Aktualizacja: 2025-10-16 17:40:37

This commit is contained in:
wesmar
2025-10-16 17:40:37 +02:00
parent 9926238fb0
commit 7620fd8aa8
4 changed files with 1356 additions and 263 deletions

1271
kvc/Utils - Copy.cpp Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -1,13 +1,4 @@
/** // Utils.cpp - Core utility functions for process management, memory operations, and system utilities
* @file Utils.cpp
* @brief Core utility functions for process management, memory operations, and system utilities
* @author Marek Wesolowski
* @date 2025
* @copyright KVC Framework
*
* This module provides essential utility functions used throughout the KVC framework,
* including process resolution, protection level management, and memory operations.
*/
#include "Utils.h" #include "Utils.h"
#include "common.h" #include "common.h"
@@ -63,38 +54,22 @@ namespace Utils {
// CONSTANTS AND DEFINITIONS // CONSTANTS AND DEFINITIONS
// ============================================================================ // ============================================================================
/** @brief Maximum process name length for resolution */
constexpr int MAX_PROCESS_NAME_LENGTH = 256; constexpr int MAX_PROCESS_NAME_LENGTH = 256;
/** @brief Maximum path length for system operations */
constexpr int MAX_PATH_LENGTH = 32767; constexpr int MAX_PATH_LENGTH = 32767;
/** @brief Buffer size for kernel address resolution */
constexpr int KERNEL_BUFFER_SIZE = 4096; constexpr int KERNEL_BUFFER_SIZE = 4096;
// ============================================================================ // ============================================================================
// PROCESS MANAGEMENT UTILITIES // PROCESS MANAGEMENT UTILITIES
// ============================================================================ // ============================================================================
/** // Resolves process name from PID using multiple fallback strategies
* @brief Resolves process name from PID with comprehensive fallback mechanisms // Tries Toolhelp32Snapshot first, then OpenProcess, handles protected processes
*
* Attempts multiple resolution strategies:
* 1. Toolhelp32Snapshot API (primary)
* 2. OpenProcess + GetModuleFileNameEx (fallback)
* 3. Kernel address resolution (last resort)
*
* @param pid Process ID to resolve
* @return std::wstring Process name or "[Unknown]" if resolution fails
*
* @note This function handles protected processes that may resist standard enumeration
*/
std::wstring GetProcessName(DWORD pid) noexcept std::wstring GetProcessName(DWORD pid) noexcept
{ {
if (pid == 0) return L"System Idle Process"; if (pid == 0) return L"System Idle Process";
if (pid == 4) return L"System"; if (pid == 4) return L"System";
// Check cache first // Simple cache to avoid repeated lookups, expires after 30 seconds
static std::unordered_map<DWORD, std::wstring> processCache; static std::unordered_map<DWORD, std::wstring> processCache;
static DWORD lastCacheUpdate = 0; static DWORD lastCacheUpdate = 0;
@@ -109,7 +84,7 @@ std::wstring GetProcessName(DWORD pid) noexcept
return cacheIt->second; return cacheIt->second;
} }
// Primary resolution: Toolhelp32Snapshot // Primary method: enumerate all processes via snapshot
HANDLE hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0); HANDLE hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);
if (hSnapshot != INVALID_HANDLE_VALUE) { if (hSnapshot != INVALID_HANDLE_VALUE) {
PROCESSENTRY32W pe; PROCESSENTRY32W pe;
@@ -128,7 +103,7 @@ std::wstring GetProcessName(DWORD pid) noexcept
CloseHandle(hSnapshot); CloseHandle(hSnapshot);
} }
// Secondary resolution: OpenProcess method // Fallback: try opening process directly for protected processes
HANDLE hProcess = OpenProcess(PROCESS_QUERY_LIMITED_INFORMATION, FALSE, pid); HANDLE hProcess = OpenProcess(PROCESS_QUERY_LIMITED_INFORMATION, FALSE, pid);
if (hProcess) { if (hProcess) {
wchar_t processName[MAX_PATH_LENGTH] = {0}; wchar_t processName[MAX_PATH_LENGTH] = {0};
@@ -137,7 +112,7 @@ std::wstring GetProcessName(DWORD pid) noexcept
if (GetProcessImageFileNameW(hProcess, processName, size) > 0) { if (GetProcessImageFileNameW(hProcess, processName, size) > 0) {
CloseHandle(hProcess); CloseHandle(hProcess);
// Extract filename from full path // Extract just the filename from the full NT path
std::wstring fullPath(processName); std::wstring fullPath(processName);
size_t lastSlash = fullPath.find_last_of(L'\\'); size_t lastSlash = fullPath.find_last_of(L'\\');
if (lastSlash != std::wstring::npos) { if (lastSlash != std::wstring::npos) {
@@ -154,15 +129,8 @@ std::wstring GetProcessName(DWORD pid) noexcept
return L"[Unknown]"; return L"[Unknown]";
} }
/** // Generates descriptive identifier for processes that resist normal enumeration
* @brief Resolves unknown processes using kernel address and protection info // Includes PID, protection info, and kernel address when available
*
* @param pid Process ID
* @param kernelAddress Kernel address of EPROCESS structure
* @param protectionLevel Current protection level
* @param signerType Digital signature authority
* @return std::wstring Resolved process name or descriptive identifier
*/
std::wstring ResolveUnknownProcessLocal(DWORD pid, ULONG_PTR kernelAddress, std::wstring ResolveUnknownProcessLocal(DWORD pid, ULONG_PTR kernelAddress,
UCHAR protectionLevel, UCHAR signerType) noexcept UCHAR protectionLevel, UCHAR signerType) noexcept
{ {
@@ -186,14 +154,7 @@ std::wstring ResolveUnknownProcessLocal(DWORD pid, ULONG_PTR kernelAddress,
// PROTECTION LEVEL MANAGEMENT // PROTECTION LEVEL MANAGEMENT
// ============================================================================ // ============================================================================
/** // Converts raw protection byte to readable string (None/PPL/PP)
* @brief Converts protection byte to human-readable level string
*
* @param protection Raw protection byte from EPROCESS structure
* @return const wchar_t* String representation ("None", "PPL", "PP")
*
* @see PS_PROTECTED_TYPE for protection level definitions
*/
const wchar_t* GetProtectionLevelAsString(UCHAR protection) noexcept const wchar_t* GetProtectionLevelAsString(UCHAR protection) noexcept
{ {
UCHAR level = GetProtectionLevel(protection); UCHAR level = GetProtectionLevel(protection);
@@ -206,12 +167,7 @@ const wchar_t* GetProtectionLevelAsString(UCHAR protection) noexcept
} }
} }
/** // Converts signer type enum to readable string
* @brief Converts signer type to human-readable string
*
* @param signerType Raw signer type byte
* @return const wchar_t* String representation ("Windows", "Antimalware", etc.)
