Initial commit: Go 1.23 release state
This commit is contained in:
741
test/chan/powser1.go
Normal file
741
test/chan/powser1.go
Normal file
@@ -0,0 +1,741 @@
|
||||
// run
|
||||
|
||||
// Copyright 2009 The Go Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// Test concurrency primitives: power series.
|
||||
|
||||
// Power series package
|
||||
// A power series is a channel, along which flow rational
|
||||
// coefficients. A denominator of zero signifies the end.
|
||||
// Original code in Newsqueak by Doug McIlroy.
|
||||
// See Squinting at Power Series by Doug McIlroy,
|
||||
// https://swtch.com/~rsc/thread/squint.pdf
|
||||
|
||||
package main
|
||||
|
||||
import "os"
|
||||
|
||||
type rat struct {
|
||||
num, den int64 // numerator, denominator
|
||||
}
|
||||
|
||||
func (u rat) pr() {
|
||||
if u.den == 1 {
|
||||
print(u.num)
|
||||
} else {
|
||||
print(u.num, "/", u.den)
|
||||
}
|
||||
print(" ")
|
||||
}
|
||||
|
||||
func (u rat) eq(c rat) bool {
|
||||
return u.num == c.num && u.den == c.den
|
||||
}
|
||||
|
||||
type dch struct {
|
||||
req chan int
|
||||
dat chan rat
|
||||
nam int
|
||||
}
|
||||
|
||||
type dch2 [2]*dch
|
||||
|
||||
var chnames string
|
||||
var chnameserial int
|
||||
var seqno int
|
||||
|
||||
func mkdch() *dch {
|
||||
c := chnameserial % len(chnames)
|
||||
chnameserial++
|
||||
d := new(dch)
|
||||
d.req = make(chan int)
|
||||
d.dat = make(chan rat)
|
||||
d.nam = c
|
||||
return d
|
||||
}
|
||||
|
||||
func mkdch2() *dch2 {
|
||||
d2 := new(dch2)
|
||||
d2[0] = mkdch()
|
||||
d2[1] = mkdch()
|
||||
return d2
|
||||
}
|
||||
|
||||
// split reads a single demand channel and replicates its
|
||||
// output onto two, which may be read at different rates.
|
||||
// A process is created at first demand for a rat and dies
|
||||
// after the rat has been sent to both outputs.
|
||||
|
||||
// When multiple generations of split exist, the newest
|
||||
// will service requests on one channel, which is
|
||||
// always renamed to be out[0]; the oldest will service
|
||||
// requests on the other channel, out[1]. All generations but the
|
||||
// newest hold queued data that has already been sent to
|
||||
// out[0]. When data has finally been sent to out[1],
|
||||
// a signal on the release-wait channel tells the next newer
|
||||
// generation to begin servicing out[1].
|
||||
|
||||
func dosplit(in *dch, out *dch2, wait chan int) {
|
||||
both := false // do not service both channels
|
||||
|
||||
select {
|
||||
case <-out[0].req:
|
||||
|
||||
case <-wait:
|
||||
both = true
|
||||
select {
|
||||
case <-out[0].req:
|
||||
|
||||
case <-out[1].req:
|
||||
out[0], out[1] = out[1], out[0]
|
||||
}
|
||||
}
|
||||
|
||||
seqno++
|
||||
in.req <- seqno
|
||||
release := make(chan int)
|
||||
go dosplit(in, out, release)
|
||||
dat := <-in.dat
|
||||
out[0].dat <- dat
|
||||
if !both {
|
||||
<-wait
|
||||
}
|
||||
<-out[1].req
|
||||
out[1].dat <- dat
|
||||
release <- 0
|
||||
}
|
||||
|
||||
func split(in *dch, out *dch2) {
|
||||
release := make(chan int)
|
||||
go dosplit(in, out, release)
|
||||
release <- 0
|
||||
}
|
||||
|
||||
func put(dat rat, out *dch) {
|
||||
<-out.req
|
||||
out.dat <- dat
|
||||
}
|
||||
|
||||
func get(in *dch) rat {
