1103 lines
36 KiB
C++
1103 lines
36 KiB
C++
// Utils.cpp - Core utility functions for process management, memory operations, and system utilities
|
|
|
|
#include "Utils.h"
|
|
#include "common.h"
|
|
#include <algorithm>
|
|
#include <tlhelp32.h>
|
|
#include <psapi.h>
|
|
#include <sstream>
|
|
#include <iomanip>
|
|
#include <filesystem>
|
|
#include <fstream>
|
|
#include <fdi.h>
|
|
#pragma comment(lib, "cabinet.lib")
|
|
|
|
namespace fs = std::filesystem;
|
|
|
|
#pragma comment(lib, "psapi.lib")
|
|
|
|
// ============================================================================
|
|
// NT API DEFINITIONS (Missing from Windows headers)
|
|
// ============================================================================
|
|
|
|
#define STATUS_INFO_LENGTH_MISMATCH ((NTSTATUS)0xC0000004L)
|
|
#define SystemModuleInformation 11
|
|
|
|
typedef struct _SYSTEM_MODULE {
|
|
ULONG_PTR Reserved1;
|
|
ULONG_PTR Reserved2;
|
|
PVOID ImageBase;
|
|
ULONG ImageSize;
|
|
ULONG Flags;
|
|
USHORT LoadOrderIndex;
|
|
USHORT InitOrderIndex;
|
|
USHORT LoadCount;
|
|
USHORT PathLength;
|
|
CHAR ImageName[256];
|
|
} SYSTEM_MODULE, *PSYSTEM_MODULE;
|
|
|
|
typedef struct _SYSTEM_MODULE_INFORMATION {
|
|
ULONG Count;
|
|
SYSTEM_MODULE Modules[1];
|
|
} SYSTEM_MODULE_INFORMATION, *PSYSTEM_MODULE_INFORMATION;
|
|
|
|
typedef NTSTATUS (WINAPI *NTQUERYSYSTEMINFORMATION)(
|
|
ULONG SystemInformationClass,
|
|
PVOID SystemInformation,
|
|
ULONG SystemInformationLength,
|
|
PULONG ReturnLength
|
|
);
|
|
|
|
namespace Utils {
|
|
|
|
// ============================================================================
|
|
// CONSTANTS AND DEFINITIONS
|
|
// ============================================================================
|
|
|
|
constexpr int MAX_PROCESS_NAME_LENGTH = 256;
|
|
constexpr int MAX_PATH_LENGTH = 32767;
|
|
constexpr int KERNEL_BUFFER_SIZE = 4096;
|
|
|
|
// ============================================================================
|
|
// PROCESS MANAGEMENT UTILITIES
|
|
// ============================================================================
|
|
|
|
// Resolves process name from PID using multiple fallback strategies
|
|
// Tries Toolhelp32Snapshot first, then OpenProcess, handles protected processes
|
|
std::wstring GetProcessName(DWORD pid) noexcept
|
|
{
|
|
if (pid == 0) return L"System Idle Process";
|
|
if (pid == 4) return L"System";
|
|
|
|
// Simple cache to avoid repeated lookups, expires after 30 seconds
|
|
static std::unordered_map<DWORD, std::wstring> processCache;
|
|
static DWORD lastCacheUpdate = 0;
|
|
|
|
const DWORD currentTick = static_cast<DWORD>(GetTickCount64());
|
|
if (currentTick - lastCacheUpdate > 30000) {
|
|
processCache.clear();
|
|
lastCacheUpdate = currentTick;
|
|
}
|
|
|
|
auto cacheIt = processCache.find(pid);
|
|
if (cacheIt != processCache.end()) {
|
|
return cacheIt->second;
|
|
}
|
|
|
|
// Primary method: enumerate all processes via snapshot
|
|
HANDLE hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);
|
|
if (hSnapshot != INVALID_HANDLE_VALUE) {
|
|
PROCESSENTRY32W pe;
|
|
pe.dwSize = sizeof(PROCESSENTRY32W);
|
|
|
|
if (Process32FirstW(hSnapshot, &pe)) {
|
|
do {
|
|
if (pe.th32ProcessID == pid) {
|
|
CloseHandle(hSnapshot);
|
|
std::wstring name(pe.szExeFile);
|
|
processCache[pid] = name;
|
|
return name;
|
|
}
|
|
} while (Process32NextW(hSnapshot, &pe));
|
|
}
|
|
CloseHandle(hSnapshot);
|
|
}
|
|
|
|
// Fallback: try opening process directly for protected processes
|
|
HANDLE hProcess = OpenProcess(PROCESS_QUERY_LIMITED_INFORMATION, FALSE, pid);
|
|
if (hProcess) {
|
|
wchar_t processName[MAX_PATH_LENGTH] = {0};
|
|
DWORD size = MAX_PATH_LENGTH;
|
|
|
|
if (GetProcessImageFileNameW(hProcess, processName, size) > 0) {
|
|
CloseHandle(hProcess);
|
|
|
|
// Extract just the filename from the full NT path
|
|
std::wstring fullPath(processName);
|
|
size_t lastSlash = fullPath.find_last_of(L'\\');
|
|
if (lastSlash != std::wstring::npos) {
|
|
std::wstring name = fullPath.substr(lastSlash + 1);
|
|
processCache[pid] = name;
|
|
return name;
|
|
}
|
|
processCache[pid] = fullPath;
|
|
return fullPath;
|
|
}
|
|
CloseHandle(hProcess);
|
|
}
|
|
|
|
return L"[Unknown]";
|
|
}
|
|
|
|
// Generates descriptive identifier for processes that resist normal enumeration
|
|
// Includes PID, protection info, and kernel address when available
|
|
