, 4},
{"descending 7", 1e9, func(i int) bool { return 1e9-i <= 7 }, 1e9 - 7},
{"overflow", 2e9, func(i int) bool { return false }, 2e9},
}
func TestSearch(t *testing.T) {
for _, e := range tests {
i := Search(e.n, e.f)
if i != e.i {
t.Errorf("%s: expected index %d; got %d", e.name, e.i, i)
}
}
}
func TestFind(t *testing.T) {
str1 := []string{"foo"}
str2 := []string{"ab", "ca"}
str3 := []string{"mo", "qo", "vo"}
str4 := []string{"ab", "ad", "ca", "xy"}
// slice with repeating elements
strRepeats := []string{"ba", "ca", "da", "da", "da", "ka", "ma", "ma", "ta"}
// slice with all element equal
strSame := []string{"xx", "xx", "xx"}
tests := []struct {
data []string
target string
wantPos int
wantFound bool
}{
{[]string{}, "foo", 0, false},
{[]string{}, "", 0, false},
{str1, "foo", 0, true},
{str1, "bar", 0, false},
{str1, "zx", 1, false},
{str2, "aa", 0, false},
{str2, "ab", 0, true},
{str2, "ad", 1, false},
{str2, "ca", 1, true},
{str2, "ra", 2, false},
{str3, "bb", 0, false},
{str3, "mo", 0, true},
{str3, "nb", 1, false},
{str3, "qo", 1, true},
{str3, "tr", 2, false},
{str3, "vo", 2, true},
{str3, "xr", 3, false},
{str4, "aa", 0, false},
{str4, "ab", 0, true},
{str4, "ac", 1, false},
{str4, "ad", 1, true},
{str4, "ax", 2, false},
{str4, "ca", 2, true},
{str4, "cc", 3, false},
{str4, "dd", 3, false},
{str4, "xy", 3, true},
{str4, "zz", 4, false},
{strRepeats, "da", 2, true},
{strRepeats, "db", 5, false},
{strRepeats, "ma", 6, true},
{strRepeats, "mb", 8, false},
{strSame, "xx", 0, true},
{strSame, "ab", 0, false},
{strSame, "zz", 3, false},
}
for _, tt := range tests {
t.Run(tt.target, func(t *testing.T) {
cmp := func(i int) int {
return stringspkg.Compare(tt.target, tt.data[i])
}
pos, found := Find(len(tt.data), cmp)
if pos != tt.wantPos || found != tt.wantFound {
t.Errorf("Find got (%v, %v), want (%v, %v)", pos, found, tt.wantPos, tt.wantFound)
}
})
}
}
// log2 computes the binary logarithm of x, rounded up to the next integer.
// (log2(0) == 0, log2(1) == 0, log2(2) == 1, log2(3) == 2, etc.)
func log2(x int) int {
n := 0
for p := 1; p < x; p += p {
// p == 2**n
n++
}
// p/2 < x <= p == 2**n
return n
}
func TestSearchEfficiency(t *testing.T) {
n := 100
step := 1
for exp := 2; exp < 10; exp++ {
// n == 10**exp
// step == 10**(exp-2)
max := log2(n)
for x := 0; x < n; x += step {
count := 0
i := Search(n, func(i int) bool { count++; return i >= x })
if i != x {
t.Errorf("n = %d: expected index %d; got %d", n, x, i)
}
if count > max {
t.Errorf("n = %d, x = %d: expected <= %d calls; got %d", n, x, max, count)
}
}
n *= 10
step *= 10
}
}
// Smoke tests for convenience wrappers - not comprehensive.
var fdata = []float64{0: -3.14, 1: 0, 2: 1, 3: 2, 4: 1000.7}
var sdata = []string{0: "f", 1: "foo", 2: "foobar", 3: "x"}
var wrappertests = []struct {
name string
result int
i int
}{
{"SearchInts", SearchInts(data, 11), 8},
{"SearchFloat64s", SearchFloat64s(fdata, 2.1), 4},
{"SearchStrings", SearchStrings(sdata, ""), 0},
{"IntSlice.Search", IntSlice(data).Search(0), 2},
{"Float64Slice.Search", Float64Slice(fdata).Search(2.0), 3},
{"StringSlice.Search", StringSlice(sdata).Search("x"), 3},
}
func TestSearchWrappers(t *testing.T) {
for _, e := range wrappertests {
if e.result != e.i {
t.Errorf("%s: expected index %d; got %d", e.name, e.i, e.result)
}
}
}
func runSearchWrappers() {
SearchInts(data, 11)
SearchFloat64s(fdata, 2.1)
SearchStrings(sdata, "")
IntSlice(data).Search(0)
Float64Slice(fdata).Search(2.0)
StringSlice(sdata).Search("x")
}
func TestSearchWrappersDontAlloc(t *testing.T) {
if testing.Short() {
t.Skip("skipping malloc count in short mode")
}
if runtime.GOMAXPROCS(0) > 1 {
t.Skip("skipping; GOMAXPROCS>1")
}
allocs := testing.AllocsPerRun(100, runSearchWrappers)
if allocs != 0 {
t.Errorf("expected no allocs for runSearchWrappers, got %v", allocs)
}
}
func BenchmarkSearchWrappers(b *testing.B) {
for i := 0; i < b.N; i++ {
runSearchWrappers()
}
}
// Abstract exhaustive test: all sizes up to 100,
// all possible return values. If there are any small
// corner cases, this test exercises them.
func TestSearchExhaustive(t *testing.T) {
for size := 0; size <= 100; size++ {
for targ := 0; targ <= size; targ++ {
i := Search(size, func(i int) bool { return i >= targ })
if i != targ {
t.Errorf("Search(%d, %d) = %d", size, targ, i)
}
}
}
}
// Abstract exhaustive test for Find.
func TestFindExhaustive(t *testing.T) {
// Test Find for different sequence sizes and search targets.
// For each size, we have a (unmaterialized) sequence of integers:
// 2,4...size*2
// And we're looking for every possible integer between 1 and size*2 + 1.
for size := 0; size <= 100; size++ {
for x := 1; x <= size*2+1; x++ {
var wantFound bool
var wantPos int
cmp := func(i int) int {
// Encodes the unmaterialized sequence with elem[i] == (i+1)*2
return x - (i+1)*2
}
pos, found := Find(size, cmp)
if x%2 == 0 {
wantPos = x/2 - 1
wantFound = true
} else {
wantPos = x / 2
wantFound = false
}
if found != wantFound || pos != wantPos {
t.Errorf("Find(%d, %d): got (%v, %v), want (%v, %v)", size, x, pos, found, wantPos, wantFound)
}
}
}
}

61
src/sort/slice.go Normal file
View File

@@ -0,0 +1,61 @@
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sort
import (
"internal/reflectlite"
"math/bits"
)
// Slice sorts the slice x given the provided less function.
// It panics if x is not a slice.
//
// The sort is not guaranteed to be stable: equal elements
// may be reversed from their original order.
// For a stable sort, use [SliceStable].
//
// The less function must satisfy the same requirements as
// the Interface type's Less method.
//
// Note: in many situations, the newer [slices.SortFunc] function is more
// ergonomic and runs faster.
func Slice(x any, less func(i, j int) bool) {
rv := reflectlite.ValueOf(x)
swap := reflectlite.Swapper(x)
length := rv.Len()
limit := bits.Len(uint(length))
pdqsort_func(lessSwap{less, swap}, 0, length, limit)
}
// SliceStable sorts the slice x using the provided less
// function, keeping equal elements in their original order.
// It panics if x is not a slice.
//
// The less function must satisfy the same requirements as
// the Interface type's Less method.
//
// Note: in many situations, the newer [slices.SortStableFunc] function is more
// ergonomic and runs faster.
func SliceStable(x any, less func(i, j int) bool) {
rv := reflectlite.ValueOf(x)
swap := reflectlite.Swapper(x)
stable_func(lessSwap{less, swap}, rv.Len())
}
// SliceIsSorted reports whether the slice x is sorted according to the provided less function.
// It panics if x is not a slice.
//
// Note: in many situations, the newer [slices.IsSortedFunc] function is more
// ergonomic and runs faster.
func SliceIsSorted(x any, less func(i, j int) bool) bool {
rv := reflectlite.ValueOf(x)
n := rv.Len()
for i := n - 1; i > 0; i-- {
if less(i, i-1) {
return false
}
}
return true
}