|
||||
seqno++
|
||||
in.req <- seqno
|
||||
return <-in.dat
|
||||
}
|
||||
|
||||
// Get one rat from each of n demand channels
|
||||
|
||||
func getn(in []*dch) []rat {
|
||||
n := len(in)
|
||||
if n != 2 {
|
||||
panic("bad n in getn")
|
||||
}
|
||||
req := new([2]chan int)
|
||||
dat := new([2]chan rat)
|
||||
out := make([]rat, 2)
|
||||
var i int
|
||||
var it rat
|
||||
for i = 0; i < n; i++ {
|
||||
req[i] = in[i].req
|
||||
dat[i] = nil
|
||||
}
|
||||
for n = 2 * n; n > 0; n-- {
|
||||
seqno++
|
||||
|
||||
select {
|
||||
case req[0] <- seqno:
|
||||
dat[0] = in[0].dat
|
||||
req[0] = nil
|
||||
case req[1] <- seqno:
|
||||
dat[1] = in[1].dat
|
||||
req[1] = nil
|
||||
case it = <-dat[0]:
|
||||
out[0] = it
|
||||
dat[0] = nil
|
||||
case it = <-dat[1]:
|
||||
out[1] = it
|
||||
dat[1] = nil
|
||||
}
|
||||
}
|
||||
return out
|
||||
}
|
||||
|
||||
// Get one rat from each of 2 demand channels
|
||||
|
||||
func get2(in0 *dch, in1 *dch) []rat {
|
||||
return getn([]*dch{in0, in1})
|
||||
}
|
||||
|
||||
func copy(in *dch, out *dch) {
|
||||
for {
|
||||
<-out.req
|
||||
out.dat <- get(in)
|
||||
}
|
||||
}
|
||||
|
||||
func repeat(dat rat, out *dch) {
|
||||
for {
|
||||
put(dat, out)
|
||||
}
|
||||
}
|
||||
|
||||
type PS *dch // power series
|
||||
type PS2 *[2]PS // pair of power series
|
||||
|
||||
var Ones PS
|
||||
var Twos PS
|
||||
|
||||
func mkPS() *dch {
|
||||
return mkdch()
|
||||
}
|
||||
|
||||
func mkPS2() *dch2 {
|
||||
return mkdch2()
|
||||
}
|
||||
|
||||
// Conventions
|
||||
// Upper-case for power series.
|
||||
// Lower-case for rationals.
|
||||
// Input variables: U,V,...
|
||||
// Output variables: ...,Y,Z
|
||||
|
||||
// Integer gcd; needed for rational arithmetic
|
||||
|
||||
func gcd(u, v int64) int64 {
|
||||
if u < 0 {
|
||||
return gcd(-u, v)
|
||||
}
|
||||
if u == 0 {
|
||||
return v
|
||||
}
|
||||
return gcd(v%u, u)
|
||||
}
|
||||
|
||||
// Make a rational from two ints and from one int
|
||||
|
||||
func i2tor(u, v int64) rat {
|
||||
g := gcd(u, v)
|
||||
var r rat
|
||||
if v > 0 {
|
||||
r.num = u / g
|
||||
r.den = v / g
|
||||
} else {
|
||||
r.num = -u / g
|
||||
r.den = -v / g
|
||||
}
|
||||
return r
|
||||
}
|
||||
|
||||
func itor(u int64) rat {
|
||||
return i2tor(u, 1)
|
||||
}
|
||||
|
||||
var zero rat
|
||||
var one rat
|
||||
|
||||
// End mark and end test
|
||||
|
||||
var finis rat
|
||||
|
||||
func end(u rat) int64 {
|
||||
if u.den == 0 {
|
||||
return 1
|
||||
}
|
||||
return 0
|
||||
}
|
||||
|
||||
// Operations on rationals
|
||||
|
||||
func add(u, v rat) rat {
|
||||
g := gcd(u.den, v.den)
|
||||
return i2tor(u.num*(v.den/g)+v.num*(u.den/g), u.den*(v.den/g))
|
||||
}
|
||||
|
||||
func mul(u, v rat) rat {
|
||||
g1 := gcd(u.num, v.den)
|
||||
g2 := gcd(u.den, v.num)
|
||||
var r rat
|
||||
r.num = (u.num / g1) * (v.num / g2)
|
||||
r.den = (u.den / g2) * (v.den / g1)
|
||||
return r
|
||||
}
|
||||
|
||||
func neg(u rat) rat {
|
||||
return i2tor(-u.num, u.den)
|
||||
}
|
||||
|
||||
func sub(u, v rat) rat {
|
||||
return add(u, neg(v))
|
||||
}
|
||||
|
||||
func inv(u rat) rat { // invert a rat
|
||||
if u.num == 0 {
|
||||
panic("zero divide in inv")
|
||||
}
|
||||
return i2tor(u.den, u.num)