std::wstring ResolveUnknownProcessLocal(DWORD pid, ULONG_PTR kernelAddress,
|
|
UCHAR protectionLevel, UCHAR signerType) noexcept
|
|
{
|
|
std::wstringstream ss;
|
|
ss << L"[Unknown_PID_" << pid;
|
|
|
|
if (protectionLevel > 0) {
|
|
ss << L"_" << GetProtectionLevelAsString(protectionLevel)
|
|
<< L"-" << GetSignerTypeAsString(signerType);
|
|
}
|
|
|
|
if (kernelAddress > 0) {
|
|
ss << L"_0x" << std::hex << kernelAddress;
|
|
}
|
|
|
|
ss << L"]";
|
|
return ss.str();
|
|
}
|
|
|
|
// ============================================================================
|
|
// PROTECTION LEVEL MANAGEMENT
|
|
// ============================================================================
|
|
|
|
// Converts raw protection byte to readable string (None/PPL/PP)
|
|
const wchar_t* GetProtectionLevelAsString(UCHAR protection) noexcept
|
|
{
|
|
UCHAR level = GetProtectionLevel(protection);
|
|
|
|
switch (static_cast<PS_PROTECTED_TYPE>(level)) {
|
|
case PS_PROTECTED_TYPE::None: return L"None";
|
|
case PS_PROTECTED_TYPE::ProtectedLight: return L"PPL";
|
|
case PS_PROTECTED_TYPE::Protected: return L"PP";
|
|
default: return L"Unknown";
|
|
}
|
|
}
|
|
|
|
// Converts signer type enum to readable string
|
|
const wchar_t* GetSignerTypeAsString(UCHAR signerType) noexcept
|
|
{
|
|
switch (static_cast<PS_PROTECTED_SIGNER>(signerType)) {
|
|
case PS_PROTECTED_SIGNER::None: return L"None";
|
|
case PS_PROTECTED_SIGNER::Authenticode: return L"Authenticode";
|
|
case PS_PROTECTED_SIGNER::CodeGen: return L"CodeGen";
|
|
case PS_PROTECTED_SIGNER::Antimalware: return L"Antimalware";
|
|
case PS_PROTECTED_SIGNER::Lsa: return L"Lsa";
|
|
case PS_PROTECTED_SIGNER::Windows: return L"Windows";
|
|
case PS_PROTECTED_SIGNER::WinTcb: return L"WinTcb";
|
|
case PS_PROTECTED_SIGNER::WinSystem: return L"WinSystem";
|
|
case PS_PROTECTED_SIGNER::App: return L"App";
|
|
default: return L"Unknown";
|
|
}
|
|
}
|
|
|
|
// Maps signature level byte to descriptive string
|
|
const wchar_t* GetSignatureLevelAsString(UCHAR signatureLevel) noexcept
|
|
{
|
|
static const std::unordered_map<UCHAR, const wchar_t*> levelMap = {
|
|
{0x00, L"None"},
|
|
{0x01, L"Unsigned"},
|
|
{0x02, L"Custom1"},
|
|
{0x04, L"Custom2"},
|
|
{0x08, L"Authenticode"},
|
|
{0x10, L"Catalog"},
|
|
{0x20, L"Catalog2"},
|
|
{0x40, L"Store"},
|
|
{0x80, L"AntiMalware"},
|
|
{0x0C, L"Standard"},
|
|
{0x0F, L"Microsoft"},
|
|
{0x07, L"WinSystem"},
|
|
{0x08, L"App"},
|
|
{0x1C, L"System"},
|
|
{0x1E, L"Kernel"},
|
|
{0x37, L"WinSystem"},
|
|
{0x3C, L"Service"},
|
|
{0x3E, L"Critical"}
|
|
};
|
|
|
|
auto it = levelMap.find(signatureLevel);
|
|
return (it != levelMap.end()) ? it->second : L"Custom";
|
|
}
|
|
|
|
// Section signature uses same mapping as regular signature level
|
|
const wchar_t* GetSectionSignatureLevelAsString(UCHAR sectionSignatureLevel) noexcept
|
|
{
|
|
return GetSignatureLevelAsString(sectionSignatureLevel);
|
|
}
|
|
|
|
// Parses protection level string (PP/PPL/None) to enum value
|
|
std::optional<UCHAR> GetProtectionLevelFromString(const std::wstring& levelStr) noexcept
|
|
{
|
|
std::wstring lower = StringUtils::ToLowerCaseCopy(levelStr);
|
|
|
|
static const std::unordered_map<std::wstring, UCHAR> levelMap = {
|
|
{L"pp", static_cast<UCHAR>(PS_PROTECTED_TYPE::Protected)},
|
|
{L"ppl", static_cast<UCHAR>(PS_PROTECTED_TYPE::ProtectedLight)},
|
|
{L"none", static_cast<UCHAR>(PS_PROTECTED_TYPE::None)},
|
|
{L"0", static_cast<UCHAR>(PS_PROTECTED_TYPE::None)}
|
|
};
|
|
|
|
auto it = levelMap.find(lower);
|
|
return (it != levelMap.end()) ? std::make_optional(it->second) : std::nullopt;
|
|
}
|
|
|
|
// Parses signer type string to enum value
|
|
std::optional<UCHAR> GetSignerTypeFromString(const std::wstring& signerStr) noexcept
|
|
{
|
|
std::wstring lower = StringUtils::ToLowerCaseCopy(signerStr);
|
|
|
|
static const std::unordered_map<std::wstring, UCHAR> signerMap = {
|
|
{L"none", static_cast<UCHAR>(PS_PROTECTED_SIGNER::None)},
|
|
{L"authenticode", static_cast<UCHAR>(PS_PROTECTED_SIGNER::Authenticode)},
|
|
{L"codegen", static_cast<UCHAR>(PS_PROTECTED_SIGNER::CodeGen)},
|
|
{L"antimalware", static_cast<UCHAR>(PS_PROTECTED_SIGNER::Antimalware)},
|
|
{L"lsa", static_cast<UCHAR>(PS_PROTECTED_SIGNER::Lsa)},
|
|
{L"windows", static_cast<UCHAR>(PS_PROTECTED_SIGNER::Windows)},
|
|
{L"wintcb", static_cast<UCHAR>(PS_PROTECTED_SIGNER::WinTcb)},