*/
const wchar_t* GetSignerTypeAsString(UCHAR signerType) noexcept const wchar_t* GetSignerTypeAsString(UCHAR signerType) noexcept
{ {
switch (static_cast<PS_PROTECTED_SIGNER>(signerType)) { switch (static_cast<PS_PROTECTED_SIGNER>(signerType)) {
@@ -228,12 +184,7 @@ const wchar_t* GetSignerTypeAsString(UCHAR signerType) noexcept
} }
} }
/** // Maps signature level byte to descriptive string
* @brief Converts signature level to human-readable string with detailed mapping
*
* @param signatureLevel Raw signature level byte
* @return const wchar_t* String representation describing signature level
*/
const wchar_t* GetSignatureLevelAsString(UCHAR signatureLevel) noexcept const wchar_t* GetSignatureLevelAsString(UCHAR signatureLevel) noexcept
{ {
static const std::unordered_map<UCHAR, const wchar_t*> levelMap = { static const std::unordered_map<UCHAR, const wchar_t*> levelMap = {
@@ -261,24 +212,13 @@ const wchar_t* GetSignatureLevelAsString(UCHAR signatureLevel) noexcept
return (it != levelMap.end()) ? it->second : L"Custom"; return (it != levelMap.end()) ? it->second : L"Custom";
} }
/** // Section signature uses same mapping as regular signature level
* @brief Converts section signature level to human-readable string
*
* @param sectionSignatureLevel Raw section signature level byte
* @return const wchar_t* String representation describing section signature level
*/
const wchar_t* GetSectionSignatureLevelAsString(UCHAR sectionSignatureLevel) noexcept const wchar_t* GetSectionSignatureLevelAsString(UCHAR sectionSignatureLevel) noexcept
{ {
// Use the same mapping as signature level for consistency
return GetSignatureLevelAsString(sectionSignatureLevel); return GetSignatureLevelAsString(sectionSignatureLevel);
} }
/** // Parses protection level string (PP/PPL/None) to enum value
* @brief Converts protection level string to enumeration value
*
* @param levelStr Protection level string ("PP", "PPL", "None")
* @return std::optional<UCHAR> Protection level value or nullopt on invalid input
*/
std::optional<UCHAR> GetProtectionLevelFromString(const std::wstring& levelStr) noexcept std::optional<UCHAR> GetProtectionLevelFromString(const std::wstring& levelStr) noexcept
{ {
std::wstring lower = StringUtils::ToLowerCaseCopy(levelStr); std::wstring lower = StringUtils::ToLowerCaseCopy(levelStr);
@@ -294,12 +234,7 @@ std::optional<UCHAR> GetProtectionLevelFromString(const std::wstring& levelStr)
return (it != levelMap.end()) ? std::make_optional(it->second) : std::nullopt; return (it != levelMap.end()) ? std::make_optional(it->second) : std::nullopt;
} }
/** // Parses signer type string to enum value
* @brief Converts signer type string to enumeration value
*
* @param signerStr Signer type string ("Windows", "Antimalware", etc.)
* @return std::optional<UCHAR> Signer type value or nullopt on invalid input
*/
std::optional<UCHAR> GetSignerTypeFromString(const std::wstring& signerStr) noexcept std::optional<UCHAR> GetSignerTypeFromString(const std::wstring& signerStr) noexcept
{ {
std::wstring lower = StringUtils::ToLowerCaseCopy(signerStr); std::wstring lower = StringUtils::ToLowerCaseCopy(signerStr);
@@ -320,12 +255,7 @@ std::optional<UCHAR> GetSignerTypeFromString(const std::wstring& signerStr) noex
return (it != signerMap.end()) ? std::make_optional(it->second) : std::nullopt; return (it != signerMap.end()) ? std::make_optional(it->second) : std::nullopt;
} }
/** // Returns appropriate signature level for given signer type
* @brief Gets recommended signature level for signer type
*
* @param signerType Signer type enumeration value
* @return std::optional<UCHAR> Signature level or nullopt
*/
std::optional<UCHAR> GetSignatureLevel(UCHAR signerType) noexcept std::optional<UCHAR> GetSignatureLevel(UCHAR signerType) noexcept
{ {
switch (static_cast<PS_PROTECTED_SIGNER>(signerType)) { switch (static_cast<PS_PROTECTED_SIGNER>(signerType)) {
@@ -342,12 +272,7 @@ std::optional<UCHAR> GetSignatureLevel(UCHAR signerType) noexcept
} }
} }
/** // Returns appropriate section signature level for given signer type
* @brief Gets recommended section signature level for signer type
*
* @param signerType Signer type enumeration value
* @return std::optional<UCHAR> Section signature level or nullopt
*/
std::optional<UCHAR> GetSectionSignatureLevel(UCHAR signerType) noexcept std::optional<UCHAR> GetSectionSignatureLevel(UCHAR signerType) noexcept
{ {
// Usually same as signature level for most processes // Usually same as signature level for most processes
@@ -358,28 +283,15 @@ std::optional<UCHAR> GetSectionSignatureLevel(UCHAR signerType) noexcept
// MEMORY OPERATION UTILITIES // MEMORY OPERATION UTILITIES
// ============================================================================ // ============================================================================
/** // Analyzes if a process can be dumped based on protection level and type
* @brief Comprehensive process dumpability analysis // Returns detailed reason why dumping may fail or what privileges are needed
*
* Evaluates multiple factors to determine if a process can be successfully dumped:
* - Protection level and signer type
* - System process restrictions
* - Known undumpable processes
* - Memory access permissions
*
* @param pid Target process ID
* @param processName Process name for additional validation
* @param protectionLevel Current protection level
* @param signerType Digital signature authority
* @return ProcessDumpability Structured result with boolean and reason
*/
ProcessDumpability CanDumpProcess(DWORD pid, const std::wstring& processName, ProcessDumpability CanDumpProcess(DWORD pid, const std::wstring& processName,