283
src/sort/sort.go Normal file
View File

@@ -0,0 +1,283 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:generate go run gen_sort_variants.go
// Package sort provides primitives for sorting slices and user-defined collections.
package sort
import "math/bits"
// An implementation of Interface can be sorted by the routines in this package.
// The methods refer to elements of the underlying collection by integer index.
type Interface interface {
// Len is the number of elements in the collection.
Len() int
// Less reports whether the element with index i
// must sort before the element with index j.
//
// If both Less(i, j) and Less(j, i) are false,
// then the elements at index i and j are considered equal.
// Sort may place equal elements in any order in the final result,
// while Stable preserves the original input order of equal elements.
//
// Less must describe a transitive ordering:
// - if both Less(i, j) and Less(j, k) are true, then Less(i, k) must be true as well.
// - if both Less(i, j) and Less(j, k) are false, then Less(i, k) must be false as well.
//
// Note that floating-point comparison (the < operator on float32 or float64 values)
// is not a transitive ordering when not-a-number (NaN) values are involved.
// See Float64Slice.Less for a correct implementation for floating-point values.
Less(i, j int) bool
// Swap swaps the elements with indexes i and j.
Swap(i, j int)
}
// Sort sorts data in ascending order as determined by the Less method.
// It makes one call to data.Len to determine n and O(n*log(n)) calls to
// data.Less and data.Swap. The sort is not guaranteed to be stable.
//
// Note: in many situations, the newer [slices.SortFunc] function is more
// ergonomic and runs faster.
func Sort(data Interface) {
n := data.Len()
if n <= 1 {
return
}
limit := bits.Len(uint(n))
pdqsort(data, 0, n, limit)
}
type sortedHint int // hint for pdqsort when choosing the pivot
const (
unknownHint sortedHint = iota
increasingHint
decreasingHint
)
// xorshift paper: https://www.jstatsoft.org/article/view/v008i14/xorshift.pdf
type xorshift uint64
func (r *xorshift) Next() uint64 {
*r ^= *r << 13
*r ^= *r >> 17
*r ^= *r << 5
return uint64(*r)
}
func nextPowerOfTwo(length int) uint {
shift := uint(bits.Len(uint(length)))
return uint(1 << shift)
}
// lessSwap is a pair of Less and Swap function for use with the
// auto-generated func-optimized variant of sort.go in
// zfuncversion.go.
type lessSwap struct {
Less func(i, j int) bool
Swap func(i, j int)
}
type reverse struct {
// This embedded Interface permits Reverse to use the methods of
// another Interface implementation.
Interface
}
// Less returns the opposite of the embedded implementation's Less method.
func (r reverse) Less(i, j int) bool {
return r.Interface.Less(j, i)
}
// Reverse returns the reverse order for data.
func Reverse(data Interface) Interface {
return &reverse{data}
}
// IsSorted reports whether data is sorted.
//
// Note: in many situations, the newer [slices.IsSortedFunc] function is more
// ergonomic and runs faster.
func IsSorted(data Interface) bool {
n := data.Len()
for i := n - 1; i > 0; i-- {
if data.Less(i, i-1) {
return false
}
}
return true
}
// Convenience types for common cases
// IntSlice attaches the methods of Interface to []int, sorting in increasing order.
type IntSlice []int
func (x IntSlice) Len() int { return len(x) }
func (x IntSlice) Less(i, j int) bool { return x[i] < x[j] }
func (x IntSlice) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
// Sort is a convenience method: x.Sort() calls Sort(x).
func (x IntSlice) Sort() { Sort(x) }
// Float64Slice implements Interface for a []float64, sorting in increasing order,
// with not-a-number (NaN) values ordered before other values.
type Float64Slice []float64
func (x Float64Slice) Len() int { return len(x) }
// Less reports whether x[i] should be ordered before x[j], as required by the sort Interface.
// Note that floating-point comparison by itself is not a transitive relation: it does not
// report a consistent ordering for not-a-number (NaN) values.
// This implementation of Less places NaN values before any others, by using:
//
// x[i] < x[j] || (math.IsNaN(x[i]) && !math.IsNaN(x[j]))
func (x Float64Slice) Less(i, j int) bool { return x[i] < x[j] || (isNaN(x[i]) && !isNaN(x[j])) }
func (x Float64Slice) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
// isNaN is a copy of math.IsNaN to avoid a dependency on the math package.
func isNaN(f float64) bool {
return f != f
}
// Sort is a convenience method: x.Sort() calls Sort(x).
func (x Float64Slice) Sort() { Sort(x) }
// StringSlice attaches the methods of Interface to []string, sorting in increasing order.
type StringSlice []string
func (x StringSlice) Len() int { return len(x) }
func (x StringSlice) Less(i, j int) bool { return x[i] < x[j] }
func (x StringSlice) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
// Sort is a convenience method: x.Sort() calls Sort(x).
func (x StringSlice) Sort() { Sort(x) }
// Convenience wrappers for common cases
// Ints sorts a slice of ints in increasing order.
//
// Note: as of Go 1.22, this function simply calls [slices.Sort].
func Ints(x []int) { intsImpl(x) }
// Float64s sorts a slice of float64s in increasing order.
// Not-a-number (NaN) values are ordered before other values.
//
// Note: as of Go 1.22, this function simply calls [slices.Sort].
func Float64s(x []float64) { float64sImpl(x) }
// Strings sorts a slice of strings in increasing order.
//
// Note: as of Go 1.22, this function simply calls [slices.Sort].
func Strings(x []string) { stringsImpl(x) }
// IntsAreSorted reports whether the slice x is sorted in increasing order.
//
// Note: as of Go 1.22, this function simply calls [slices.IsSorted].
func IntsAreSorted(x []int) bool { return intsAreSortedImpl(x) }
// Float64sAreSorted reports whether the slice x is sorted in increasing order,
// with not-a-number (NaN) values before any other values.
//
// Note: as of Go 1.22, this function simply calls [slices.IsSorted].
func Float64sAreSorted(x []float64) bool { return float64sAreSortedImpl(x) }
// StringsAreSorted reports whether the slice x is sorted in increasing order.
//
// Note: as of Go 1.22, this function simply calls [slices.IsSorted].
func StringsAreSorted(x []string) bool { return stringsAreSortedImpl(x) }
// Notes on stable sorting:
// The used algorithms are simple and provable correct on all input and use
// only logarithmic additional stack space. They perform well if compared
// experimentally to other stable in-place sorting algorithms.
//
// Remarks on other algorithms evaluated:
// - GCC's 4.6.3 stable_sort with merge_without_buffer from libstdc++:
// Not faster.
// - GCC's __rotate for block rotations: Not faster.
// - "Practical in-place mergesort" from Jyrki Katajainen, Tomi A. Pasanen
// and Jukka Teuhola; Nordic Journal of Computing 3,1 (1996), 27-40:
// The given algorithms are in-place, number of Swap and Assignments
// grow as n log n but the algorithm is not stable.
// - "Fast Stable In-Place Sorting with O(n) Data Moves" J.I. Munro and
// V. Raman in Algorithmica (1996) 16, 115-160:
// This algorithm either needs additional 2n bits or works only if there
// are enough different elements available to encode some permutations
// which have to be undone later (so not stable on any input).
// - All the optimal in-place sorting/merging algorithms I found are either
// unstable or rely on enough different elements in each step to encode the
// performed block rearrangements. See also "In-Place Merging Algorithms",
// Denham Coates-Evely, Department of Computer Science, Kings College,
// January 2004 and the references in there.
// - Often "optimal" algorithms are optimal in the number of assignments
// but Interface has only Swap as operation.
// Stable sorts data in ascending order as determined by the Less method,
// while keeping the original order of equal elements.
//
// It makes one call to data.Len to determine n, O(n*log(n)) calls to
// data.Less and O(n*log(n)*log(n)) calls to data.Swap.
//
// Note: in many situations, the newer slices.SortStableFunc function is more
// ergonomic and runs faster.
func Stable(data Interface) {
stable(data, data.Len())
}
/*
Complexity of Stable Sorting
Complexity of block swapping rotation
Each Swap puts one new element into its correct, final position.
Elements which reach their final position are no longer moved.
Thus block swapping rotation needs |u|+|v| calls to Swaps.
This is best possible as each element might need a move.
Pay attention when comparing to other optimal algorithms which
typically count the number of assignments instead of swaps:
E.g. the optimal algorithm of Dudzinski and Dydek for in-place
rotations uses O(u + v + gcd(u,v)) assignments which is
better than our O(3 * (u+v)) as gcd(u,v) <= u.
Stable sorting by SymMerge and BlockSwap rotations
SymMerg complexity for same size input M = N:
Calls to Less: O(M*log(N/M+1)) = O(N*log(2)) = O(N)
Calls to Swap: O((M+N)*log(M)) = O(2*N*log(N)) = O(N*log(N))
(The following argument does not fuzz over a missing -1 or
other stuff which does not impact the final result).
Let n = data.Len(). Assume n = 2^k.
Plain merge sort performs log(n) = k iterations.
On iteration i the algorithm merges 2^(k-i) blocks, each of size 2^i.
Thus iteration i of merge sort performs:
Calls to Less O(2^(k-i) * 2^i) = O(2^k) = O(2^log(n)) = O(n)
Calls to Swap O(2^(k-i) * 2^i * log(2^i)) = O(2^k * i) = O(n*i)
In total k = log(n) iterations are performed; so in total:
Calls to Less O(log(n) * n)
Calls to Swap O(n + 2*n + 3*n + ... + (k-1)*n + k*n)
= O((k/2) * k * n) = O(n * k^2) = O(n * log^2(n))
Above results should generalize to arbitrary n = 2^k + p
and should not be influenced by the initial insertion sort phase:
Insertion sort is O(n^2) on Swap and Less, thus O(bs^2) per block of
size bs at n/bs blocks: O(bs*n) Swaps and Less during insertion sort.
Merge sort iterations start at i = log(bs). With t = log(bs) constant:
Calls to Less O((log(n)-t) * n + bs*n) = O(log(n)*n + (bs-t)*n)
= O(n * log(n))
Calls to Swap O(n * log^2(n) - (t^2+t)/2*n) = O(n * log^2(n))
*/