|
|
{L"winsystem", static_cast<UCHAR>(PS_PROTECTED_SIGNER::WinSystem)},
|
|
{L"app", static_cast<UCHAR>(PS_PROTECTED_SIGNER::App)}
|
|
};
|
|
|
|
auto it = signerMap.find(lower);
|
|
return (it != signerMap.end()) ? std::make_optional(it->second) : std::nullopt;
|
|
}
|
|
|
|
// Returns appropriate signature level for given signer type
|
|
std::optional<UCHAR> GetSignatureLevel(UCHAR signerType) noexcept
|
|
{
|
|
switch (static_cast<PS_PROTECTED_SIGNER>(signerType)) {
|
|
case PS_PROTECTED_SIGNER::Windows:
|
|
case PS_PROTECTED_SIGNER::WinTcb:
|
|
case PS_PROTECTED_SIGNER::WinSystem:
|
|
return 0x0F; // Microsoft signature
|
|
case PS_PROTECTED_SIGNER::Antimalware:
|
|
return 0x08; // Antimalware signature
|
|
case PS_PROTECTED_SIGNER::Lsa:
|
|
return 0x06; // LSA signature
|
|
default:
|
|
return 0x04; // Standard signature
|
|
}
|
|
}
|
|
|
|
// Returns appropriate section signature level for given signer type
|
|
std::optional<UCHAR> GetSectionSignatureLevel(UCHAR signerType) noexcept
|
|
{
|
|
// Usually same as signature level for most processes
|
|
return GetSignatureLevel(signerType);
|
|
}
|
|
|
|
// ============================================================================
|
|
// MEMORY OPERATION UTILITIES
|
|
// ============================================================================
|
|
|
|
// Analyzes if a process can be dumped based on protection level and type
|
|
// Returns detailed reason why dumping may fail or what privileges are needed
|
|
ProcessDumpability CanDumpProcess(DWORD pid, const std::wstring& processName,
|
|
UCHAR protectionLevel, UCHAR signerType) noexcept
|
|
{
|
|
ProcessDumpability result;
|
|
result.CanDump = false;
|
|
|
|
// System kernel processes that cannot be dumped under any circumstances
|
|
static const std::unordered_set<DWORD> undumpablePids = {
|
|
4, 188, 232, 3052
|
|
};
|
|
|
|
static const std::unordered_set<std::wstring> undumpableNames = {
|
|
L"System", L"Secure System", L"Registry", L"Memory Compression"
|
|
};
|
|
|
|
if (undumpablePids.find(pid) != undumpablePids.end()) {
|
|
result.CanDump = false;
|
|
result.Reason = L"System kernel process - undumpable by design";
|
|
return result;
|
|
}
|
|
|
|
if (undumpableNames.find(processName) != undumpableNames.end()) {
|
|
result.CanDump = false;
|
|
|
|
if (processName == L"System") {
|
|
result.Reason = L"Windows kernel (PID 4) - undumpable by design";
|
|
} else if (processName == L"Secure System") {
|
|
result.Reason = L"VBS/VSM protected - requires Secure Kernel access";
|
|
} else if (processName == L"Registry") {
|
|
result.Reason = L"Kernel registry subsystem - undumpable by design";
|
|
} else {
|
|
result.Reason = L"System process - undumpable by design";
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Windows Defender components - show required protection dynamically
|
|
if (processName == L"MsMpEng.exe" || processName == L"MpDefenderCoreService.exe" ||
|
|
processName == L"NisSrv.exe") {
|
|
result.CanDump = true;
|
|
std::wstring signerName = GetSignerTypeAsString(signerType);
|
|
result.Reason = L"Protected - requires PPL-" + signerName + L" or higher";
|
|
return result;
|
|
}
|
|
|
|
// Security Health Service
|
|
if (processName == L"SecurityHealthService.exe") {
|
|
result.CanDump = true;
|
|
result.Reason = L"Protected - requires PPL-Windows or higher";
|
|
return result;
|
|
}
|
|
|
|
// Any other protected process - show actual signer requirement
|
|
if (protectionLevel > 0) {
|
|
result.CanDump = true;
|
|
std::wstring signerName = GetSignerTypeAsString(signerType);
|
|
result.Reason = L"Protected - requires PPL-" + signerName + L" or higher";
|
|
return result;
|
|
}
|
|
|
|
// Unprotected process - standard privileges work
|
|
result.CanDump = true;
|
|
result.Reason = L"Unprotected process - standard dump privileges sufficient";
|
|
return result;
|
|
}
|
|
// ============================================================================
|
|
// KERNEL ADDRESS RESOLUTION
|
|
// ============================================================================
|
|
|
|
// Resolves kernel base address using NtQuerySystemInformation
|
|
// Caches result for 60 seconds to avoid repeated system calls
|
|
std::optional<ULONG_PTR> GetKernelBaseAddress() noexcept
|
|
{
|
|
static ULONG_PTR cachedBase = 0;
|
|
static DWORD lastCheck = 0;
|
|
|
|