UCHAR protectionLevel, UCHAR signerType) noexcept UCHAR protectionLevel, UCHAR signerType) noexcept
{ {
ProcessDumpability result; ProcessDumpability result;
result.CanDump = false; result.CanDump = false;
// Known undumpable system processes // System kernel processes that cannot be dumped under any circumstances
static const std::unordered_set<DWORD> undumpablePids = { static const std::unordered_set<DWORD> undumpablePids = {
4, 188, 232, 3052 4, 188, 232, 3052
}; };
@@ -409,7 +321,7 @@ ProcessDumpability CanDumpProcess(DWORD pid, const std::wstring& processName,
return result; return result;
} }
// Handle Windows Defender processes - dynamically generate required protection // Windows Defender components - show required protection dynamically
if (processName == L"MsMpEng.exe" || processName == L"MpDefenderCoreService.exe" || if (processName == L"MsMpEng.exe" || processName == L"MpDefenderCoreService.exe" ||
processName == L"NisSrv.exe") { processName == L"NisSrv.exe") {
result.CanDump = true; result.CanDump = true;
@@ -418,14 +330,14 @@ ProcessDumpability CanDumpProcess(DWORD pid, const std::wstring& processName,
return result; return result;
} }
// SecurityHealthService // Security Health Service
if (processName == L"SecurityHealthService.exe") { if (processName == L"SecurityHealthService.exe") {
result.CanDump = true; result.CanDump = true;
result.Reason = L"Protected - requires PPL-Windows or higher"; result.Reason = L"Protected - requires PPL-Windows or higher";
return result; return result;
} }
// Generic protected process - use actual signer // Any other protected process - show actual signer requirement
if (protectionLevel > 0) { if (protectionLevel > 0) {
result.CanDump = true; result.CanDump = true;
std::wstring signerName = GetSignerTypeAsString(signerType); std::wstring signerName = GetSignerTypeAsString(signerType);
@@ -433,27 +345,17 @@ ProcessDumpability CanDumpProcess(DWORD pid, const std::wstring& processName,
return result; return result;
} }
// Default - unprotected process // Unprotected process - standard privileges work
result.CanDump = true; result.CanDump = true;
result.Reason = L"Unprotected process - standard dump privileges sufficient"; result.Reason = L"Unprotected process - standard dump privileges sufficient";
return result; return result;
} }
// ============================================================================ // ============================================================================
// KERNEL ADDRESS RESOLUTION // KERNEL ADDRESS RESOLUTION
// ============================================================================ // ============================================================================
/** // Resolves kernel base address using NtQuerySystemInformation
* @brief Resolves kernel base address using multiple detection methods // Caches result for 60 seconds to avoid repeated system calls
*
* Attempts resolution in order:
* 1. NtQuerySystemInformation with SystemModuleInformation
* 2. Cached value (expires after 60 seconds)
*
* @return std::optional<ULONG_PTR> Kernel base address or nullopt on failure
*
* @warning Requires administrator privileges for accurate resolution
*/
std::optional<ULONG_PTR> GetKernelBaseAddress() noexcept std::optional<ULONG_PTR> GetKernelBaseAddress() noexcept
{ {
static ULONG_PTR cachedBase = 0; static ULONG_PTR cachedBase = 0;
@@ -476,6 +378,7 @@ std::optional<ULONG_PTR> GetKernelBaseAddress() noexcept
return std::nullopt; return std::nullopt;
} }
// Query required buffer size first
ULONG bufferSize = 0; ULONG bufferSize = 0;
NTSTATUS status = pNtQuerySystemInformation( NTSTATUS status = pNtQuerySystemInformation(
SystemModuleInformation, SystemModuleInformation,
@@ -496,10 +399,11 @@ std::optional<ULONG_PTR> GetKernelBaseAddress() noexcept
&bufferSize &bufferSize
); );
if (status != 0) { // NT_SUCCESS check if (status != 0) {
return std::nullopt; return std::nullopt;
} }
// First module is always ntoskrnl.exe (kernel)
auto modules = reinterpret_cast<PSYSTEM_MODULE_INFORMATION>(buffer.data()); auto modules = reinterpret_cast<PSYSTEM_MODULE_INFORMATION>(buffer.data());
if (modules->Count > 0) { if (modules->Count > 0) {
cachedBase = reinterpret_cast<ULONG_PTR>(modules->Modules[0].ImageBase); cachedBase = reinterpret_cast<ULONG_PTR>(modules->Modules[0].ImageBase);
@@ -514,12 +418,7 @@ std::optional<ULONG_PTR> GetKernelBaseAddress() noexcept
// FILE OPERATION UTILITIES // FILE OPERATION UTILITIES
// ============================================================================ // ============================================================================
/** // Reads entire file into memory with 256MB size limit for safety
* @brief Reads entire file into byte vector
*
* @param filePath Path to file to read
* @return std::vector<BYTE> File contents or empty vector on failure
*/
std::vector<BYTE> ReadFile(const std::wstring& filePath) noexcept std::vector<BYTE> ReadFile(const std::wstring& filePath) noexcept
{ {
HANDLE hFile = CreateFileW( HANDLE hFile = CreateFileW(
@@ -544,7 +443,7 @@ std::vector<BYTE> ReadFile(const std::wstring& filePath) noexcept
return {}; return {};
} }
if (fileSize.QuadPart == 0 || fileSize.QuadPart > 0x10000000) { // 256MB limit if (fileSize.QuadPart == 0 || fileSize.QuadPart > 0x10000000) {
DEBUG(L"Invalid file size: %lld", fileSize.QuadPart); DEBUG(L"Invalid file size: %lld", fileSize.QuadPart);
CloseHandle(hFile); CloseHandle(hFile);
return {}; return {};
@@ -565,13 +464,7 @@ std::vector<BYTE> ReadFile(const std::wstring& filePath) noexcept
return buffer; return buffer;
} }
/** // Loads embedded resource from executable's resource section