15
src/sort/sort_impl_120.go Normal file
View File

@@ -0,0 +1,15 @@
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !go1.21
package sort
func intsImpl(x []int) { Sort(IntSlice(x)) }
func float64sImpl(x []float64) { Sort(Float64Slice(x)) }
func stringsImpl(x []string) { Sort(StringSlice(x)) }
func intsAreSortedImpl(x []int) bool { return IsSorted(IntSlice(x)) }
func float64sAreSortedImpl(x []float64) bool { return IsSorted(Float64Slice(x)) }
func stringsAreSortedImpl(x []string) bool { return IsSorted(StringSlice(x)) }

View File

@@ -0,0 +1,22 @@
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build go1.21
// Starting with Go 1.21, we can leverage the new generic functions from the
// slices package to implement some `sort` functions faster. However, until
// the bootstrap compiler uses Go 1.21 or later, we keep a fallback version
// in sort_impl_120.go that retains the old implementation.
package sort
import "slices"
func intsImpl(x []int) { slices.Sort(x) }
func float64sImpl(x []float64) { slices.Sort(x) }
func stringsImpl(x []string) { slices.Sort(x) }
func intsAreSortedImpl(x []int) bool { return slices.IsSorted(x) }
func float64sAreSortedImpl(x []float64) bool { return slices.IsSorted(x) }
func stringsAreSortedImpl(x []string) bool { return slices.IsSorted(x) }

View File

@@ -0,0 +1,201 @@
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sort_test
import (
"math/rand/v2"
"slices"
. "sort"
"strconv"
stringspkg "strings"
"testing"
)
// Benchmarks comparing sorting from the slices package with functions from
// the sort package (avoiding functions that are just forwarding to the slices
// package).
func makeRandomInts(n int) []int {
r := rand.New(rand.NewPCG(42, 0))
ints := make([]int, n)
for i := 0; i < n; i++ {
ints[i] = r.IntN(n)
}
return ints
}
func makeSortedInts(n int) []int {
ints := make([]int, n)
for i := 0; i < n; i++ {
ints[i] = i
}
return ints
}
func makeReversedInts(n int) []int {
ints := make([]int, n)
for i := 0; i < n; i++ {
ints[i] = n - i
}
return ints
}
func makeSortedStrings(n int) []string {
x := make([]string, n)
for i := 0; i < n; i++ {
x[i] = strconv.Itoa(i)
}
Strings(x)
return x
}
const N = 100_000
func BenchmarkSortInts(b *testing.B) {
for i := 0; i < b.N; i++ {
b.StopTimer()
ints := makeRandomInts(N)
b.StartTimer()
Sort(IntSlice(ints))
}
}
func BenchmarkSlicesSortInts(b *testing.B) {
for i := 0; i < b.N; i++ {
b.StopTimer()
ints := makeRandomInts(N)
b.StartTimer()
slices.Sort(ints)
}
}
func BenchmarkSortIsSorted(b *testing.B) {
for i := 0; i < b.N; i++ {
b.StopTimer()
ints := makeSortedInts(N)
b.StartTimer()
IsSorted(IntSlice(ints))
}
}
func BenchmarkSlicesIsSorted(b *testing.B) {
for i := 0; i < b.N; i++ {
b.StopTimer()
ints := makeSortedInts(N)
b.StartTimer()
slices.IsSorted(ints)
}
}
// makeRandomStrings generates n random strings with alphabetic runes of
// varying lengths.
func makeRandomStrings(n int) []string {
r := rand.New(rand.NewPCG(42, 0))
var letters = []rune("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ")
ss := make([]string, n)
for i := 0; i < n; i++ {
var sb stringspkg.Builder
slen := 2 + r.IntN(50)
for j := 0; j < slen; j++ {
sb.WriteRune(letters[r.IntN(len(letters))])
}
ss[i] = sb.String()
}
return ss
}
func BenchmarkSortStrings(b *testing.B) {
for i := 0; i < b.N; i++ {
b.StopTimer()
ss := makeRandomStrings(N)
b.StartTimer()
Sort(StringSlice(ss))
}
}
func BenchmarkSlicesSortStrings(b *testing.B) {
for i := 0; i < b.N; i++ {
b.StopTimer()
ss := makeRandomStrings(N)
b.StartTimer()
slices.Sort(ss)
}
}
func BenchmarkSortStrings_Sorted(b *testing.B) {
ss := makeSortedStrings(N)
b.ResetTimer()
for i := 0; i < b.N; i++ {
Sort(StringSlice(ss))
}
}
func BenchmarkSlicesSortStrings_Sorted(b *testing.B) {
ss := makeSortedStrings(N)
b.ResetTimer()
for i := 0; i < b.N; i++ {
slices.Sort(ss)
}
}
// These benchmarks compare sorting a slice of structs with sort.Sort vs.
// slices.SortFunc.
type myStruct struct {
a, b, c, d string
n int
}
type myStructs []*myStruct
func (s myStructs) Len() int { return len(s) }
func (s myStructs) Less(i, j int) bool { return s[i].n < s[j].n }
func (s myStructs) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func makeRandomStructs(n int) myStructs {
r := rand.New(rand.NewPCG(42, 0))
structs := make([]*myStruct, n)
for i := 0; i < n; i++ {
structs[i] = &myStruct{n: r.IntN(n)}
}
return structs
}
func TestStructSorts(t *testing.T) {
ss := makeRandomStructs(200)
ss2 := make([]*myStruct, len(ss))
for i := range ss {
ss2[i] = &myStruct{n: ss[i].n}
}
Sort(ss)
slices.SortFunc(ss2, func(a, b *myStruct) int { return a.n - b.n })
for i := range ss {
if *ss[i] != *ss2[i] {
t.Fatalf("ints2 mismatch at %d; %v != %v", i, *ss[i], *ss2[i])
}
}
}
func BenchmarkSortStructs(b *testing.B) {
for i := 0; i < b.N; i++ {
b.StopTimer()
ss := makeRandomStructs(N)
b.StartTimer()
Sort(ss)
}
}
func BenchmarkSortFuncStructs(b *testing.B) {
cmpFunc := func(a, b *myStruct) int { return a.n - b.n }
for i := 0; i < b.N; i++ {
b.StopTimer()
ss := makeRandomStructs(N)
b.StartTimer()
slices.SortFunc(ss, cmpFunc)
}
}