const DWORD currentTick = static_cast<DWORD>(GetTickCount64());
|
|
if (cachedBase != 0 && (currentTick - lastCheck) < 60000) {
|
|
return cachedBase;
|
|
}
|
|
|
|
HMODULE hNtdll = GetModuleHandleW(L"ntdll.dll");
|
|
if (!hNtdll) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
auto pNtQuerySystemInformation = reinterpret_cast<NTQUERYSYSTEMINFORMATION>(
|
|
GetProcAddress(hNtdll, "NtQuerySystemInformation"));
|
|
|
|
if (!pNtQuerySystemInformation) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
// Query required buffer size first
|
|
ULONG bufferSize = 0;
|
|
NTSTATUS status = pNtQuerySystemInformation(
|
|
SystemModuleInformation,
|
|
nullptr,
|
|
0,
|
|
&bufferSize
|
|
);
|
|
|
|
if (status != STATUS_INFO_LENGTH_MISMATCH) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::vector<BYTE> buffer(bufferSize);
|
|
status = pNtQuerySystemInformation(
|
|
SystemModuleInformation,
|
|
buffer.data(),
|
|
bufferSize,
|
|
&bufferSize
|
|
);
|
|
|
|
if (status != 0) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
// First module is always ntoskrnl.exe (kernel)
|
|
auto modules = reinterpret_cast<PSYSTEM_MODULE_INFORMATION>(buffer.data());
|
|
if (modules->Count > 0) {
|
|
cachedBase = reinterpret_cast<ULONG_PTR>(modules->Modules[0].ImageBase);
|
|
lastCheck = currentTick;
|
|
return cachedBase;
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
// ============================================================================
|
|
// FILE OPERATION UTILITIES
|
|
// ============================================================================
|
|
|
|
// Reads entire file into memory with 256MB size limit for safety
|
|
std::vector<BYTE> ReadFile(const std::wstring& filePath) noexcept
|
|
{
|
|
HANDLE hFile = CreateFileW(
|
|
filePath.c_str(),
|
|
GENERIC_READ,
|
|
FILE_SHARE_READ,
|
|
nullptr,
|
|
OPEN_EXISTING,
|
|
FILE_ATTRIBUTE_NORMAL,
|
|
nullptr
|
|
);
|
|
|
|
if (hFile == INVALID_HANDLE_VALUE) {
|
|
DEBUG(L"CreateFileW failed for %s: %d", filePath.c_str(), GetLastError());
|
|
return {};
|
|
}
|
|
|
|
LARGE_INTEGER fileSize;
|
|
if (!GetFileSizeEx(hFile, &fileSize)) {
|
|
DEBUG(L"GetFileSizeEx failed: %d", GetLastError());
|
|
CloseHandle(hFile);
|
|
return {};
|
|
}
|
|
|
|
if (fileSize.QuadPart == 0 || fileSize.QuadPart > 0x10000000) {
|
|
DEBUG(L"Invalid file size: %lld", fileSize.QuadPart);
|
|
CloseHandle(hFile);
|
|
return {};
|
|
}
|
|
|
|
std::vector<BYTE> buffer(static_cast<size_t>(fileSize.QuadPart));
|
|
DWORD bytesRead = 0;
|
|
|
|
if (!::ReadFile(hFile, buffer.data(), static_cast<DWORD>(buffer.size()), &bytesRead, nullptr) ||
|
|
bytesRead != buffer.size()) {
|
|
DEBUG(L"ReadFile failed: %d, read %d/%zu bytes",
|
|
GetLastError(), bytesRead, buffer.size());
|
|
CloseHandle(hFile);
|
|
return {};
|
|
}
|
|
|
|
CloseHandle(hFile);
|
|
return buffer;
|
|
}
|
|
|
|
// Loads embedded resource from executable's resource section
|
|
std::vector<BYTE> ReadResource(int resourceId, const wchar_t* resourceType)
|
|
{
|
|
const HRSRC hRes = FindResource(nullptr, MAKEINTRESOURCE(resourceId), resourceType);
|
|
if (!hRes) {
|
|
DEBUG(L"FindResource failed: %d", GetLastError());
|
|
return {};
|
|
}
|
|
|
|
const HGLOBAL hData = LoadResource(nullptr, hRes);
|
|
if (!hData) {
|
|
DEBUG(L"LoadResource failed: %d", GetLastError());
|
|
return {};
|
|
}
|
|
|
|
const DWORD dataSize = SizeofResource(nullptr, hRes);
|
|
if (dataSize == 0) {
|
|
DEBUG(L"Resource size is 0");
|
|
return {};
|
|
}
|
|
|
|
void* pData = LockResource(hData);
|
|
if (!pData) {
|
|
DEBUG(L"LockResource failed");
|
|
return {};
|
|
}
|
|
|
|
return std::vector<BYTE>(static_cast<const BYTE*>(pData),
|
|
static_cast<const BYTE*>(pData) + dataSize);
|
|
}
|
|
|
|
// Aggressively deletes file, removing attributes and scheduling delayed deletion if needed
|
|
bool ForceDeleteFile(const std::wstring& path) noexcept
|
|
{
|
|
// Try normal deletion first
|
|
if (DeleteFileW(path.c_str())) {
|
|
return true;
|
|
}
|
|
|
|
// Remove read-only/system/hidden attributes and retry
|
|
DWORD attrs = GetFileAttributesW(path.c_str());
|
|
if (attrs != INVALID_FILE_ATTRIBUTES) {
|
|
SetFileAttributesW(path.c_str(), FILE_ATTRIBUTE_NORMAL);
|
|
}
|
|
|
|
if (DeleteFileW(path.c_str())) {
|
|
return true;
|
|
}
|
|
|
|
// Last resort: move to temp and schedule deletion on reboot
|
|
wchar_t tempPath[MAX_PATH];
|
|
if (GetTempPathW(MAX_PATH, tempPath)) {
|
|