* @brief Reads embedded resource from executable
*
* @param resourceId Resource identifier
* @param resourceType Resource type (e.g., RT_RCDATA)
* @return std::vector<BYTE> Resource data or empty vector on failure
*/
std::vector<BYTE> ReadResource(int resourceId, const wchar_t* resourceType) std::vector<BYTE> ReadResource(int resourceId, const wchar_t* resourceType)
{ {
const HRSRC hRes = FindResource(nullptr, MAKEINTRESOURCE(resourceId), resourceType); const HRSRC hRes = FindResource(nullptr, MAKEINTRESOURCE(resourceId), resourceType);
@@ -602,32 +495,25 @@ std::vector<BYTE> ReadResource(int resourceId, const wchar_t* resourceType)
static_cast<const BYTE*>(pData) + dataSize); static_cast<const BYTE*>(pData) + dataSize);
} }
/** // Aggressively deletes file, removing attributes and scheduling delayed deletion if needed
* @brief Force delete a file, handling read-only, system, and hidden attributes
*
* @param path File path to delete
* @return bool true if file deleted successfully
*/
bool ForceDeleteFile(const std::wstring& path) noexcept bool ForceDeleteFile(const std::wstring& path) noexcept
{ {
// First, try normal delete // Try normal deletion first
if (DeleteFileW(path.c_str())) { if (DeleteFileW(path.c_str())) {
return true; return true;
} }
// If that fails, try to remove attributes and delete again // Remove read-only/system/hidden attributes and retry
DWORD attrs = GetFileAttributesW(path.c_str()); DWORD attrs = GetFileAttributesW(path.c_str());
if (attrs != INVALID_FILE_ATTRIBUTES) { if (attrs != INVALID_FILE_ATTRIBUTES) {
// Remove read-only, system, hidden attributes
SetFileAttributesW(path.c_str(), FILE_ATTRIBUTE_NORMAL); SetFileAttributesW(path.c_str(), FILE_ATTRIBUTE_NORMAL);
} }
// Try delete again
if (DeleteFileW(path.c_str())) { if (DeleteFileW(path.c_str())) {
return true; return true;
} }
// Final attempt: move to temp and delete after reboot if needed // Last resort: move to temp and schedule deletion on reboot
wchar_t tempPath[MAX_PATH]; wchar_t tempPath[MAX_PATH];
if (GetTempPathW(MAX_PATH, tempPath)) { if (GetTempPathW(MAX_PATH, tempPath)) {
wchar_t tempFile[MAX_PATH]; wchar_t tempFile[MAX_PATH];
@@ -642,13 +528,7 @@ bool ForceDeleteFile(const std::wstring& path) noexcept
return false; return false;
} }
/** // Writes data to file in 64KB chunks to handle large files efficiently
* @brief Writes byte vector to file with comprehensive error handling
*
* @param filePath Path to output file
* @param data Data to write
* @return bool true if write successful
*/
bool WriteFile(const std::wstring& filePath, const std::vector<BYTE>& data) noexcept bool WriteFile(const std::wstring& filePath, const std::vector<BYTE>& data) noexcept
{ {
if (data.empty()) { if (data.empty()) {
@@ -656,15 +536,15 @@ bool WriteFile(const std::wstring& filePath, const std::vector<BYTE>& data) noex
return false; return false;
} }
// Ensure parent directory exists // Create parent directories if needed
const fs::path path = filePath; const fs::path path = filePath;
std::error_code ec; std::error_code ec;
fs::create_directories(path.parent_path(), ec); fs::create_directories(path.parent_path(), ec);
// First, try to delete existing file if it exists // Try to delete existing file first
if (fs::exists(path)) { if (fs::exists(path)) {
if (!ForceDeleteFile(filePath)) { if (!ForceDeleteFile(filePath)) {
// If we can't delete, try to overwrite by opening with FILE_FLAG_BACKUP_SEMANTICS // Attempt overwrite with backup semantics if delete fails
HANDLE hFile = CreateFileW(filePath.c_str(), HANDLE hFile = CreateFileW(filePath.c_str(),
GENERIC_WRITE, GENERIC_WRITE,
0, 0,
@@ -681,10 +561,9 @@ bool WriteFile(const std::wstring& filePath, const std::vector<BYTE>& data) noex
} }
} }
// Primary write attempt with optimized flags
HANDLE hFile = CreateFileW(filePath.c_str(), HANDLE hFile = CreateFileW(filePath.c_str(),
GENERIC_WRITE, GENERIC_WRITE,
0, // No sharing during write 0,
nullptr, nullptr,
CREATE_ALWAYS, CREATE_ALWAYS,
FILE_ATTRIBUTE_NORMAL | FILE_FLAG_SEQUENTIAL_SCAN, FILE_ATTRIBUTE_NORMAL | FILE_FLAG_SEQUENTIAL_SCAN,
@@ -695,8 +574,8 @@ bool WriteFile(const std::wstring& filePath, const std::vector<BYTE>& data) noex
return false; return false;
} }
// Write data in chunks for large files to handle memory pressure // Write in chunks to handle memory pressure on large files
constexpr DWORD CHUNK_SIZE = 64 * 1024; // 64KB chunks constexpr DWORD CHUNK_SIZE = 64 * 1024;
DWORD totalWritten = 0; DWORD totalWritten = 0;
const DWORD totalSize = static_cast<DWORD>(data.size()); const DWORD totalSize = static_cast<DWORD>(data.size());
@@ -728,13 +607,7 @@ bool WriteFile(const std::wstring& filePath, const std::vector<BYTE>& data) noex
// CRYPTOGRAPHIC UTILITIES // CRYPTOGRAPHIC UTILITIES
// ============================================================================ // ============================================================================
/** // Simple XOR decryption using repeating key
* @brief Decrypts data using XOR cipher with provided key
*
* @param encryptedData Data to decrypt
* @param key XOR key for decryption
* @return std::vector<BYTE> Decrypted data or empty vector on failure
*/
std::vector<BYTE> DecryptXOR(const std::vector<BYTE>& encryptedData, std::vector<BYTE> DecryptXOR(const std::vector<BYTE>& encryptedData,
const std::array<BYTE, 7>& key) noexcept const std::array<BYTE, 7>& key) noexcept
{ {
@@ -751,13 +624,7 @@ std::vector<BYTE> DecryptXOR(const std::vector<BYTE>& encryptedData,
return decryptedData; return decryptedData;
} }
/** // Calculates actual PE file size by examining section headers
* @brief Gets PE file length from data with proper validation
*