|
||||
}
|
||||
|
||||
// print eval in floating point of PS at x=c to n terms
|
||||
func evaln(c rat, U PS, n int) {
|
||||
xn := float64(1)
|
||||
x := float64(c.num) / float64(c.den)
|
||||
val := float64(0)
|
||||
for i := 0; i < n; i++ {
|
||||
u := get(U)
|
||||
if end(u) != 0 {
|
||||
break
|
||||
}
|
||||
val = val + x*float64(u.num)/float64(u.den)
|
||||
xn = xn * x
|
||||
}
|
||||
print(val, "\n")
|
||||
}
|
||||
|
||||
// Print n terms of a power series
|
||||
func printn(U PS, n int) {
|
||||
done := false
|
||||
for ; !done && n > 0; n-- {
|
||||
u := get(U)
|
||||
if end(u) != 0 {
|
||||
done = true
|
||||
} else {
|
||||
u.pr()
|
||||
}
|
||||
}
|
||||
print(("\n"))
|
||||
}
|
||||
|
||||
// Evaluate n terms of power series U at x=c
|
||||
func eval(c rat, U PS, n int) rat {
|
||||
if n == 0 {
|
||||
return zero
|
||||
}
|
||||
y := get(U)
|
||||
if end(y) != 0 {
|
||||
return zero
|
||||
}
|
||||
return add(y, mul(c, eval(c, U, n-1)))
|
||||
}
|
||||
|
||||
// Power-series constructors return channels on which power
|
||||
// series flow. They start an encapsulated generator that
|
||||
// puts the terms of the series on the channel.
|
||||
|
||||
// Make a pair of power series identical to a given power series
|
||||
|
||||
func Split(U PS) *dch2 {
|
||||
UU := mkdch2()
|
||||
go split(U, UU)
|
||||
return UU
|
||||
}
|
||||
|
||||
// Add two power series
|
||||
func Add(U, V PS) PS {
|
||||
Z := mkPS()
|
||||
go func() {
|
||||
var uv []rat
|
||||
for {
|
||||
<-Z.req
|
||||
uv = get2(U, V)
|
||||
switch end(uv[0]) + 2*end(uv[1]) {
|
||||
case 0:
|
||||
Z.dat <- add(uv[0], uv[1])
|
||||
case 1:
|
||||
Z.dat <- uv[1]
|
||||
copy(V, Z)
|
||||
case 2:
|
||||
Z.dat <- uv[0]
|
||||
copy(U, Z)
|
||||
case 3:
|
||||
Z.dat <- finis
|
||||
}
|
||||
}
|
||||
}()
|
||||
return Z
|
||||
}
|
||||
|
||||
// Multiply a power series by a constant
|
||||
func Cmul(c rat, U PS) PS {
|
||||
Z := mkPS()
|
||||
go func() {
|
||||
done := false
|
||||
for !done {
|
||||
<-Z.req
|
||||
u := get(U)
|
||||
if end(u) != 0 {
|
||||
done = true
|
||||
} else {
|
||||
Z.dat <- mul(c, u)
|
||||
}
|
||||
}
|
||||
Z.dat <- finis
|
||||
}()
|
||||
return Z
|
||||
}
|
||||
|
||||
// Subtract
|
||||
|
||||
func Sub(U, V PS) PS {
|
||||
return Add(U, Cmul(neg(one), V))
|
||||
}
|
||||
|
||||
// Multiply a power series by the monomial x^n
|
||||
|
||||
func Monmul(U PS, n int) PS {
|
||||
Z := mkPS()
|
||||
go func() {
|
||||
for ; n > 0; n-- {
|
||||
put(zero, Z)
|
||||
}
|
||||
copy(U, Z)
|
||||
}()
|
||||
return Z
|
||||
}
|
||||
|
||||
// Multiply by x
|
||||
|
||||
func Xmul(U PS) PS {
|
||||
return Monmul(U, 1)
|
||||
}
|
||||
|
||||
func Rep(c rat) PS {
|
||||
Z := mkPS()
|
||||
go repeat(c, Z)
|
||||
return Z
|
||||
}
|
||||
|
||||
// Monomial c*x^n
|
||||
|
||||
func Mon(c rat, n int) PS {
|
||||
Z := mkPS()
|
||||
go func() {
|
||||
if c.num != 0 {
|
||||
for ; n > 0; n = n - 1 {
|
||||
put(zero, Z)
|
||||
}
|
||||
put(c, Z)
|
||||
}
|
||||
put(finis, Z)
|
||||
}()
|
||||
return Z
|
||||
}
|
||||
|
||||
func Shift(c rat, U PS) PS {
|
||||
Z := mkPS()
|
||||
go func() {
|
||||
put(c, Z)
|
||||
copy(U, Z)
|
||||
}()
|
||||
return Z
|
||||
}
|
||||
|
||||
// simple pole at 1: 1/(1-x) = 1 1 1 1 1 ...