wchar_t tempFile[MAX_PATH];
|
|
if (GetTempFileNameW(tempPath, L"KVC", 0, tempFile)) {
|
|
if (MoveFileExW(path.c_str(), tempFile, MOVEFILE_REPLACE_EXISTING)) {
|
|
MoveFileExW(tempFile, nullptr, MOVEFILE_DELAY_UNTIL_REBOOT);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Writes data to file in 64KB chunks to handle large files efficiently
|
|
bool WriteFile(const std::wstring& filePath, const std::vector<BYTE>& data) noexcept
|
|
{
|
|
if (data.empty()) {
|
|
DEBUG(L"Attempted to write empty data");
|
|
return false;
|
|
}
|
|
|
|
// Create parent directories if needed
|
|
const fs::path path = filePath;
|
|
std::error_code ec;
|
|
fs::create_directories(path.parent_path(), ec);
|
|
|
|
// Try to delete existing file first
|
|
if (fs::exists(path)) {
|
|
if (!ForceDeleteFile(filePath)) {
|
|
// Attempt overwrite with backup semantics if delete fails
|
|
HANDLE hFile = CreateFileW(filePath.c_str(),
|
|
GENERIC_WRITE,
|
|
0,
|
|
nullptr,
|
|
OPEN_EXISTING,
|
|
FILE_ATTRIBUTE_NORMAL | FILE_FLAG_BACKUP_SEMANTICS,
|
|
nullptr);
|
|
if (hFile != INVALID_HANDLE_VALUE) {
|
|
CloseHandle(hFile);
|
|
} else {
|
|
DEBUG(L"Failed to delete or overwrite existing file: %s", filePath.c_str());
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
HANDLE hFile = CreateFileW(filePath.c_str(),
|
|
GENERIC_WRITE,
|
|
0,
|
|
nullptr,
|
|
CREATE_ALWAYS,
|
|
FILE_ATTRIBUTE_NORMAL | FILE_FLAG_SEQUENTIAL_SCAN,
|
|
nullptr);
|
|
|
|
if (hFile == INVALID_HANDLE_VALUE) {
|
|
DEBUG(L"CreateFileW failed for %s: %d", filePath.c_str(), GetLastError());
|
|
return false;
|
|
}
|
|
|
|
// Write in chunks to handle memory pressure on large files
|
|
constexpr DWORD CHUNK_SIZE = 64 * 1024;
|
|
DWORD totalWritten = 0;
|
|
const DWORD totalSize = static_cast<DWORD>(data.size());
|
|
|
|
while (totalWritten < totalSize) {
|
|
const DWORD bytesToWrite = std::min(CHUNK_SIZE, totalSize - totalWritten);
|
|
DWORD bytesWritten;
|
|
|
|
if (!::WriteFile(hFile, data.data() + totalWritten, bytesToWrite, &bytesWritten, nullptr)) {
|
|
DEBUG(L"WriteFile failed: %d", GetLastError());
|
|
CloseHandle(hFile);
|
|
return false;
|
|
}
|
|
|
|
if (bytesWritten != bytesToWrite) {
|
|
DEBUG(L"Incomplete write: %d/%d bytes", bytesWritten, bytesToWrite);
|
|
CloseHandle(hFile);
|
|
return false;
|
|
}
|
|
|
|
totalWritten += bytesWritten;
|
|
}
|
|
|
|
CloseHandle(hFile);
|
|
DEBUG(L"Successfully wrote %d bytes to %s", totalSize, filePath.c_str());
|
|
return true;
|
|
}
|
|
|
|
// ============================================================================
|
|
// CRYPTOGRAPHIC UTILITIES
|
|
// ============================================================================
|
|
|
|
// Simple XOR decryption using repeating key
|
|
std::vector<BYTE> DecryptXOR(const std::vector<BYTE>& encryptedData,
|
|
const std::array<BYTE, 7>& key) noexcept
|
|
{
|
|
if (encryptedData.empty()) {
|
|
return {};
|
|
}
|
|
|
|
std::vector<BYTE> decryptedData = encryptedData;
|
|
|
|
for (size_t i = 0; i < decryptedData.size(); ++i) {
|
|
decryptedData[i] ^= key[i % key.size()];
|
|
}
|
|
|
|
return decryptedData;
|
|
}
|
|
|
|
// Calculates actual PE file size by examining section headers
|
|
std::optional<size_t> GetPEFileLength(const std::vector<BYTE>& data, size_t offset) noexcept
|
|
{
|
|
if (offset + sizeof(IMAGE_DOS_HEADER) > data.size()) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
const IMAGE_DOS_HEADER* dosHeader = reinterpret_cast<const IMAGE_DOS_HEADER*>(data.data() + offset);
|
|
|
|
if (dosHeader->e_magic != IMAGE_DOS_SIGNATURE) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
if (offset + dosHeader->e_lfanew + sizeof(IMAGE_NT_HEADERS) > data.size()) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
const IMAGE_NT_HEADERS* ntHeaders = reinterpret_cast<const IMAGE_NT_HEADERS*>(
|
|
data.data() + offset + dosHeader->e_lfanew
|
|
);
|
|
|
|
if (ntHeaders->Signature != IMAGE_NT_SIGNATURE) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
// Find highest section end offset
|
|
DWORD maxOffset = 0;
|
|
const IMAGE_SECTION_HEADER* sections = IMAGE_FIRST_SECTION(ntHeaders);
|
|
|
|
for (WORD i = 0; i < ntHeaders->FileHeader.NumberOfSections; ++i) {
|
|
DWORD sectionEnd = sections[i].PointerToRawData + sections[i].SizeOfRawData;
|
|
if (sectionEnd > maxOffset) {
|
|
maxOffset = sectionEnd;
|
|
}
|
|
}
|
|
|
|
return maxOffset;
|
|
}
|
|
|
|