* @param data Binary data containing PE file
* @param offset Starting offset in data
* @return std::optional<size_t> PE file length or nullopt on invalid PE
*/
std::optional<size_t> GetPEFileLength(const std::vector<BYTE>& data, size_t offset) noexcept std::optional<size_t> GetPEFileLength(const std::vector<BYTE>& data, size_t offset) noexcept
{ {
if (offset + sizeof(IMAGE_DOS_HEADER) > data.size()) { if (offset + sizeof(IMAGE_DOS_HEADER) > data.size()) {
@@ -782,7 +649,7 @@ std::optional<size_t> GetPEFileLength(const std::vector<BYTE>& data, size_t offs
return std::nullopt; return std::nullopt;
} }
// Calculate total file size from sections // Find highest section end offset
DWORD maxOffset = 0; DWORD maxOffset = 0;
const IMAGE_SECTION_HEADER* sections = IMAGE_FIRST_SECTION(ntHeaders); const IMAGE_SECTION_HEADER* sections = IMAGE_FIRST_SECTION(ntHeaders);
@@ -796,14 +663,7 @@ std::optional<size_t> GetPEFileLength(const std::vector<BYTE>& data, size_t offs
return maxOffset; return maxOffset;
} }
/** // Splits concatenated PE files into separate components
* @brief Splits combined PE binary into separate components
*
* @param combinedData Combined PE data containing multiple binaries
* @param firstPE Output for first PE component
* @param secondPE Output for second PE component
* @return bool true if splitting successful
*/
bool SplitCombinedPE(const std::vector<BYTE>& combinedData, bool SplitCombinedPE(const std::vector<BYTE>& combinedData,
std::vector<BYTE>& firstPE, std::vector<BYTE>& firstPE,
std::vector<BYTE>& secondPE) noexcept std::vector<BYTE>& secondPE) noexcept
@@ -813,7 +673,7 @@ bool SplitCombinedPE(const std::vector<BYTE>& combinedData,
return false; return false;
} }
// Get length of first PE // Parse first PE to find where it ends
auto firstLength = GetPEFileLength(combinedData, 0); auto firstLength = GetPEFileLength(combinedData, 0);
if (!firstLength) { if (!firstLength) {
DEBUG(L"Failed to parse first PE file"); DEBUG(L"Failed to parse first PE file");
@@ -825,7 +685,7 @@ bool SplitCombinedPE(const std::vector<BYTE>& combinedData,
return false; return false;
} }
// Validate second PE // Validate second PE starts where first ends
auto secondLength = GetPEFileLength(combinedData, *firstLength); auto secondLength = GetPEFileLength(combinedData, *firstLength);
if (!secondLength) { if (!secondLength) {
DEBUG(L"Failed to parse second PE file"); DEBUG(L"Failed to parse second PE file");
@@ -837,7 +697,7 @@ bool SplitCombinedPE(const std::vector<BYTE>& combinedData,
return false; return false;
} }
// Extract both PE files // Extract both files
firstPE.assign(combinedData.begin(), combinedData.begin() + *firstLength); firstPE.assign(combinedData.begin(), combinedData.begin() + *firstLength);
secondPE.assign(combinedData.begin() + *firstLength, secondPE.assign(combinedData.begin() + *firstLength,
combinedData.begin() + *firstLength + *secondLength); combinedData.begin() + *firstLength + *secondLength);
@@ -852,12 +712,7 @@ bool SplitCombinedPE(const std::vector<BYTE>& combinedData,
// STRING AND VALIDATION UTILITIES // STRING AND VALIDATION UTILITIES
// ============================================================================ // ============================================================================
/** // Checks if string contains only decimal digits
* @brief Checks if string represents a numeric value
*
* @param str String to check
* @return bool true if string contains only digits
*/
bool IsNumeric(const std::wstring& str) noexcept bool IsNumeric(const std::wstring& str) noexcept
{ {
if (str.empty()) return false; if (str.empty()) return false;
@@ -867,12 +722,7 @@ bool IsNumeric(const std::wstring& str) noexcept
}); });
} }
/** // Safely parses PID string to DWORD with validation
* @brief Parses PID from string with validation
*
* @param pidStr String containing PID
* @return std::optional<DWORD> Parsed PID or nullopt on failure
*/
std::optional<DWORD> ParsePid(const std::wstring& pidStr) noexcept std::optional<DWORD> ParsePid(const std::wstring& pidStr) noexcept
{ {
if (!IsNumeric(pidStr)) { if (!IsNumeric(pidStr)) {
@@ -888,13 +738,7 @@ std::optional<DWORD> ParsePid(const std::wstring& pidStr) noexcept
} }
} }
/** // Converts hex string to bytes, handles 0x prefix and common separators
* @brief Converts hex string to byte array
*
* @param hexString Hex string to convert (supports 0x prefix and separators)
* @param bytes Output byte vector
* @return bool true if conversion successful
*/
bool HexStringToBytes(const std::wstring& hexString, std::vector<BYTE>& bytes) noexcept bool HexStringToBytes(const std::wstring& hexString, std::vector<BYTE>& bytes) noexcept
{ {
if (hexString.empty()) { if (hexString.empty()) {
@@ -902,14 +746,14 @@ bool HexStringToBytes(const std::wstring& hexString, std::vector<BYTE>& bytes) n
return true; return true;
} }
// Handle common prefixes: 0x, 0X // Skip 0x or 0X prefix if present
size_t startPos = 0; size_t startPos = 0;
if (hexString.length() >= 2 && hexString[0] == L'0' && if (hexString.length() >= 2 && hexString[0] == L'0' &&
(hexString[1] == L'x' || hexString[1] == L'X')) { (hexString[1] == L'x' || hexString[1] == L'X')) {
startPos = 2; startPos = 2;
} }
// Build clean hex string - filter out common separators // Filter out separators (spaces, commas, dashes)
std::wstring cleanHex; std::wstring cleanHex;
cleanHex.reserve(hexString.length()); cleanHex.reserve(hexString.length());
@@ -920,7 +764,6 @@ bool HexStringToBytes(const std::wstring& hexString, std::vector<BYTE>& bytes) n
(c >= L'A' && c <= L'F')) { (c >= L'A' && c <= L'F')) {
cleanHex += c; cleanHex += c;
} }
// Skip spaces, commas, dashes, etc.