|
||||
|
||||
// Convert array of coefficients, constant term first
|
||||
// to a (finite) power series
|
||||
|
||||
/*
|
||||
func Poly(a []rat) PS {
|
||||
Z:=mkPS()
|
||||
begin func(a []rat, Z PS) {
|
||||
j:=0
|
||||
done:=0
|
||||
for j=len(a); !done&&j>0; j=j-1)
|
||||
if(a[j-1].num!=0) done=1
|
||||
i:=0
|
||||
for(; i<j; i=i+1) put(a[i],Z)
|
||||
put(finis,Z)
|
||||
}()
|
||||
return Z
|
||||
}
|
||||
*/
|
||||
|
||||
// Multiply. The algorithm is
|
||||
// let U = u + x*UU
|
||||
// let V = v + x*VV
|
||||
// then UV = u*v + x*(u*VV+v*UU) + x*x*UU*VV
|
||||
|
||||
func Mul(U, V PS) PS {
|
||||
Z := mkPS()
|
||||
go func() {
|
||||
<-Z.req
|
||||
uv := get2(U, V)
|
||||
if end(uv[0]) != 0 || end(uv[1]) != 0 {
|
||||
Z.dat <- finis
|
||||
} else {
|
||||
Z.dat <- mul(uv[0], uv[1])
|
||||
UU := Split(U)
|
||||
VV := Split(V)
|
||||
W := Add(Cmul(uv[0], VV[0]), Cmul(uv[1], UU[0]))
|
||||
<-Z.req
|
||||
Z.dat <- get(W)
|
||||
copy(Add(W, Mul(UU[1], VV[1])), Z)
|
||||
}
|
||||
}()
|
||||
return Z
|
||||
}
|
||||
|
||||
// Differentiate
|
||||
|
||||
func Diff(U PS) PS {
|
||||
Z := mkPS()
|
||||
go func() {
|
||||
<-Z.req
|
||||
u := get(U)
|
||||
if end(u) == 0 {
|
||||
done := false
|
||||
for i := 1; !done; i++ {
|
||||
u = get(U)
|
||||
if end(u) != 0 {
|
||||
done = true
|
||||
} else {
|
||||
Z.dat <- mul(itor(int64(i)), u)
|
||||
<-Z.req
|
||||
}
|
||||
}
|
||||
}
|
||||
Z.dat <- finis
|
||||
}()
|
||||
return Z
|
||||
}
|
||||
|
||||
// Integrate, with const of integration
|
||||
func Integ(c rat, U PS) PS {
|
||||
Z := mkPS()
|
||||
go func() {
|
||||
put(c, Z)
|
||||
done := false
|
||||
for i := 1; !done; i++ {
|
||||
<-Z.req
|
||||
u := get(U)
|
||||
if end(u) != 0 {
|
||||
done = true
|
||||
}
|
||||
Z.dat <- mul(i2tor(1, int64(i)), u)
|
||||
}
|
||||
Z.dat <- finis
|
||||
}()
|
||||
return Z
|
||||
}
|
||||
|
||||
// Binomial theorem (1+x)^c
|
||||
|
||||
func Binom(c rat) PS {
|
||||
Z := mkPS()
|
||||
go func() {
|
||||
n := 1
|
||||
t := itor(1)
|
||||
for c.num != 0 {
|
||||
put(t, Z)
|
||||
t = mul(mul(t, c), i2tor(1, int64(n)))
|
||||
c = sub(c, one)
|
||||
n++
|
||||
}
|
||||
put(finis, Z)
|
||||
}()
|
||||
return Z
|
||||
}
|
||||
|
||||
// Reciprocal of a power series
|
||||
// let U = u + x*UU
|
||||
// let Z = z + x*ZZ
|
||||
// (u+x*UU)*(z+x*ZZ) = 1
|
||||
// z = 1/u
|
||||
// u*ZZ + z*UU +x*UU*ZZ = 0
|
||||
// ZZ = -UU*(z+x*ZZ)/u
|
||||
|
||||
func Recip(U PS) PS {
|
||||
Z := mkPS()
|
||||
go func() {
|
||||
ZZ := mkPS2()