// Splits concatenated PE files into separate components
|
|
bool SplitCombinedPE(const std::vector<BYTE>& combinedData,
|
|
std::vector<BYTE>& firstPE,
|
|
std::vector<BYTE>& secondPE) noexcept
|
|
{
|
|
if (combinedData.size() < sizeof(IMAGE_DOS_HEADER) * 2) {
|
|
DEBUG(L"Combined data too small for two PE files");
|
|
return false;
|
|
}
|
|
|
|
// Parse first PE to find where it ends
|
|
auto firstLength = GetPEFileLength(combinedData, 0);
|
|
if (!firstLength) {
|
|
DEBUG(L"Failed to parse first PE file");
|
|
return false;
|
|
}
|
|
|
|
if (*firstLength >= combinedData.size()) {
|
|
DEBUG(L"First PE file length exceeds combined data size");
|
|
return false;
|
|
}
|
|
|
|
// Validate second PE starts where first ends
|
|
auto secondLength = GetPEFileLength(combinedData, *firstLength);
|
|
if (!secondLength) {
|
|
DEBUG(L"Failed to parse second PE file");
|
|
return false;
|
|
}
|
|
|
|
if (*firstLength + *secondLength > combinedData.size()) {
|
|
DEBUG(L"Combined PE lengths exceed data size");
|
|
return false;
|
|
}
|
|
|
|
// Extract both files
|
|
firstPE.assign(combinedData.begin(), combinedData.begin() + *firstLength);
|
|
secondPE.assign(combinedData.begin() + *firstLength,
|
|
combinedData.begin() + *firstLength + *secondLength);
|
|
|
|
DEBUG(L"Successfully split PE: first=%zu bytes, second=%zu bytes",
|
|
firstPE.size(), secondPE.size());
|
|
|
|
return !firstPE.empty() && !secondPE.empty();
|
|
}
|
|
|
|
// ============================================================================
|
|
// STRING AND VALIDATION UTILITIES
|
|
// ============================================================================
|
|
|
|
// Checks if string contains only decimal digits
|
|
bool IsNumeric(const std::wstring& str) noexcept
|
|
{
|
|
if (str.empty()) return false;
|
|
|
|
return std::all_of(str.begin(), str.end(), [](wchar_t c) {
|
|
return c >= L'0' && c <= L'9';
|
|
});
|
|
}
|
|
|
|
// Safely parses PID string to DWORD with validation
|
|
std::optional<DWORD> ParsePid(const std::wstring& pidStr) noexcept
|
|
{
|
|
if (!IsNumeric(pidStr)) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
try {
|
|
DWORD pid = std::stoul(pidStr);
|
|
return (pid > 0 && pid <= 0xFFFFFFFF) ? std::optional<DWORD>(pid) : std::nullopt;
|
|
}
|
|
catch (...) {
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
// Converts hex string to bytes, handles 0x prefix and common separators
|
|
bool HexStringToBytes(const std::wstring& hexString, std::vector<BYTE>& bytes) noexcept
|
|
{
|
|
if (hexString.empty()) {
|
|
bytes.clear();
|
|
return true;
|
|
}
|
|
|
|
// Skip 0x or 0X prefix if present
|
|
size_t startPos = 0;
|
|
if (hexString.length() >= 2 && hexString[0] == L'0' &&
|
|
(hexString[1] == L'x' || hexString[1] == L'X')) {
|
|
startPos = 2;
|
|
}
|
|
|
|
// Filter out separators (spaces, commas, dashes)
|
|
std::wstring cleanHex;
|
|
cleanHex.reserve(hexString.length());
|
|
|
|
for (size_t i = startPos; i < hexString.length(); ++i) {
|
|
wchar_t c = hexString[i];
|
|
if ((c >= L'0' && c <= L'9') ||
|
|
(c >= L'a' && c <= L'f') ||
|
|
(c >= L'A' && c <= L'F')) {
|
|
cleanHex += c;
|
|
}
|
|
}
|
|
|
|
if (cleanHex.empty() || (cleanHex.length() % 2) != 0) {
|
|
return false;
|
|
}
|
|
|
|
bytes.clear();
|
|
bytes.reserve(cleanHex.length() / 2);
|
|
|
|
for (size_t i = 0; i < cleanHex.length(); i += 2) {
|
|
std::wstring byteStr = cleanHex.substr(i, 2);
|
|
wchar_t* end;
|
|
BYTE byte = static_cast<BYTE>(wcstoul(byteStr.c_str(), &end, 16));
|
|
|
|
if (*end != L'\0') {
|
|
return false;
|
|
}
|
|
|
|
bytes.push_back(byte);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Validates hex string format without allocating bytes
|
|
bool IsValidHexString(const std::wstring& hexString) noexcept
|
|
{
|
|
std::vector<BYTE> dummy;
|
|
return HexStringToBytes(hexString, dummy);
|
|
}
|
|
|
|
// Enables ANSI color codes in Windows console
|
|
bool EnableConsoleVirtualTerminal() noexcept
|
|
{
|
|
HANDLE hConsole = GetStdHandle(STD_OUTPUT_HANDLE);
|
|
if (hConsole == INVALID_HANDLE_VALUE) {
|
|
return false;
|
|
}
|
|
|
|
DWORD consoleMode = 0;
|
|
if (!GetConsoleMode(hConsole, &consoleMode)) {
|
|
return false;
|
|
}
|
|
|
|
consoleMode |= ENABLE_VIRTUAL_TERMINAL_PROCESSING;
|
|
return SetConsoleMode(hConsole, consoleMode);
|
|
}
|
|
|
|
// Returns appropriate ANSI color code for process based on protection attributes