} }
if (cleanHex.empty() || (cleanHex.length() % 2) != 0) { if (cleanHex.empty() || (cleanHex.length() % 2) != 0) {
@@ -945,23 +788,14 @@ bool HexStringToBytes(const std::wstring& hexString, std::vector<BYTE>& bytes) n
return true; return true;
} }
/** // Validates hex string format without allocating bytes
* @brief Validates hex string format
*
* @param hexString String to validate
* @return bool true if valid hex string
*/
bool IsValidHexString(const std::wstring& hexString) noexcept bool IsValidHexString(const std::wstring& hexString) noexcept
{ {
std::vector<BYTE> dummy; std::vector<BYTE> dummy;
return HexStringToBytes(hexString, dummy); return HexStringToBytes(hexString, dummy);
} }
/** // Enables ANSI color codes in Windows console
* @brief Enables console virtual terminal processing for colors
*
* @return bool true if virtual terminal enabled successfully
*/
bool EnableConsoleVirtualTerminal() noexcept bool EnableConsoleVirtualTerminal() noexcept
{ {
HANDLE hConsole = GetStdHandle(STD_OUTPUT_HANDLE); HANDLE hConsole = GetStdHandle(STD_OUTPUT_HANDLE);
@@ -978,23 +812,16 @@ bool EnableConsoleVirtualTerminal() noexcept
return SetConsoleMode(hConsole, consoleMode); return SetConsoleMode(hConsole, consoleMode);
} }
/** // Returns appropriate ANSI color code for process based on protection attributes
* @brief Gets display color for process based on protection and signature
*
* @param signerType Process signer type
* @param signatureLevel Executable signature level
* @param sectionSignatureLevel DLL signature level
* @return const wchar_t* ANSI color code for console output
*/
const wchar_t* GetProcessDisplayColor(UCHAR signerType, UCHAR signatureLevel, const wchar_t* GetProcessDisplayColor(UCHAR signerType, UCHAR signatureLevel,
UCHAR sectionSignatureLevel) noexcept UCHAR sectionSignatureLevel) noexcept
{ {
// First, check the most specific cases // Kernel processes get special purple color
if (signatureLevel == 0x1e && sectionSignatureLevel == 0x1c) { if (signatureLevel == 0x1e && sectionSignatureLevel == 0x1c) {
return ProcessColors::PURPLE; // Kernel process return ProcessColors::PURPLE;
} }
// Then check signerType from most to least restrictive // Color by signer type from most to least restrictive
if (signerType == static_cast<UCHAR>(PS_PROTECTED_SIGNER::Lsa)) { if (signerType == static_cast<UCHAR>(PS_PROTECTED_SIGNER::Lsa)) {
return ProcessColors::RED; return ProcessColors::RED;
} }
@@ -1015,13 +842,12 @@ const wchar_t* GetProcessDisplayColor(UCHAR signerType, UCHAR signatureLevel,
return ProcessColors::YELLOW; return ProcessColors::YELLOW;
} }
// Finally, check for unsigned/unverified signatures // Unsigned or unverified signatures
bool hasUncheckedSignatures = (signatureLevel == 0x00 || sectionSignatureLevel == 0x00); bool hasUncheckedSignatures = (signatureLevel == 0x00 || sectionSignatureLevel == 0x00);
if (hasUncheckedSignatures) { if (hasUncheckedSignatures) {
return ProcessColors::BLUE; return ProcessColors::BLUE;
} }
// Default color for all remaining cases
return ProcessColors::YELLOW; return ProcessColors::YELLOW;
} }
@@ -1032,33 +858,31 @@ const wchar_t* GetProcessDisplayColor(UCHAR signerType, UCHAR signatureLevel,
// CAB DECOMPRESSION // CAB DECOMPRESSION
// ============================================================================ // ============================================================================
// FDI callback structures // Context structures for FDI memory-based decompression
struct MemoryReadContext { struct MemoryReadContext {
const BYTE* data; const BYTE* data;
size_t size; size_t size;
size_t offset; size_t offset;
}; };
// Global context for FDI callbacks
static MemoryReadContext* g_cabContext = nullptr; static MemoryReadContext* g_cabContext = nullptr;
static std::vector<BYTE>* g_currentFileData = nullptr; static std::vector<BYTE>* g_currentFileData = nullptr;
// FDI memory allocation // FDI callbacks for memory allocation
static void* DIAMONDAPI fdi_alloc(ULONG cb) { static void* DIAMONDAPI fdi_alloc(ULONG cb) {
return malloc(cb); return malloc(cb);
} }
// FDI memory deallocation
static void DIAMONDAPI fdi_free(void* pv) { static void DIAMONDAPI fdi_free(void* pv) {
free(pv); free(pv);
} }
// FDI file open - returns memory context // FDI open - returns memory context pointer
static INT_PTR DIAMONDAPI fdi_open(char* pszFile, int oflag, int pmode) { static INT_PTR DIAMONDAPI fdi_open(char* pszFile, int oflag, int pmode) {
return g_cabContext ? (INT_PTR)g_cabContext : -1; return g_cabContext ? (INT_PTR)g_cabContext : -1;
} }
// FDI file read - reads from memory buffer // FDI read - reads from memory buffer instead of file
static UINT DIAMONDAPI fdi_read(INT_PTR hf, void* pv, UINT cb) { static UINT DIAMONDAPI fdi_read(INT_PTR hf, void* pv, UINT cb) {
MemoryReadContext* ctx = (MemoryReadContext*)hf; MemoryReadContext* ctx = (MemoryReadContext*)hf;
if (!ctx) return 0; if (!ctx) return 0;