753
src/sort/sort_test.go Normal file
View File

@@ -0,0 +1,753 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sort_test
import (
"cmp"
"fmt"
"internal/testenv"
"math"
"math/rand/v2"
"slices"
. "sort"
"strconv"
"strings"
"testing"
)
var ints = [...]int{74, 59, 238, -784, 9845, 959, 905, 0, 0, 42, 7586, -5467984, 7586}
var float64s = [...]float64{74.3, 59.0, math.Inf(1), 238.2, -784.0, 2.3, math.NaN(), math.NaN(), math.Inf(-1), 9845.768, -959.7485, 905, 7.8, 7.8}
var stringsData = [...]string{"", "Hello", "foo", "bar", "foo", "f00", "%*&^*&^&", "***"}
func TestSortIntSlice(t *testing.T) {
data := ints
a := IntSlice(data[0:])
Sort(a)
if !IsSorted(a) {
t.Errorf("sorted %v", ints)
t.Errorf(" got %v", data)
}
}
func TestSortFloat64Slice(t *testing.T) {
data := float64s
a := Float64Slice(data[0:])
Sort(a)
if !IsSorted(a) {
t.Errorf("sorted %v", float64s)
t.Errorf(" got %v", data)
}
}
// Compare Sort with slices.Sort sorting a float64 slice containing NaNs.
func TestSortFloat64sCompareSlicesSort(t *testing.T) {
slice1 := slices.Clone(float64s[:])
slice2 := slices.Clone(float64s[:])
Sort(Float64Slice(slice1))
slices.Sort(slice2)
// Compare for equality using cmp.Compare, which considers NaNs equal.
if !slices.EqualFunc(slice1, slice2, func(a, b float64) bool { return cmp.Compare(a, b) == 0 }) {
t.Errorf("mismatch between Sort and slices.Sort: got %v, want %v", slice1, slice2)
}
}
func TestSortStringSlice(t *testing.T) {
data := stringsData
a := StringSlice(data[0:])
Sort(a)
if !IsSorted(a) {
t.Errorf("sorted %v", stringsData)
t.Errorf(" got %v", data)
}
}
func TestInts(t *testing.T) {
data := ints
Ints(data[0:])
if !IntsAreSorted(data[0:]) {
t.Errorf("sorted %v", ints)
t.Errorf(" got %v", data)
}
}
func TestFloat64s(t *testing.T) {
data := float64s
Float64s(data[0:])
if !Float64sAreSorted(data[0:]) {
t.Errorf("sorted %v", float64s)
t.Errorf(" got %v", data)
}
}
func TestStrings(t *testing.T) {
data := stringsData
Strings(data[0:])
if !StringsAreSorted(data[0:]) {
t.Errorf("sorted %v", stringsData)
t.Errorf(" got %v", data)
}
}
func TestSlice(t *testing.T) {
data := stringsData
Slice(data[:], func(i, j int) bool {
return data[i] < data[j]
})
if !SliceIsSorted(data[:], func(i, j int) bool { return data[i] < data[j] }) {
t.Errorf("sorted %v", stringsData)
t.Errorf(" got %v", data)
}
}
func TestSortLarge_Random(t *testing.T) {
n := 1000000
if testing.Short() {
n /= 100
}
data := make([]int, n)
for i := 0; i < len(data); i++ {
data[i] = rand.IntN(100)
}
if IntsAreSorted(data) {
t.Fatalf("terrible rand.rand")
}
Ints(data)
if !IntsAreSorted(data) {
t.Errorf("sort didn't sort - 1M ints")
}
}
func TestReverseSortIntSlice(t *testing.T) {
data := ints
data1 := ints
a := IntSlice(data[0:])
Sort(a)
r := IntSlice(data1[0:])
Sort(Reverse(r))
for i := 0; i < len(data); i++ {
if a[i] != r[len(data)-1-i] {
t.Errorf("reverse sort didn't sort")
}
if i > len(data)/2 {
break
}
}
}
func TestBreakPatterns(t *testing.T) {
// Special slice used to trigger breakPatterns.
data := make([]int, 30)
for i := range data {
data[i] = 10
}
data[(len(data)/4)*1] = 0
data[(len(data)/4)*2] = 1
data[(len(data)/4)*3] = 2
Sort(IntSlice(data))
}
func TestReverseRange(t *testing.T) {
data := []int{1, 2, 3, 4, 5, 6, 7}
ReverseRange(IntSlice(data), 0, len(data))
for i := len(data) - 1; i > 0; i-- {
if data[i] > data[i-1] {
t.Fatalf("reverseRange didn't work")
}
}
data1 := []int{1, 2, 3, 4, 5, 6, 7}
data2 := []int{1, 2, 5, 4, 3, 6, 7}
ReverseRange(IntSlice(data1), 2, 5)
for i, v := range data1 {
if v != data2[i] {
t.Fatalf("reverseRange didn't work")
}
}
}
type nonDeterministicTestingData struct {
r *rand.Rand
}
func (t *nonDeterministicTestingData) Len() int {
return 500
}
func (t *nonDeterministicTestingData) Less(i, j int) bool {
if i < 0 || j < 0 || i >= t.Len() || j >= t.Len() {
panic("nondeterministic comparison out of bounds")
}
return t.r.Float32() < 0.5
}
func (t *nonDeterministicTestingData) Swap(i, j int) {
if i < 0 || j < 0 || i >= t.Len() || j >= t.Len() {
panic("nondeterministic comparison out of bounds")
}
}
func TestNonDeterministicComparison(t *testing.T) {
// Ensure that sort.Sort does not panic when Less returns inconsistent results.
// See https://golang.org/issue/14377.
defer func() {
if r := recover(); r != nil {
t.Error(r)
}
}()
td := &nonDeterministicTestingData{
r: rand.New(rand.NewPCG(0, 0)),
}
for i := 0; i < 10; i++ {
Sort(td)
}
}
func BenchmarkSortString1K(b *testing.B) {
b.StopTimer()
unsorted := make([]string, 1<<10)
for i := range unsorted {
unsorted[i] = strconv.Itoa(i ^ 0x2cc)
}
data := make([]string, len(unsorted))
for i := 0; i < b.N; i++ {
copy(data, unsorted)
b.StartTimer()
Strings(data)
b.StopTimer()
}
}
func BenchmarkSortString1K_Slice(b *testing.B) {
b.StopTimer()
unsorted := make([]string, 1<<10)
for i := range unsorted {
unsorted[i] = strconv.Itoa(i ^ 0x2cc)
}
data := make([]string, len(unsorted))
for i := 0; i < b.N; i++ {
copy(data, unsorted)
b.StartTimer()
Slice(data, func(i, j int) bool { return data[i] < data[j] })
b.StopTimer()
}
}
func BenchmarkStableString1K(b *testing.B) {
b.StopTimer()
unsorted := make([]string, 1<<10)
for i := range unsorted {
unsorted[i] = strconv.Itoa(i ^ 0x2cc)
}
data := make([]string, len(unsorted))
for i := 0; i < b.N; i++ {
copy(data, unsorted)
b.StartTimer()
Stable(StringSlice(data))
b.StopTimer()
}
}
func BenchmarkSortInt1K(b *testing.B) {
b.StopTimer()
for i := 0; i < b.N; i++ {
data := make([]int, 1<<10)
for i := 0; i < len(data); i++ {
data[i] = i ^ 0x2cc
}
b.StartTimer()
Ints(data)
b.StopTimer()
}
}
func BenchmarkSortInt1K_Sorted(b *testing.B) {
b.StopTimer()
for i := 0; i < b.N; i++ {
data := make([]int, 1<<10)
for i := 0; i < len(data); i++ {
data[i] = i
}
b.StartTimer()
Ints(data)
b.StopTimer()
}
}
func BenchmarkSortInt1K_Reversed(b *testing.B) {
b.StopTimer()
for i := 0; i < b.N; i++ {
data := make([]int, 1<<10)
for i := 0; i < len(data); i++ {
data[i] = len(data) - i
}
b.StartTimer()
Ints(data)
b.StopTimer()
}
}
func BenchmarkSortInt1K_Mod8(b *testing.B) {
b.StopTimer()
for i := 0; i < b.N; i++ {
data := make([]int, 1<<10)
for i := 0; i < len(data); i++ {
data[i] = i % 8
}
b.StartTimer()
Ints(data)
b.StopTimer()
}
}
func BenchmarkStableInt1K(b *testing.B) {
b.StopTimer()
unsorted := make([]int, 1<<10)
for i := range unsorted {
unsorted[i] = i ^ 0x2cc
}
data := make([]int, len(unsorted))
for i := 0; i < b.N; i++ {
copy(data, unsorted)
b.StartTimer()
Stable(IntSlice(data))
b.StopTimer()
}
}
func BenchmarkStableInt1K_Slice(b *testing.B) {
b.StopTimer()
unsorted := make([]int, 1<<10)
for i := range unsorted {
unsorted[i] = i ^ 0x2cc
}
data := make([]int, len(unsorted))
for i := 0; i < b.N; i++ {
copy(data, unsorted)
b.StartTimer()
SliceStable(data, func(i, j int) bool { return data[i] < data[j] })
b.StopTimer()
}
}
func BenchmarkSortInt64K(b *testing.B) {
b.StopTimer()
for i := 0; i < b.N; i++ {
data := make([]int, 1<<16)
for i := 0; i < len(data); i++ {
data[i] = i ^ 0xcccc
}
b.StartTimer()
Ints(data)
b.StopTimer()
}
}
func BenchmarkSortInt64K_Slice(b *testing.B) {
b.StopTimer()
for i := 0; i < b.N; i++ {
data := make([]int, 1<<16)
for i := 0; i < len(data); i++ {
data[i] = i ^ 0xcccc
}
b.StartTimer()
Slice(data, func(i, j int) bool { return data[i] < data[j] })
b.StopTimer()
}
}
func BenchmarkStableInt64K(b *testing.B) {
b.StopTimer()
for i := 0; i < b.N; i++ {
data := make([]int, 1<<16)
for i := 0; i < len(data); i++ {
data[i] = i ^ 0xcccc
}
b.StartTimer()
Stable(IntSlice(data))
b.StopTimer()
}
}
const (
_Sawtooth = iota
_Rand
_Stagger
_Plateau
_Shuffle
_NDist
)
const (
_Copy = iota
_Reverse
_ReverseFirstHalf
_ReverseSecondHalf
_Sorted
_Dither
_NMode
)
type testingData struct {
desc string
t *testing.T
data []int
maxswap int // number of swaps allowed
ncmp, nswap int
}
func (d *testingData) Len() int { return len(d.data) }
func (d *testingData) Less(i, j int) bool {
d.ncmp++
return d.data[i] < d.data[j]
}
func (d *testingData) Swap(i, j int) {
if d.nswap >= d.maxswap {