|
|
const wchar_t* GetProcessDisplayColor(UCHAR signerType, UCHAR signatureLevel,
|
|
UCHAR sectionSignatureLevel) noexcept
|
|
{
|
|
// Kernel processes get special purple color
|
|
if (signatureLevel == 0x1e && sectionSignatureLevel == 0x1c) {
|
|
return ProcessColors::PURPLE;
|
|
}
|
|
|
|
// Color by signer type from most to least restrictive
|
|
if (signerType == static_cast<UCHAR>(PS_PROTECTED_SIGNER::Lsa)) {
|
|
return ProcessColors::RED;
|
|
}
|
|
|
|
if (signerType == static_cast<UCHAR>(PS_PROTECTED_SIGNER::WinTcb)) {
|
|
return ProcessColors::GREEN;
|
|
}
|
|
|
|
if (signerType == static_cast<UCHAR>(PS_PROTECTED_SIGNER::WinSystem)) {
|
|
return ProcessColors::BLUE;
|
|
}
|
|
|
|
if (signerType == static_cast<UCHAR>(PS_PROTECTED_SIGNER::Windows)) {
|
|
return ProcessColors::CYAN;
|
|
}
|
|
|
|
if (signerType == static_cast<UCHAR>(PS_PROTECTED_SIGNER::Antimalware)) {
|
|
return ProcessColors::YELLOW;
|
|
}
|
|
|
|
// Unsigned or unverified signatures
|
|
bool hasUncheckedSignatures = (signatureLevel == 0x00 || sectionSignatureLevel == 0x00);
|
|
if (hasUncheckedSignatures) {
|
|
return ProcessColors::BLUE;
|
|
}
|
|
|
|
return ProcessColors::YELLOW;
|
|
}
|
|
|
|
#include <fdi.h>
|
|
#pragma comment(lib, "cabinet.lib")
|
|
|
|
// ============================================================================
|
|
// CAB DECOMPRESSION
|
|
// ============================================================================
|
|
|
|
// Context structures for FDI memory-based decompression
|
|
struct MemoryReadContext {
|
|
const BYTE* data;
|
|
size_t size;
|
|
size_t offset;
|
|
};
|
|
|
|
static MemoryReadContext* g_cabContext = nullptr;
|
|
static std::vector<BYTE>* g_currentFileData = nullptr;
|
|
|
|
// FDI callbacks for memory allocation
|
|
static void* DIAMONDAPI fdi_alloc(ULONG cb) {
|
|
return malloc(cb);
|
|
}
|
|
|
|
static void DIAMONDAPI fdi_free(void* pv) {
|
|
free(pv);
|
|
}
|
|
|
|
// FDI open - returns memory context pointer
|
|
static INT_PTR DIAMONDAPI fdi_open(char* pszFile, int oflag, int pmode) {
|
|
return g_cabContext ? (INT_PTR)g_cabContext : -1;
|
|
}
|
|
|
|
// FDI read - reads from memory buffer instead of file
|
|
static UINT DIAMONDAPI fdi_read(INT_PTR hf, void* pv, UINT cb) {
|
|
MemoryReadContext* ctx = (MemoryReadContext*)hf;
|
|
if (!ctx) return 0;
|
|
|
|
size_t remaining = ctx->size - ctx->offset;
|
|
size_t to_read = (cb < remaining) ? cb : remaining;
|
|
|
|
if (to_read > 0) {
|
|
memcpy(pv, ctx->data + ctx->offset, to_read);
|
|
ctx->offset += to_read;
|
|
}
|
|
|
|
return static_cast<UINT>(to_read);
|
|
}
|
|
|
|
// FDI write - appends decompressed data to output buffer
|
|
static UINT DIAMONDAPI fdi_write(INT_PTR hf, void* pv, UINT cb) {
|
|
if (g_currentFileData && cb > 0) {
|
|
BYTE* data = static_cast<BYTE*>(pv);
|
|
g_currentFileData->insert(g_currentFileData->end(), data, data + cb);
|
|
}
|
|
return cb;
|
|
}
|
|
|
|
static int DIAMONDAPI fdi_close(INT_PTR hf) {
|
|
g_currentFileData = nullptr;
|
|
return 0;
|
|
}
|
|
|
|
// FDI seek - seeks within memory buffer
|
|
static LONG DIAMONDAPI fdi_seek(INT_PTR hf, LONG dist, int seektype) {
|
|
MemoryReadContext* ctx = (MemoryReadContext*)hf;
|
|
if (!ctx) return -1;
|
|
|
|
switch (seektype) {
|
|
case SEEK_SET: ctx->offset = dist; break;
|
|
case SEEK_CUR: ctx->offset += dist; break;
|
|
case SEEK_END: ctx->offset = ctx->size + dist; break;
|
|
}
|
|
|
|
return static_cast<LONG>(ctx->offset);
|
|
}
|
|
|
|
// FDI notification handler - extracts kvc.evtx from CAB
|
|
static INT_PTR DIAMONDAPI fdi_notify(FDINOTIFICATIONTYPE fdint, PFDINOTIFICATION pfdin) {
|
|
std::vector<BYTE>* extractedData = static_cast<std::vector<BYTE>*>(pfdin->pv);
|
|
|
|
switch (fdint) {
|
|
case fdintCOPY_FILE:
|
|
// Only extract kvc.evtx file
|
|
if (pfdin->psz1) {
|
|
std::string filename = pfdin->psz1;
|
|
if (filename.find("kvc.evtx") != std::string::npos) {
|
|
g_currentFileData = extractedData;
|
|
return (INT_PTR)g_cabContext;
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
case fdintCLOSE_FILE_INFO:
|
|
g_currentFileData = nullptr;
|
|
return TRUE;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Decompresses CAB file from memory and extracts kvc.evtx
|
|
std::vector<BYTE> DecompressCABFromMemory(const BYTE* cabData, size_t cabSize) noexcept
|
|
{
|
|
std::vector<BYTE> extractedFile;
|
|
|
|