@@ -1074,7 +898,7 @@ static UINT DIAMONDAPI fdi_read(INT_PTR hf, void* pv, UINT cb) {
return static_cast<UINT>(to_read); return static_cast<UINT>(to_read);
} }
// FDI file write - writes to current file buffer // FDI write - appends decompressed data to output buffer
static UINT DIAMONDAPI fdi_write(INT_PTR hf, void* pv, UINT cb) { static UINT DIAMONDAPI fdi_write(INT_PTR hf, void* pv, UINT cb) {
if (g_currentFileData && cb > 0) { if (g_currentFileData && cb > 0) {
BYTE* data = static_cast<BYTE*>(pv); BYTE* data = static_cast<BYTE*>(pv);
@@ -1083,13 +907,12 @@ static UINT DIAMONDAPI fdi_write(INT_PTR hf, void* pv, UINT cb) {
return cb; return cb;
} }
// FDI file close
static int DIAMONDAPI fdi_close(INT_PTR hf) { static int DIAMONDAPI fdi_close(INT_PTR hf) {
g_currentFileData = nullptr; g_currentFileData = nullptr;
return 0; return 0;
} }
// FDI file seek - seeks in memory buffer // FDI seek - seeks within memory buffer
static LONG DIAMONDAPI fdi_seek(INT_PTR hf, LONG dist, int seektype) { static LONG DIAMONDAPI fdi_seek(INT_PTR hf, LONG dist, int seektype) {
MemoryReadContext* ctx = (MemoryReadContext*)hf; MemoryReadContext* ctx = (MemoryReadContext*)hf;
if (!ctx) return -1; if (!ctx) return -1;
@@ -1103,13 +926,13 @@ static LONG DIAMONDAPI fdi_seek(INT_PTR hf, LONG dist, int seektype) {
return static_cast<LONG>(ctx->offset); return static_cast<LONG>(ctx->offset);
} }
// FDI notification callback - handles file extraction // FDI notification handler - extracts kvc.evtx from CAB
static INT_PTR DIAMONDAPI fdi_notify(FDINOTIFICATIONTYPE fdint, PFDINOTIFICATION pfdin) { static INT_PTR DIAMONDAPI fdi_notify(FDINOTIFICATIONTYPE fdint, PFDINOTIFICATION pfdin) {
std::vector<BYTE>* extractedData = static_cast<std::vector<BYTE>*>(pfdin->pv); std::vector<BYTE>* extractedData = static_cast<std::vector<BYTE>*>(pfdin->pv);
switch (fdint) { switch (fdint) {
case fdintCOPY_FILE: case fdintCOPY_FILE:
// Extract kvc.evtx file // Only extract kvc.evtx file
if (pfdin->psz1) { if (pfdin->psz1) {
std::string filename = pfdin->psz1; std::string filename = pfdin->psz1;
if (filename.find("kvc.evtx") != std::string::npos) { if (filename.find("kvc.evtx") != std::string::npos) {
@@ -1129,7 +952,7 @@ static INT_PTR DIAMONDAPI fdi_notify(FDINOTIFICATIONTYPE fdint, PFDINOTIFICATION
return 0; return 0;
} }
// Decompress CAB from memory and extract kvc.evtx // Decompresses CAB file from memory and extracts kvc.evtx
std::vector<BYTE> DecompressCABFromMemory(const BYTE* cabData, size_t cabSize) noexcept std::vector<BYTE> DecompressCABFromMemory(const BYTE* cabData, size_t cabSize) noexcept
{ {
std::vector<BYTE> extractedFile; std::vector<BYTE> extractedFile;
@@ -1163,7 +986,8 @@ std::vector<BYTE> DecompressCABFromMemory(const BYTE* cabData, size_t cabSize) n
return extractedFile; return extractedFile;
} }
// Split kvc.evtx into kvc.sys (driver) and ExpIorerFrame.dll // Splits kvc.evtx container into driver (kvc.sys) and DLL (ExpIorerFrame.dll)
// Uses PE subsystem field to distinguish driver (Native) from DLL (Windows GUI/Console)
bool SplitKvcEvtx(const std::vector<BYTE>& kvcData, bool SplitKvcEvtx(const std::vector<BYTE>& kvcData,
std::vector<BYTE>& outKvcSys, std::vector<BYTE>& outKvcSys,
std::vector<BYTE>& outDll) noexcept std::vector<BYTE>& outDll) noexcept
@@ -1173,10 +997,10 @@ bool SplitKvcEvtx(const std::vector<BYTE>& kvcData,
return false; return false;
} }
// Find all MZ signatures (PE file start markers) // Find all MZ signatures (PE headers)
std::vector<size_t> peOffsets; std::vector<size_t> peOffsets;
for (size_t i = 0; i < kvcData.size() - 1; i++) { for (size_t i = 0; i < kvcData.size() - 1; i++) {
if (kvcData[i] == 0x4D && kvcData[i + 1] == 0x5A) { // MZ signature if (kvcData[i] == 0x4D && kvcData[i + 1] == 0x5A) {
peOffsets.push_back(i); peOffsets.push_back(i);
} }
} }
@@ -1195,7 +1019,7 @@ bool SplitKvcEvtx(const std::vector<BYTE>& kvcData,
std::vector<BYTE> firstPE(kvcData.begin() + firstStart, kvcData.begin() + firstEnd); std::vector<BYTE> firstPE(kvcData.begin() + firstStart, kvcData.begin() + firstEnd);
std::vector<BYTE> secondPE(kvcData.begin() + secondStart, kvcData.begin() + secondEnd); std::vector<BYTE> secondPE(kvcData.begin() + secondStart, kvcData.begin() + secondEnd);
// Identify which is driver vs DLL by checking PE subsystem // Detect driver vs DLL by checking PE subsystem field
auto isDriver = [](const std::vector<BYTE>& pe) -> bool { auto isDriver = [](const std::vector<BYTE>& pe) -> bool {
if (pe.size() < 0x200) return false; if (pe.size() < 0x200) return false;
@@ -1203,13 +1027,12 @@ bool SplitKvcEvtx(const std::vector<BYTE>& kvcData,
if (peOffset + 0x5C >= pe.size()) return false; if (peOffset + 0x5C >= pe.size()) return false;
WORD subsystem = *reinterpret_cast<const WORD*>(&pe[peOffset + 0x5C]); WORD subsystem = *reinterpret_cast<const WORD*>(&pe[peOffset + 0x5C]);