d.t.Fatalf("%s: used %d swaps sorting slice of %d", d.desc, d.nswap, len(d.data))
}
d.nswap++
d.data[i], d.data[j] = d.data[j], d.data[i]
}
func lg(n int) int {
i := 0
for 1<<uint(i) < n {
i++
}
return i
}
func testBentleyMcIlroy(t *testing.T, sort func(Interface), maxswap func(int) int) {
sizes := []int{100, 1023, 1024, 1025}
if testing.Short() {
sizes = []int{100, 127, 128, 129}
}
dists := []string{"sawtooth", "rand", "stagger", "plateau", "shuffle"}
modes := []string{"copy", "reverse", "reverse1", "reverse2", "sort", "dither"}
var tmp1, tmp2 [1025]int
for _, n := range sizes {
for m := 1; m < 2*n; m *= 2 {
for dist := 0; dist < _NDist; dist++ {
j := 0
k := 1
data := tmp1[0:n]
for i := 0; i < n; i++ {
switch dist {
case _Sawtooth:
data[i] = i % m
case _Rand:
data[i] = rand.IntN(m)
case _Stagger:
data[i] = (i*m + i) % n
case _Plateau:
data[i] = min(i, m)
case _Shuffle:
if rand.IntN(m) != 0 {
j += 2
data[i] = j
} else {
k += 2
data[i] = k
}
}
}
mdata := tmp2[0:n]
for mode := 0; mode < _NMode; mode++ {
switch mode {
case _Copy:
for i := 0; i < n; i++ {
mdata[i] = data[i]
}
case _Reverse:
for i := 0; i < n; i++ {
mdata[i] = data[n-i-1]
}
case _ReverseFirstHalf:
for i := 0; i < n/2; i++ {
mdata[i] = data[n/2-i-1]
}
for i := n / 2; i < n; i++ {
mdata[i] = data[i]
}
case _ReverseSecondHalf:
for i := 0; i < n/2; i++ {
mdata[i] = data[i]
}
for i := n / 2; i < n; i++ {
mdata[i] = data[n-(i-n/2)-1]
}
case _Sorted:
for i := 0; i < n; i++ {
mdata[i] = data[i]
}
// Ints is known to be correct
// because mode Sort runs after mode _Copy.
Ints(mdata)
case _Dither:
for i := 0; i < n; i++ {
mdata[i] = data[i] + i%5
}
}
desc := fmt.Sprintf("n=%d m=%d dist=%s mode=%s", n, m, dists[dist], modes[mode])
d := &testingData{desc: desc, t: t, data: mdata[0:n], maxswap: maxswap(n)}
sort(d)
// Uncomment if you are trying to improve the number of compares/swaps.
//t.Logf("%s: ncmp=%d, nswp=%d", desc, d.ncmp, d.nswap)
// If we were testing C qsort, we'd have to make a copy
// of the slice and sort it ourselves and then compare
// x against it, to ensure that qsort was only permuting
// the data, not (for example) overwriting it with zeros.
//
// In go, we don't have to be so paranoid: since the only
// mutating method Sort can call is TestingData.swap,
// it suffices here just to check that the final slice is sorted.
if !IntsAreSorted(mdata) {
t.Fatalf("%s: ints not sorted\n\t%v", desc, mdata)
}
}
}
}
}
}
func TestSortBM(t *testing.T) {
testBentleyMcIlroy(t, Sort, func(n int) int { return n * lg(n) * 12 / 10 })
}
func TestHeapsortBM(t *testing.T) {
testBentleyMcIlroy(t, Heapsort, func(n int) int { return n * lg(n) * 12 / 10 })
}
func TestStableBM(t *testing.T) {
testBentleyMcIlroy(t, Stable, func(n int) int { return n * lg(n) * lg(n) / 3 })
}
// This is based on the "antiquicksort" implementation by M. Douglas McIlroy.
// See https://www.cs.dartmouth.edu/~doug/mdmspe.pdf for more info.
type adversaryTestingData struct {
t *testing.T
data []int // item values, initialized to special gas value and changed by Less
maxcmp int // number of comparisons allowed
ncmp int // number of comparisons (calls to Less)
nsolid int // number of elements that have been set to non-gas values
candidate int // guess at current pivot
gas int // special value for unset elements, higher than everything else
}
func (d *adversaryTestingData) Len() int { return len(d.data) }
func (d *adversaryTestingData) Less(i, j int) bool {
if d.ncmp >= d.maxcmp {
d.t.Fatalf("used %d comparisons sorting adversary data with size %d", d.ncmp, len(d.data))
}
d.ncmp++
if d.data[i] == d.gas && d.data[j] == d.gas {
if i == d.candidate {
// freeze i
d.data[i] = d.nsolid
d.nsolid++
} else {
// freeze j
d.data[j] = d.nsolid
d.nsolid++
}
}
if d.data[i] == d.gas {
d.candidate = i
} else if d.data[j] == d.gas {
d.candidate = j
}
return d.data[i] < d.data[j]
}
func (d *adversaryTestingData) Swap(i, j int) {
d.data[i], d.data[j] = d.data[j], d.data[i]
}
func newAdversaryTestingData(t *testing.T, size int, maxcmp int) *adversaryTestingData {
gas := size - 1
data := make([]int, size)
for i := 0; i < size; i++ {
data[i] = gas
}
return &adversaryTestingData{t: t, data: data, maxcmp: maxcmp, gas: gas}
}
func TestAdversary(t *testing.T) {
const size = 10000 // large enough to distinguish between O(n^2) and O(n*log(n))
maxcmp := size * lg(size) * 4 // the factor 4 was found by trial and error
d := newAdversaryTestingData(t, size, maxcmp)
Sort(d) // This should degenerate to heapsort.
// Check data is fully populated and sorted.
for i, v := range d.data {
if v != i {
t.Fatalf("adversary data not fully sorted")
}
}
}
func TestStableInts(t *testing.T) {
data := ints
Stable(IntSlice(data[0:]))
if !IntsAreSorted(data[0:]) {
t.Errorf("nsorted %v\n got %v", ints, data)
}
}
type intPairs []struct {
a, b int
}
// IntPairs compare on a only.
func (d intPairs) Len() int { return len(d) }
func (d intPairs) Less(i, j int) bool { return d[i].a < d[j].a }
func (d intPairs) Swap(i, j int) { d[i], d[j] = d[j], d[i] }
// Record initial order in B.
func (d intPairs) initB() {
for i := range d {
d[i].b = i
}
}
// InOrder checks if a-equal elements were not reordered.
func (d intPairs) inOrder() bool {
lastA, lastB := -1, 0
for i := 0; i < len(d); i++ {
if lastA != d[i].a {
lastA = d[i].a
lastB = d[i].b
continue
}
if d[i].b <= lastB {
return false
}
lastB = d[i].b
}
return true
}
func TestStability(t *testing.T) {
n, m := 100000, 1000
if testing.Short() {
n, m = 1000, 100
}
data := make(intPairs, n)
// random distribution
for i := 0; i < len(data); i++ {
data[i].a = rand.IntN(m)
}
if IsSorted(data) {
t.Fatalf("terrible rand.rand")
}
data.initB()
Stable(data)
if !IsSorted(data) {
t.Errorf("Stable didn't sort %d ints", n)
}
if !data.inOrder() {
t.Errorf("Stable wasn't stable on %d ints", n)
}
// already sorted
data.initB()
Stable(data)
if !IsSorted(data) {
t.Errorf("Stable shuffled sorted %d ints (order)", n)
}
if !data.inOrder() {
t.Errorf("Stable shuffled sorted %d ints (stability)", n)
}
// sorted reversed
for i := 0; i < len(data); i++ {
data[i].a = len(data) - i
}
data.initB()
Stable(data)
if !IsSorted(data) {
t.Errorf("Stable didn't sort %d ints", n)
}
if !data.inOrder() {
t.Errorf("Stable wasn't stable on %d ints", n)
}
}
var countOpsSizes = []int{1e2, 3e2, 1e3, 3e3, 1e4, 3e4, 1e5, 3e5, 1e6}
func countOps(t *testing.T, algo func(Interface), name string) {
sizes := countOpsSizes
if testing.Short() {
sizes = sizes[:5]
}
if !testing.Verbose() {
t.Skip("Counting skipped as non-verbose mode.")
}
for _, n := range sizes {
td := testingData{
desc: name,
t: t,
data: make([]int, n),
maxswap: 1<<31 - 1,
}
for i := 0; i < n; i++ {
td.data[i] = rand.IntN(n / 5)
}
algo(&td)
t.Logf("%s %8d elements: %11d Swap, %10d Less", name, n, td.nswap, td.ncmp)
}
}
func TestCountStableOps(t *testing.T) { countOps(t, Stable, "Stable") }
func TestCountSortOps(t *testing.T) { countOps(t, Sort, "Sort ") }
func bench(b *testing.B, size int, algo func(Interface), name string) {
if strings.HasSuffix(testenv.Builder(), "-race") && size > 1e4 {
b.Skip("skipping slow benchmark on race builder")
}
b.StopTimer()
data := make(intPairs, size)
x := ^uint32(0)
for i := 0; i < b.N; i++ {
for n := size - 3; n <= size+3; n++ {
for i := 0; i < len(data); i++ {
x += x
x ^= 1
if int32(x) < 0 {
x ^= 0x88888eef
}
data[i].a = int(x % uint32(n/5))
}
data.initB()
b.StartTimer()
algo(data)
b.StopTimer()
if !IsSorted(data) {
b.Errorf("%s did not sort %d ints", name, n)
}
if name == "Stable" && !data.inOrder() {
b.Errorf("%s unstable on %d ints", name, n)
}
}
}
}
func BenchmarkSort1e2(b *testing.B) { bench(b, 1e2, Sort, "Sort") }
func BenchmarkStable1e2(b *testing.B) { bench(b, 1e2, Stable, "Stable") }
func BenchmarkSort1e4(b *testing.B) { bench(b, 1e4, Sort, "Sort") }
func BenchmarkStable1e4(b *testing.B) { bench(b, 1e4, Stable, "Stable") }
func BenchmarkSort1e6(b *testing.B) { bench(b, 1e6, Sort, "Sort") }
func BenchmarkStable1e6(b *testing.B) { bench(b, 1e6, Stable, "Stable") }