|
||||
<-Z.req
|
||||
z := inv(get(U))
|
||||
Z.dat <- z
|
||||
split(Mul(Cmul(neg(z), U), Shift(z, ZZ[0])), ZZ)
|
||||
copy(ZZ[1], Z)
|
||||
}()
|
||||
return Z
|
||||
}
|
||||
|
||||
// Exponential of a power series with constant term 0
|
||||
// (nonzero constant term would make nonrational coefficients)
|
||||
// bug: the constant term is simply ignored
|
||||
// Z = exp(U)
|
||||
// DZ = Z*DU
|
||||
// integrate to get Z
|
||||
|
||||
func Exp(U PS) PS {
|
||||
ZZ := mkPS2()
|
||||
split(Integ(one, Mul(ZZ[0], Diff(U))), ZZ)
|
||||
return ZZ[1]
|
||||
}
|
||||
|
||||
// Substitute V for x in U, where the leading term of V is zero
|
||||
// let U = u + x*UU
|
||||
// let V = v + x*VV
|
||||
// then S(U,V) = u + VV*S(V,UU)
|
||||
// bug: a nonzero constant term is ignored
|
||||
|
||||
func Subst(U, V PS) PS {
|
||||
Z := mkPS()
|
||||
go func() {
|
||||
VV := Split(V)
|
||||
<-Z.req
|
||||
u := get(U)
|
||||
Z.dat <- u
|
||||
if end(u) == 0 {
|
||||
if end(get(VV[0])) != 0 {
|
||||
put(finis, Z)
|
||||
} else {
|
||||
copy(Mul(VV[0], Subst(U, VV[1])), Z)
|
||||
}
|
||||
}
|
||||
}()
|
||||
return Z
|
||||
}
|
||||
|
||||
// Monomial Substitution: U(c x^n)
|
||||
// Each Ui is multiplied by c^i and followed by n-1 zeros
|
||||
|
||||
func MonSubst(U PS, c0 rat, n int) PS {
|
||||
Z := mkPS()
|
||||
go func() {
|
||||
c := one
|
||||
for {
|
||||
<-Z.req
|
||||
u := get(U)
|
||||
Z.dat <- mul(u, c)
|
||||
c = mul(c, c0)
|
||||
if end(u) != 0 {
|
||||
Z.dat <- finis
|
||||
break
|
||||
}
|
||||
for i := 1; i < n; i++ {
|
||||
<-Z.req
|
||||
Z.dat <- zero
|
||||
}
|
||||
}
|
||||
}()
|
||||
return Z
|
||||
}
|
||||
|
||||
func Init() {
|
||||
chnameserial = -1
|
||||
seqno = 0
|
||||
chnames = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
|
||||
zero = itor(0)
|
||||
one = itor(1)
|
||||
finis = i2tor(1, 0)
|
||||
Ones = Rep(one)
|
||||
Twos = Rep(itor(2))
|
||||
}
|
||||
|
||||
func check(U PS, c rat, count int, str string) {
|
||||
for i := 0; i < count; i++ {
|
||||
r := get(U)
|
||||
if !r.eq(c) {
|
||||
print("got: ")
|
||||
r.pr()
|
||||
print("should get ")
|
||||
c.pr()
|
||||
print("\n")
|
||||
panic(str)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const N = 10
|
||||
|
||||
func checka(U PS, a []rat, str string) {
|
||||
for i := 0; i < N; i++ {
|
||||
check(U, a[i], 1, str)
|
||||
}
|
||||
}
|
||||
|
||||
func main() {
|
||||
Init()
|
||||
if len(os.Args) > 1 { // print
|
||||
print("Ones: ")
|
||||
printn(Ones, 10)
|
||||