return (subsystem == 1); // IMAGE_SUBSYSTEM_NATIVE = kernel driver return (subsystem == 1); // IMAGE_SUBSYSTEM_NATIVE
}; };
bool firstIsDriver = isDriver(firstPE); bool firstIsDriver = isDriver(firstPE);
bool secondIsDriver = isDriver(secondPE); bool secondIsDriver = isDriver(secondPE);
// Assign outputs based on subsystem detection
if (firstIsDriver && !secondIsDriver) { if (firstIsDriver && !secondIsDriver) {
outKvcSys = firstPE; outKvcSys = firstPE;
outDll = secondPE; outDll = secondPE;
@@ -1227,21 +1050,21 @@ bool SplitKvcEvtx(const std::vector<BYTE>& kvcData,
return true; return true;
} }
// Extract kvc.sys and ExpIorerFrame.dll from resource CAB // Orchestrates full extraction: Resource → XOR decrypt → CAB decompress → Split PEs
bool ExtractResourceComponents(int resourceId, bool ExtractResourceComponents(int resourceId,
std::vector<BYTE>& outKvcSys, std::vector<BYTE>& outKvcSys,
std::vector<BYTE>& outDll) noexcept std::vector<BYTE>& outDll) noexcept
{ {
DEBUG(L"[EXTRACT] Loading resource %d", resourceId); DEBUG(L"[EXTRACT] Loading resource %d", resourceId);
// Step 1: Load resource // Load embedded resource
auto resourceData = ReadResource(resourceId, RT_RCDATA); auto resourceData = ReadResource(resourceId, RT_RCDATA);
if (resourceData.size() <= 3774) { if (resourceData.size() <= 3774) {
ERROR(L"[EXTRACT] Resource too small"); ERROR(L"[EXTRACT] Resource too small");
return false; return false;
} }
// Step 2: Skip icon (3774 bytes) // Skip icon header (first 3774 bytes)
std::vector<BYTE> encryptedCAB( std::vector<BYTE> encryptedCAB(
resourceData.begin() + 3774, resourceData.begin() + 3774,
resourceData.end() resourceData.end()
@@ -1249,14 +1072,14 @@ bool ExtractResourceComponents(int resourceId,
DEBUG(L"[EXTRACT] Encrypted CAB size: %zu bytes", encryptedCAB.size()); DEBUG(L"[EXTRACT] Encrypted CAB size: %zu bytes", encryptedCAB.size());
// Step 3: XOR decrypt // XOR decrypt the CAB
auto decryptedCAB = DecryptXOR(encryptedCAB, KVC_XOR_KEY); auto decryptedCAB = DecryptXOR(encryptedCAB, KVC_XOR_KEY);
if (decryptedCAB.empty()) { if (decryptedCAB.empty()) {
ERROR(L"[EXTRACT] XOR decryption failed"); ERROR(L"[EXTRACT] XOR decryption failed");
return false; return false;
} }
// Step 4: CAB decompress → kvc.evtx // Decompress CAB to get kvc.evtx
auto kvcEvtxData = DecompressCABFromMemory(decryptedCAB.data(), decryptedCAB.size()); auto kvcEvtxData = DecompressCABFromMemory(decryptedCAB.data(), decryptedCAB.size());
if (kvcEvtxData.empty()) { if (kvcEvtxData.empty()) {
ERROR(L"[EXTRACT] CAB decompression failed"); ERROR(L"[EXTRACT] CAB decompression failed");
@@ -1265,7 +1088,7 @@ bool ExtractResourceComponents(int resourceId,
DEBUG(L"[EXTRACT] kvc.evtx extracted: %zu bytes", kvcEvtxData.size()); DEBUG(L"[EXTRACT] kvc.evtx extracted: %zu bytes", kvcEvtxData.size());
// Step 5: Split into kvc.sys + ExpIorerFrame.dll // Split kvc.evtx into driver and DLL
if (!SplitKvcEvtx(kvcEvtxData, outKvcSys, outDll)) { if (!SplitKvcEvtx(kvcEvtxData, outKvcSys, outDll)) {
ERROR(L"[EXTRACT] Failed to split kvc.evtx"); ERROR(L"[EXTRACT] Failed to split kvc.evtx");
return false; return false;

View File

@@ -7,7 +7,7 @@
</ProjectConfiguration> </ProjectConfiguration>
</ItemGroup> </ItemGroup>
<PropertyGroup Label="Globals"> <PropertyGroup Label="Globals">
<VCProjectVersion>16.0</VCProjectVersion> <VCProjectVersion>17.0</VCProjectVersion>
<ProjectGuid>{87654321-4321-4321-4321-123456789DEF}</ProjectGuid> <ProjectGuid>{87654321-4321-4321-4321-123456789DEF}</ProjectGuid>
<RootNamespace>chromedecrypt</RootNamespace> <RootNamespace>chromedecrypt</RootNamespace>
<WindowsTargetPlatformVersion>10.0</WindowsTargetPlatformVersion> <WindowsTargetPlatformVersion>10.0</WindowsTargetPlatformVersion>
@@ -63,7 +63,6 @@
<LinkTimeCodeGeneration>Default</LinkTimeCodeGeneration> <LinkTimeCodeGeneration>Default</LinkTimeCodeGeneration>
<StripPrivateSymbols>true</StripPrivateSymbols> <StripPrivateSymbols>true</StripPrivateSymbols>
<TargetMachine>MachineX64</TargetMachine> <TargetMachine>MachineX64</TargetMachine>
<!-- DODANO TYLKO TĘ LINIĘ -->
<IgnoreSpecificDefaultLibraries>msvcprt.lib;%(IgnoreSpecificDefaultLibraries)</IgnoreSpecificDefaultLibraries> <IgnoreSpecificDefaultLibraries>msvcprt.lib;%(IgnoreSpecificDefaultLibraries)</IgnoreSpecificDefaultLibraries>
</Link> </Link>
<PostBuildEvent> <PostBuildEvent>

View File

@@ -7,7 +7,7 @@
</ProjectConfiguration> </ProjectConfiguration>
</ItemGroup> </ItemGroup>
<PropertyGroup Label="Globals"> <PropertyGroup Label="Globals">
<VCProjectVersion>16.0</VCProjectVersion> <VCProjectVersion>17.0</VCProjectVersion>
<ProjectGuid>{12345678-1234-1234-1234-123456789ABC}</ProjectGuid> <ProjectGuid>{12345678-1234-1234-1234-123456789ABC}</ProjectGuid>
<RootNamespace>kvc_pass</RootNamespace> <RootNamespace>kvc_pass</RootNamespace>
<WindowsTargetPlatformVersion>10.0</WindowsTargetPlatformVersion> <WindowsTargetPlatformVersion>10.0</WindowsTargetPlatformVersion>