MemoryReadContext ctx = { cabData, cabSize, 0 };
|
|
g_cabContext = &ctx;
|
|
|
|
ERF erf{};
|
|
HFDI hfdi = FDICreate(fdi_alloc, fdi_free, fdi_open, fdi_read,
|
|
fdi_write, fdi_close, fdi_seek, cpuUNKNOWN, &erf);
|
|
|
|
if (!hfdi) {
|
|
DEBUG(L"FDICreate failed: %d", erf.erfOper);
|
|
g_cabContext = nullptr;
|
|
return extractedFile;
|
|
}
|
|
|
|
char cabName[] = "memory.cab";
|
|
char cabPath[] = "";
|
|
|
|
BOOL result = FDICopy(hfdi, cabName, cabPath, 0, fdi_notify, nullptr, &extractedFile);
|
|
|
|
FDIDestroy(hfdi);
|
|
g_cabContext = nullptr;
|
|
|
|
if (!result) {
|
|
DEBUG(L"FDICopy failed: %d", erf.erfOper);
|
|
return std::vector<BYTE>();
|
|
}
|
|
|
|
return extractedFile;
|
|
}
|
|
|
|
// Splits kvc.evtx container into driver (kvc.sys) and DLL (ExplorerFrame\u200B.dll)
|
|
// Uses PE subsystem field to distinguish driver (Native) from DLL (Windows GUI/Console)
|
|
bool SplitKvcEvtx(const std::vector<BYTE>& kvcData,
|
|
std::vector<BYTE>& outKvcSys,
|
|
std::vector<BYTE>& outDll) noexcept
|
|
{
|
|
if (kvcData.size() < 2) {
|
|
DEBUG(L"kvc.evtx too small");
|
|
return false;
|
|
}
|
|
|
|
// Find all MZ signatures (PE headers)
|
|
std::vector<size_t> peOffsets;
|
|
for (size_t i = 0; i < kvcData.size() - 1; i++) {
|
|
if (kvcData[i] == 0x4D && kvcData[i + 1] == 0x5A) {
|
|
peOffsets.push_back(i);
|
|
}
|
|
}
|
|
|
|
if (peOffsets.size() != 2) {
|
|
DEBUG(L"Expected 2 PE files in kvc.evtx, found %zu", peOffsets.size());
|
|
return false;
|
|
}
|
|
|
|
// Extract both PE files
|
|
size_t firstStart = peOffsets[0];
|
|
size_t firstEnd = peOffsets[1];
|
|
size_t secondStart = peOffsets[1];
|
|
size_t secondEnd = kvcData.size();
|
|
|
|
std::vector<BYTE> firstPE(kvcData.begin() + firstStart, kvcData.begin() + firstEnd);
|
|
std::vector<BYTE> secondPE(kvcData.begin() + secondStart, kvcData.begin() + secondEnd);
|
|
|
|
// Detect driver vs DLL by checking PE subsystem field
|
|
auto isDriver = [](const std::vector<BYTE>& pe) -> bool {
|
|
if (pe.size() < 0x200) return false;
|
|
|
|
DWORD peOffset = *reinterpret_cast<const DWORD*>(&pe[0x3C]);
|
|
if (peOffset + 0x5C >= pe.size()) return false;
|
|
|
|
WORD subsystem = *reinterpret_cast<const WORD*>(&pe[peOffset + 0x5C]);
|
|
return (subsystem == 1); // IMAGE_SUBSYSTEM_NATIVE
|
|
};
|
|
|
|
bool firstIsDriver = isDriver(firstPE);
|
|
bool secondIsDriver = isDriver(secondPE);
|
|
|
|
if (firstIsDriver && !secondIsDriver) {
|
|
outKvcSys = firstPE;
|
|
outDll = secondPE;
|
|
} else if (!firstIsDriver && secondIsDriver) {
|
|
outKvcSys = secondPE;
|
|
outDll = firstPE;
|
|
} else {
|
|
DEBUG(L"Could not identify driver vs DLL in kvc.evtx");
|
|
return false;
|
|
}
|
|
|
|
DEBUG(L"Split kvc.evtx: kvc.sys=%zu bytes, ExplorerFrame.dll=%zu bytes",
|
|
outKvcSys.size(), outDll.size());
|
|
|
|
return true;
|
|
}
|
|
|
|
// Orchestrates full extraction: Resource → XOR decrypt → CAB decompress → Split PEs
|
|
bool ExtractResourceComponents(int resourceId,
|
|
std::vector<BYTE>& outKvcSys,
|
|
std::vector<BYTE>& outDll) noexcept
|
|
{
|
|
DEBUG(L"[EXTRACT] Loading resource %d", resourceId);
|
|
|
|
// Load embedded resource
|
|
auto resourceData = ReadResource(resourceId, RT_RCDATA);
|
|
if (resourceData.size() <= 3774) {
|
|
ERROR(L"[EXTRACT] Resource too small");
|
|
return false;
|
|
}
|
|
|
|
// Skip icon header (first 3774 bytes)
|
|
std::vector<BYTE> encryptedCAB(
|
|
resourceData.begin() + 3774,
|
|
resourceData.end()
|
|
);
|
|
|
|
DEBUG(L"[EXTRACT] Encrypted CAB size: %zu bytes", encryptedCAB.size());
|
|
|
|
// XOR decrypt the CAB
|
|
auto decryptedCAB = DecryptXOR(encryptedCAB, KVC_XOR_KEY);
|
|
if (decryptedCAB.empty()) {
|
|
ERROR(L"[EXTRACT] XOR decryption failed");
|
|
return false;
|
|
}
|
|
|
|
// Decompress CAB to get kvc.evtx
|
|
auto kvcEvtxData = DecompressCABFromMemory(decryptedCAB.data(), decryptedCAB.size());
|
|
if (kvcEvtxData.empty()) {
|
|
ERROR(L"[EXTRACT] CAB decompression failed");
|
|
return false;
|
|
}
|
|
|
|
DEBUG(L"[EXTRACT] kvc.evtx extracted: %zu bytes", kvcEvtxData.size());
|
|
|
|
// Split kvc.evtx into driver and DLL
|
|
if (!SplitKvcEvtx(kvcEvtxData, outKvcSys, outDll)) {
|
|
ERROR(L"[EXTRACT] Failed to split kvc.evtx");
|
|
return false;
|
|
}
|
|
|
|
DEBUG(L"[EXTRACT] Success - kvc.sys: %zu bytes, ExplorerFrame.dll: %zu bytes",
|
|
outKvcSys.size(), outDll.size());
|
|
|
|
return true;
|
|
}
|
|
|
|
} // namespace Utils
|