print("Twos: ")
|
||||
printn(Twos, 10)
|
||||
print("Add: ")
|
||||
printn(Add(Ones, Twos), 10)
|
||||
print("Diff: ")
|
||||
printn(Diff(Ones), 10)
|
||||
print("Integ: ")
|
||||
printn(Integ(zero, Ones), 10)
|
||||
print("CMul: ")
|
||||
printn(Cmul(neg(one), Ones), 10)
|
||||
print("Sub: ")
|
||||
printn(Sub(Ones, Twos), 10)
|
||||
print("Mul: ")
|
||||
printn(Mul(Ones, Ones), 10)
|
||||
print("Exp: ")
|
||||
printn(Exp(Ones), 15)
|
||||
print("MonSubst: ")
|
||||
printn(MonSubst(Ones, neg(one), 2), 10)
|
||||
print("ATan: ")
|
||||
printn(Integ(zero, MonSubst(Ones, neg(one), 2)), 10)
|
||||
} else { // test
|
||||
check(Ones, one, 5, "Ones")
|
||||
check(Add(Ones, Ones), itor(2), 0, "Add Ones Ones") // 1 1 1 1 1
|
||||
check(Add(Ones, Twos), itor(3), 0, "Add Ones Twos") // 3 3 3 3 3
|
||||
a := make([]rat, N)
|
||||
d := Diff(Ones)
|
||||
for i := 0; i < N; i++ {
|
||||
a[i] = itor(int64(i + 1))
|
||||
}
|
||||
checka(d, a, "Diff") // 1 2 3 4 5
|
||||
in := Integ(zero, Ones)
|
||||
a[0] = zero // integration constant
|
||||
for i := 1; i < N; i++ {
|
||||
a[i] = i2tor(1, int64(i))
|
||||
}
|
||||
checka(in, a, "Integ") // 0 1 1/2 1/3 1/4 1/5
|
||||
check(Cmul(neg(one), Twos), itor(-2), 10, "CMul") // -1 -1 -1 -1 -1
|
||||
check(Sub(Ones, Twos), itor(-1), 0, "Sub Ones Twos") // -1 -1 -1 -1 -1
|
||||
m := Mul(Ones, Ones)
|
||||
for i := 0; i < N; i++ {
|
||||
a[i] = itor(int64(i + 1))
|
||||
}
|
||||
checka(m, a, "Mul") // 1 2 3 4 5
|
||||
e := Exp(Ones)
|
||||
a[0] = itor(1)
|
||||
a[1] = itor(1)
|
||||
a[2] = i2tor(3, 2)
|
||||
a[3] = i2tor(13, 6)
|
||||
a[4] = i2tor(73, 24)
|
||||
a[5] = i2tor(167, 40)
|
||||
a[6] = i2tor(4051, 720)
|
||||
a[7] = i2tor(37633, 5040)
|
||||
a[8] = i2tor(43817, 4480)
|
||||
a[9] = i2tor(4596553, 362880)
|
||||
checka(e, a, "Exp") // 1 1 3/2 13/6 73/24
|
||||
at := Integ(zero, MonSubst(Ones, neg(one), 2))
|
||||
for c, i := 1, 0; i < N; i++ {
|
||||
if i%2 == 0 {
|
||||
a[i] = zero
|
||||
} else {
|
||||
a[i] = i2tor(int64(c), int64(i))
|
||||
c *= -1
|
||||
}
|
||||
}
|
||||
checka(at, a, "ATan") // 0 -1 0 -1/3 0 -1/5
|
||||
/*
|
||||
t := Revert(Integ(zero, MonSubst(Ones, neg(one), 2)))
|
||||
a[0] = zero
|
||||
a[1] = itor(1)
|
||||
a[2] = zero
|
||||
a[3] = i2tor(1,3)
|
||||
a[4] = zero
|
||||
a[5] = i2tor(2,15)
|
||||
a[6] = zero
|
||||
a[7] = i2tor(17,315)
|
||||
a[8] = zero
|
||||
a[9] = i2tor(62,2835)
|
||||
checka(t, a, "Tan") // 0 1 0 1/3 0 2/15
|
||||
*/
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user