479
src/sort/zsortfunc.go Normal file
View File

@@ -0,0 +1,479 @@
// Code generated by gen_sort_variants.go; DO NOT EDIT.
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sort
// insertionSort_func sorts data[a:b] using insertion sort.
func insertionSort_func(data lessSwap, a, b int) {
for i := a + 1; i < b; i++ {
for j := i; j > a && data.Less(j, j-1); j-- {
data.Swap(j, j-1)
}
}
}
// siftDown_func implements the heap property on data[lo:hi].
// first is an offset into the array where the root of the heap lies.
func siftDown_func(data lessSwap, lo, hi, first int) {
root := lo
for {
child := 2*root + 1
if child >= hi {
break
}
if child+1 < hi && data.Less(first+child, first+child+1) {
child++
}
if !data.Less(first+root, first+child) {
return
}
data.Swap(first+root, first+child)
root = child
}
}
func heapSort_func(data lessSwap, a, b int) {
first := a
lo := 0
hi := b - a
// Build heap with greatest element at top.
for i := (hi - 1) / 2; i >= 0; i-- {
siftDown_func(data, i, hi, first)
}
// Pop elements, largest first, into end of data.
for i := hi - 1; i >= 0; i-- {
data.Swap(first, first+i)
siftDown_func(data, lo, i, first)
}
}
// pdqsort_func sorts data[a:b].
// The algorithm based on pattern-defeating quicksort(pdqsort), but without the optimizations from BlockQuicksort.
// pdqsort paper: https://arxiv.org/pdf/2106.05123.pdf
// C++ implementation: https://github.com/orlp/pdqsort
// Rust implementation: https://docs.rs/pdqsort/latest/pdqsort/
// limit is the number of allowed bad (very unbalanced) pivots before falling back to heapsort.
func pdqsort_func(data lessSwap, a, b, limit int) {
const maxInsertion = 12
var (
wasBalanced = true // whether the last partitioning was reasonably balanced
wasPartitioned = true // whether the slice was already partitioned
)
for {
length := b - a
if length <= maxInsertion {
insertionSort_func(data, a, b)
return
}
// Fall back to heapsort if too many bad choices were made.
if limit == 0 {
heapSort_func(data, a, b)
return
}
// If the last partitioning was imbalanced, we need to breaking patterns.
if !wasBalanced {
breakPatterns_func(data, a, b)
limit--
}
pivot, hint := choosePivot_func(data, a, b)
if hint == decreasingHint {
reverseRange_func(data, a, b)
// The chosen pivot was pivot-a elements after the start of the array.
// After reversing it is pivot-a elements before the end of the array.
// The idea came from Rust's implementation.
pivot = (b - 1) - (pivot - a)
hint = increasingHint
}
// The slice is likely already sorted.
if wasBalanced && wasPartitioned && hint == increasingHint {
if partialInsertionSort_func(data, a, b) {
return
}
}
// Probably the slice contains many duplicate elements, partition the slice into
// elements equal to and elements greater than the pivot.
if a > 0 && !data.Less(a-1, pivot) {
mid := partitionEqual_func(data, a, b, pivot)
a = mid
continue
}
mid, alreadyPartitioned := partition_func(data, a, b, pivot)
wasPartitioned = alreadyPartitioned
leftLen, rightLen := mid-a, b-mid
balanceThreshold := length / 8
if leftLen < rightLen {
wasBalanced = leftLen >= balanceThreshold
pdqsort_func(data, a, mid, limit)
a = mid + 1
} else {
wasBalanced = rightLen >= balanceThreshold
pdqsort_func(data, mid+1, b, limit)
b = mid
}
}
}
// partition_func does one quicksort partition.
// Let p = data[pivot]
// Moves elements in data[a:b] around, so that data[i]<p and data[j]>=p for i<newpivot and j>newpivot.
// On return, data[newpivot] = p
func partition_func(data lessSwap, a, b, pivot int) (newpivot int, alreadyPartitioned bool) {
data.Swap(a, pivot)
i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
for i <= j && data.Less(i, a) {
i++
}
for i <= j && !data.Less(j, a) {
j--
}
if i > j {
data.Swap(j, a)
return j, true
}
data.Swap(i, j)
i++
j--
for {
for i <= j && data.Less(i, a) {
i++
}
for i <= j && !data.Less(j, a) {
j--
}
if i > j {
break
}
data.Swap(i, j)
i++
j--
}
data.Swap(j, a)
return j, false
}
// partitionEqual_func partitions data[a:b] into elements equal to data[pivot] followed by elements greater than data[pivot].
// It assumed that data[a:b] does not contain elements smaller than the data[pivot].
func partitionEqual_func(data lessSwap, a, b, pivot int) (newpivot int) {
data.Swap(a, pivot)
i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
for {
for i <= j && !data.Less(a, i) {
i++
}
for i <= j && data.Less(a, j) {
j--
}
if i > j {
break
}
data.Swap(i, j)
i++
j--
}
return i
}
// partialInsertionSort_func partially sorts a slice, returns true if the slice is sorted at the end.
func partialInsertionSort_func(data lessSwap, a, b int) bool {
const (
maxSteps = 5 // maximum number of adjacent out-of-order pairs that will get shifted
shortestShifting = 50 // don't shift any elements on short arrays
)
i := a + 1
for j := 0; j < maxSteps; j++ {
for i < b && !data.Less(i, i-1) {
i++
}
if i == b {
return true
}
if b-a < shortestShifting {
return false
}
data.Swap(i, i-1)
// Shift the smaller one to the left.
if i-a >= 2 {
for j := i - 1; j >= 1; j-- {
if !data.Less(j, j-1) {
break
}
data.Swap(j, j-1)
}
}
// Shift the greater one to the right.
if b-i >= 2 {
for j := i + 1; j < b; j++ {
if !data.Less(j, j-1) {
break
}
data.Swap(j, j-1)
}
}
}
return false
}
// breakPatterns_func scatters some elements around in an attempt to break some patterns
// that might cause imbalanced partitions in quicksort.
func breakPatterns_func(data lessSwap, a, b int) {
length := b - a
if length >= 8 {
random := xorshift(length)
modulus := nextPowerOfTwo(length)
for idx := a + (length/4)*2 - 1; idx <= a+(length/4)*2+1; idx++ {
other := int(uint(random.Next()) & (modulus - 1))
if other >= length {
other -= length
}
data.Swap(idx, a+other)
}
}
}
// choosePivot_func chooses a pivot in data[a:b].
//
// [0,8): chooses a static pivot.
// [8,shortestNinther): uses the simple median-of-three method.
// [shortestNinther,∞): uses the Tukey ninther method.
func choosePivot_func(data lessSwap, a, b int) (pivot int, hint sortedHint) {
const (
shortestNinther = 50
maxSwaps = 4 * 3
)
l := b - a
var (
swaps int
i = a + l/4*1
j = a + l/4*2
k = a + l/4*3
)
if l >= 8 {
if l >= shortestNinther {
// Tukey ninther method, the idea came from Rust's implementation.
i = medianAdjacent_func(data, i, &swaps)
j = medianAdjacent_func(data, j, &swaps)
k = medianAdjacent_func(data, k, &swaps)
}
// Find the median among i, j, k and stores it into j.
j = median_func(data, i, j, k, &swaps)
}
switch swaps {
case 0:
return j, increasingHint
case maxSwaps:
return j, decreasingHint
default:
return j, unknownHint
}
}
// order2_func returns x,y where data[x] <= data[y], where x,y=a,b or x,y=b,a.
func order2_func(data lessSwap, a, b int, swaps *int) (int, int) {
if data.Less(b, a) {
*swaps++
return b, a
}
return a, b
}
// median_func returns x where data[x] is the median of data[a],data[b],data[c], where x is a, b, or c.
func median_func(data lessSwap, a, b, c int, swaps *int) int {
a, b = order2_func(data, a, b, swaps)
b, c = order2_func(data, b, c, swaps)
a, b = order2_func(data, a, b, swaps)
return b
}
// medianAdjacent_func finds the median of data[a - 1], data[a], data[a + 1] and stores the index into a.
func medianAdjacent_func(data lessSwap, a int, swaps *int) int {
return median_func(data, a-1, a, a+1, swaps)
}
func reverseRange_func(data lessSwap, a, b int) {
i := a
j := b - 1
for i < j {
data.Swap(i, j)
i++
j--
}
}
func swapRange_func(data lessSwap, a, b, n int) {
for i := 0; i < n; i++ {
data.Swap(a+i, b+i)
}
}
func stable_func(data lessSwap, n int) {
blockSize := 20 // must be > 0
a, b := 0, blockSize
for b <= n {
insertionSort_func(data, a, b)
a = b
b += blockSize
}
insertionSort_func(data, a, n)
for blockSize < n {
a, b = 0, 2*blockSize
for b <= n {
symMerge_func(data, a, a+blockSize, b)
a = b
b += 2 * blockSize
}
if m := a + blockSize; m < n {
symMerge_func(data, a, m, n)
}
blockSize *= 2
}
}
// symMerge_func merges the two sorted subsequences data[a:m] and data[m:b] using
// the SymMerge algorithm from Pok-Son Kim and Arne Kutzner, "Stable Minimum
// Storage Merging by Symmetric Comparisons", in Susanne Albers and Tomasz
// Radzik, editors, Algorithms - ESA 2004, volume 3221 of Lecture Notes in
// Computer Science, pages 714-723. Springer, 2004.
//
// Let M = m-a and N = b-n. Wolog M < N.
// The recursion depth is bound by ceil(log(N+M)).
// The algorithm needs O(M*log(N/M + 1)) calls to data.Less.
// The algorithm needs O((M+N)*log(M)) calls to data.Swap.
//
// The paper gives O((M+N)*log(M)) as the number of assignments assuming a
// rotation algorithm which uses O(M+N+gcd(M+N)) assignments. The argumentation
// in the paper carries through for Swap operations, especially as the block
// swapping rotate uses only O(M+N) Swaps.
//
// symMerge assumes non-degenerate arguments: a < m && m < b.
// Having the caller check this condition eliminates many leaf recursion calls,
// which improves performance.
func symMerge_func(data lessSwap, a, m, b int) {
// Avoid unnecessary recursions of symMerge
// by direct insertion of data[a] into data[m:b]
// if data[a:m] only contains one element.
if m-a == 1 {
// Use binary search to find the lowest index i
// such that data[i] >= data[a] for m <= i < b.
// Exit the search loop with i == b in case no such index exists.
i := m
j := b
for i < j {
h := int(uint(i+j) >> 1)
if data.Less(h, a) {
i = h + 1
} else {
j = h
}
}
// Swap values until data[a] reaches the position before i.
for k := a; k < i-1; k++ {
data.Swap(k, k+1)
}
return
}
// Avoid unnecessary recursions of symMerge
// by direct insertion of data[m] into data[a:m]
// if data[m:b] only contains one element.
if b-m == 1 {
// Use binary search to find the lowest index i
// such that data[i] > data[m] for a <= i < m.
// Exit the search loop with i == m in case no such index exists.
i := a
j := m
for i < j {
h := int(uint(i+j) >> 1)
if !data.Less(m, h) {
i = h + 1
} else {
j = h
}
}
// Swap values until data[m] reaches the position i.
for k := m; k > i; k-- {
data.Swap(k, k-1)
}
return
}
mid := int(uint(a+b) >> 1)
n := mid + m
var start, r int
if m > mid {
start = n - b
r = mid
} else {
start = a
r = m
}
p := n - 1
for start < r {
c := int(uint(start+r) >> 1)
if !data.Less(p-c, c) {
start = c + 1
} else {
r = c
}
}
end := n - start
if start < m && m < end {
rotate_func(data, start, m, end)
}
if a < start && start < mid {
symMerge_func(data, a, start, mid)
}
if mid < end && end < b {
symMerge_func(data, mid, end, b)
}
}
// rotate_func rotates two consecutive blocks u = data[a:m] and v = data[m:b] in data:
// Data of the form 'x u v y' is changed to 'x v u y'.
// rotate performs at most b-a many calls to data.Swap,
// and it assumes non-degenerate arguments: a < m && m < b.
func rotate_func(data lessSwap, a, m, b int) {
i := m - a
j := b - m
for i != j {
if i > j {
swapRange_func(data, m-i, m, j)
i -= j
} else {
swapRange_func(data, m-i, m+j-i, i)
j -= i
}
}
// i == j
swapRange_func(data, m-i, m, i)
}

479
src/sort/zsortinterface.go Normal file
View File

@@ -0,0 +1,479 @@
// Code generated by gen_sort_variants.go; DO NOT EDIT.
// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sort
// insertionSort sorts data[a:b] using insertion sort.
func insertionSort(data Interface, a, b int) {
for i := a + 1; i < b; i++ {
for j := i; j > a && data.Less(j, j-1); j-- {
data.Swap(j, j-1)
}
}
}
// siftDown implements the heap property on data[lo:hi].
// first is an offset into the array where the root of the heap lies.
func siftDown(data Interface, lo, hi, first int) {
root := lo
for {
child := 2*root + 1
if child >= hi {
break
}
if child+1 < hi && data.Less(first+child, first+child+1) {
child++
}
if !data.Less(first+root, first+child) {
return
}
data.Swap(first+root, first+child)
root = child
}
}
func heapSort(data Interface, a, b int) {
first := a
lo := 0
hi := b - a
// Build heap with greatest element at top.
for i := (hi - 1) / 2; i >= 0; i-- {
siftDown(data, i, hi, first)
}
// Pop elements, largest first, into end of data.
for i := hi - 1; i >= 0; i-- {
data.Swap(first, first+i)
siftDown(data, lo, i, first)
}
}
// pdqsort sorts data[a:b].
// The algorithm based on pattern-defeating quicksort(pdqsort), but without the optimizations from BlockQuicksort.
// pdqsort paper: https://arxiv.org/pdf/2106.05123.pdf
// C++ implementation: https://github.com/orlp/pdqsort
// Rust implementation: https://docs.rs/pdqsort/latest/pdqsort/
// limit is the number of allowed bad (very unbalanced) pivots before falling back to heapsort.
func pdqsort(data Interface, a, b, limit int) {
const maxInsertion = 12
var (
wasBalanced = true // whether the last partitioning was reasonably balanced
wasPartitioned = true // whether the slice was already partitioned
)
for {
length := b - a
if length <= maxInsertion {
insertionSort(data, a, b)
return
}
// Fall back to heapsort if too many bad choices were made.
if limit == 0 {
heapSort(data, a, b)
return
}
// If the last partitioning was imbalanced, we need to breaking patterns.
if !wasBalanced {
breakPatterns(data, a, b)
limit--
}
pivot, hint := choosePivot(data, a, b)
if hint == decreasingHint {
reverseRange(data, a, b)
// The chosen pivot was pivot-a elements after the start of the array.
// After reversing it is pivot-a elements before the end of the array.
// The idea came from Rust's implementation.
pivot = (b - 1) - (pivot - a)
hint = increasingHint
}
// The slice is likely already sorted.
if wasBalanced && wasPartitioned && hint == increasingHint {
if partialInsertionSort(data, a, b) {
return
}
}
// Probably the slice contains many duplicate elements, partition the slice into
// elements equal to and elements greater than the pivot.
if a > 0 && !data.Less(a-1, pivot) {
mid := partitionEqual(data, a, b, pivot)
a = mid
continue
}
mid, alreadyPartitioned := partition(data, a, b, pivot)
wasPartitioned = alreadyPartitioned
leftLen, rightLen := mid-a, b-mid
balanceThreshold := length / 8
if leftLen < rightLen {
wasBalanced = leftLen >= balanceThreshold
pdqsort(data, a, mid, limit)
a = mid + 1
} else {
wasBalanced = rightLen >= balanceThreshold
pdqsort(data, mid+1, b, limit)
b = mid
}
}
}
// partition does one quicksort partition.
// Let p = data[pivot]
// Moves elements in data[a:b] around, so that data[i]<p and data[j]>=p for i<newpivot and j>newpivot.
// On return, data[newpivot] = p
func partition(data Interface, a, b, pivot int) (newpivot int, alreadyPartitioned bool) {
data.Swap(a, pivot)
i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
for i <= j && data.Less(i, a) {
i++
}
for i <= j && !data.Less(j, a) {
j--
}
if i > j {
data.Swap(j, a)
return j, true
}
data.Swap(i, j)
i++
j--
for {
for i <= j && data.Less(i, a) {
i++
}
for i <= j && !data.Less(j, a) {
j--
}
if i > j {
break
}
data.Swap(i, j)
i++
j--
}
data.Swap(j, a)
return j, false
}
// partitionEqual partitions data[a:b] into elements equal to data[pivot] followed by elements greater than data[pivot].
// It assumed that data[a:b] does not contain elements smaller than the data[pivot].
func partitionEqual(data Interface, a, b, pivot int) (newpivot int) {
data.Swap(a, pivot)
i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
for {
for i <= j && !data.Less(a, i) {
i++
}
for i <= j && data.Less(a, j) {
j--
}
if i > j {
break
}
data.Swap(i, j)
i++
j--
}
return i
}
// partialInsertionSort partially sorts a slice, returns true if the slice is sorted at the end.
func partialInsertionSort(data Interface, a, b int) bool {
const (
maxSteps = 5 // maximum number of adjacent out-of-order pairs that will get shifted
shortestShifting = 50 // don't shift any elements on short arrays
)
i := a + 1
for j := 0; j < maxSteps; j++ {
for i < b && !data.Less(i, i-1) {
i++
}
if i == b {
return true
}
if b-a < shortestShifting {
return false
}
data.Swap(i, i-1)
// Shift the smaller one to the left.
if i-a >= 2 {
for j := i - 1; j >= 1; j-- {
if !data.Less(j, j-1) {
break
}
data.Swap(j, j-1)
}
}
// Shift the greater one to the right.
if b-i >= 2 {
for j := i + 1; j < b; j++ {
if !data.Less(j, j-1) {
break
}
data.Swap(j, j-1)
}
}
}
return false
}
// breakPatterns scatters some elements around in an attempt to break some patterns
// that might cause imbalanced partitions in quicksort.
func breakPatterns(data Interface, a, b int) {
length := b - a
if length >= 8 {
random := xorshift(length)
modulus := nextPowerOfTwo(length)
for idx := a + (length/4)*2 - 1; idx <= a+(length/4)*2+1; idx++ {
other := int(uint(random.Next()) & (modulus - 1))
if other >= length {
other -= length
}
data.Swap(idx, a+other)
}
}
}
// choosePivot chooses a pivot in data[a:b].
//
// [0,8): chooses a static pivot.
// [8,shortestNinther): uses the simple median-of-three method.
// [shortestNinther,∞): uses the Tukey ninther method.
func choosePivot(data Interface, a, b int) (pivot int, hint sortedHint) {
const (
shortestNinther = 50
maxSwaps = 4 * 3
)
l := b - a
var (
swaps int
i = a + l/4*1
j = a + l/4*2
k = a + l/4*3
)
if l >= 8 {
if l >= shortestNinther {
// Tukey ninther method, the idea came from Rust's implementation.
i = medianAdjacent(data, i, &swaps)
j = medianAdjacent(data, j, &swaps)
k = medianAdjacent(data, k, &swaps)
}
// Find the median among i, j, k and stores it into j.
j = median(data, i, j, k, &swaps)
}
switch swaps {
case 0:
return j, increasingHint
case maxSwaps:
return j, decreasingHint
default:
return j, unknownHint
}
}
// order2 returns x,y where data[x] <= data[y], where x,y=a,b or x,y=b,a.
func order2(data Interface, a, b int, swaps *int) (int, int) {
if data.Less(b, a) {
*swaps++
return b, a
}
return a, b
}
// median returns x where data[x] is the median of data[a],data[b],data[c], where x is a, b, or c.
func median(data Interface, a, b, c int, swaps *int) int {
a, b = order2(data, a, b, swaps)
b, c = order2(data, b, c, swaps)
a, b = order2(data, a, b, swaps)
return b
}
// medianAdjacent finds the median of data[a - 1], data[a], data[a + 1] and stores the index into a.
func medianAdjacent(data Interface, a int, swaps *int) int {
return median(data, a-1, a, a+1, swaps)
}
func reverseRange(data Interface, a, b int) {
i := a
j := b - 1
for i < j {
data.Swap(i, j)
i++
j--
}
}
func swapRange(data Interface, a, b, n int) {
for i := 0; i < n; i++ {
data.Swap(a+i, b+i)
}
}
func stable(data Interface, n int) {
blockSize := 20 // must be > 0
a, b := 0, blockSize
for b <= n {
insertionSort(data, a, b)
a = b
b += blockSize
}
insertionSort(data, a, n)
for blockSize < n {
a, b = 0, 2*blockSize
for b <= n {
symMerge(data, a, a+blockSize, b)
a = b
b += 2 * blockSize
}
if m := a + blockSize; m < n {
symMerge(data, a, m, n)
}
blockSize *= 2
}
}
// symMerge merges the two sorted subsequences data[a:m] and data[m:b] using
// the SymMerge algorithm from Pok-Son Kim and Arne Kutzner, "Stable Minimum
// Storage Merging by Symmetric Comparisons", in Susanne Albers and Tomasz
// Radzik, editors, Algorithms - ESA 2004, volume 3221 of Lecture Notes in
// Computer Science, pages 714-723. Springer, 2004.
//
// Let M = m-a and N = b-n. Wolog M < N.
// The recursion depth is bound by ceil(log(N+M)).
// The algorithm needs O(M*log(N/M + 1)) calls to data.Less.
// The algorithm needs O((M+N)*log(M)) calls to data.Swap.
//
// The paper gives O((M+N)*log(M)) as the number of assignments assuming a
// rotation algorithm which uses O(M+N+gcd(M+N)) assignments. The argumentation
// in the paper carries through for Swap operations, especially as the block
// swapping rotate uses only O(M+N) Swaps.
//
// symMerge assumes non-degenerate arguments: a < m && m < b.
// Having the caller check this condition eliminates many leaf recursion calls,
// which improves performance.
func symMerge(data Interface, a, m, b int) {
// Avoid unnecessary recursions of symMerge
// by direct insertion of data[a] into data[m:b]
// if data[a:m] only contains one element.
if m-a == 1 {
// Use binary search to find the lowest index i
// such that data[i] >= data[a] for m <= i < b.
// Exit the search loop with i == b in case no such index exists.
i := m
j := b
for i < j {
h := int(uint(i+j) >> 1)
if data.Less(h, a) {
i = h + 1
} else {
j = h
}
}
// Swap values until data[a] reaches the position before i.
for k := a; k < i-1; k++ {
data.Swap(k, k+1)
}
return
}
// Avoid unnecessary recursions of symMerge
// by direct insertion of data[m] into data[a:m]
// if data[m:b] only contains one element.
if b-m == 1 {
// Use binary search to find the lowest index i
// such that data[i] > data[m] for a <= i < m.
// Exit the search loop with i == m in case no such index exists.
i := a
j := m
for i < j {
h := int(uint(i+j) >> 1)
if !data.Less(m, h) {
i = h + 1
} else {
j = h
}
}
// Swap values until data[m] reaches the position i.
for k := m; k > i; k-- {
data.Swap(k, k-1)
}
return
}
mid := int(uint(a+b) >> 1)
n := mid + m
var start, r int
if m > mid {
start = n - b
r = mid
} else {
start = a
r = m
}
p := n - 1
for start < r {
c := int(uint(start+r) >> 1)
if !data.Less(p-c, c) {
start = c + 1
} else {
r = c
}
}
end := n - start
if start < m && m < end {
rotate(data, start, m, end)
}
if a < start && start < mid {
symMerge(data, a, start, mid)
}
if mid < end && end < b {
symMerge(data, mid, end, b)
}
}
// rotate rotates two consecutive blocks u = data[a:m] and v = data[m:b] in data:
// Data of the form 'x u v y' is changed to 'x v u y'.
// rotate performs at most b-a many calls to data.Swap,
// and it assumes non-degenerate arguments: a < m && m < b.
func rotate(data Interface, a, m, b int) {
i := m - a
j := b - m
for i != j {
if i > j {
swapRange(data, m-i, m, j)
i -= j
} else {
swapRange(data, m-i, m+j-i, i)
j -= i
}
}
// i == j
swapRange(data, m-i, m, i)
}