syscall(linux): forkAndExecInChild

This commit is contained in:
luoliwoshang
2025-01-14 14:10:16 +00:00
parent f85382edd4
commit 275bde6461

View File

@@ -6,7 +6,14 @@
package syscall package syscall
import c "github.com/goplus/llgo/runtime/internal/clite" import (
"runtime"
"unsafe"
c "github.com/goplus/llgo/runtime/internal/clite"
"github.com/goplus/llgo/runtime/internal/clite/os"
"github.com/goplus/llgo/runtime/internal/clite/syscall"
)
// Linux unshare/clone/clone2/clone3 flags, architecture-independent, // Linux unshare/clone/clone2/clone3 flags, architecture-independent,
// copied from linux/sched.h. // copied from linux/sched.h.
@@ -123,12 +130,14 @@ func runtime_AfterForkInChild()
// //
// func forkAndExecInChild(argv0 *byte, argv, envv []*byte, chroot, dir *byte, attr *ProcAttr, sys *SysProcAttr, pipe int) (pid int, err Errno) { // func forkAndExecInChild(argv0 *byte, argv, envv []*byte, chroot, dir *byte, attr *ProcAttr, sys *SysProcAttr, pipe int) (pid int, err Errno) {
func forkAndExecInChild(argv0 *c.Char, argv, envv **c.Char, chroot, dir *c.Char, attr *ProcAttr, sys *SysProcAttr, pipe int) (pid int, err Errno) { func forkAndExecInChild(argv0 *c.Char, argv, envv **c.Char, chroot, dir *c.Char, attr *ProcAttr, sys *SysProcAttr, pipe int) (pid int, err Errno) {
/* TODO(xsw):
// Set up and fork. This returns immediately in the parent or // Set up and fork. This returns immediately in the parent or
// if there's an error. // if there's an error.
upid, err, mapPipe, locked := forkAndExecInChild1(argv0, argv, envv, chroot, dir, attr, sys, pipe) upid, err, _, locked := forkAndExecInChild1(argv0, argv, envv, chroot, dir, attr, sys, pipe)
if locked { if locked {
/**
runtime_AfterFork() runtime_AfterFork()
*/
panic("todo: syscall.forkAndExecInChild - locked")
} }
if err != 0 { if err != 0 {
return 0, err return 0, err
@@ -138,6 +147,7 @@ func forkAndExecInChild(argv0 *c.Char, argv, envv **c.Char, chroot, dir *c.Char,
pid = int(upid) pid = int(upid)
if sys.UidMappings != nil || sys.GidMappings != nil { if sys.UidMappings != nil || sys.GidMappings != nil {
/**
Close(mapPipe[0]) Close(mapPipe[0])
var err2 Errno var err2 Errno
// uid/gid mappings will be written after fork and unshare(2) for user // uid/gid mappings will be written after fork and unshare(2) for user
@@ -149,11 +159,11 @@ func forkAndExecInChild(argv0 *c.Char, argv, envv **c.Char, chroot, dir *c.Char,
} }
RawSyscall(SYS_WRITE, uintptr(mapPipe[1]), uintptr(unsafe.Pointer(&err2)), unsafe.Sizeof(err2)) RawSyscall(SYS_WRITE, uintptr(mapPipe[1]), uintptr(unsafe.Pointer(&err2)), unsafe.Sizeof(err2))
Close(mapPipe[1]) Close(mapPipe[1])
*/
panic("todo: syscall.forkAndExecInChild - sys.UidMappings")
} }
return pid, 0 return pid, 0
*/
panic("todo: syscall.forkAndExecInChild")
} }
const _LINUX_CAPABILITY_VERSION_3 = 0x20080522 const _LINUX_CAPABILITY_VERSION_3 = 0x20080522
@@ -202,55 +212,62 @@ type cloneArgs struct {
// This is go:noinline because the point is to keep the stack frames // This is go:noinline because the point is to keep the stack frames
// of this and forkAndExecInChild separate. // of this and forkAndExecInChild separate.
// //
// func forkAndExecInChild1(argv0 *byte, argv, envv []*byte, chroot, dir *byte, attr *ProcAttr, sys *SysProcAttr, pipe int) (pid uintptr, err1 Errno, mapPipe [2]int, locked bool) {
//go:noinline //go:noinline
//go:norace //go:norace
//go:nocheckptr //go:nocheckptr
func forkAndExecInChild1(argv0 *byte, argv, envv []*byte, chroot, dir *byte, attr *ProcAttr, sys *SysProcAttr, pipe int) (pid uintptr, err1 Errno, mapPipe [2]int, locked bool) { func forkAndExecInChild1(argv0 *c.Char, argv, envv **c.Char, chroot, dir *c.Char, attr *ProcAttr, sys *SysProcAttr, pipe int) (pid uintptr, err1 Errno, mapPipe [2]int, locked bool) {
/* TODO(xsw): // Defined in linux/prctl.h starting with Linux 4.3.
// Defined in linux/prctl.h starting with Linux 4.3. const (
const ( PR_CAP_AMBIENT = 0x2f
PR_CAP_AMBIENT = 0x2f PR_CAP_AMBIENT_RAISE = 0x2
PR_CAP_AMBIENT_RAISE = 0x2 )
)
// vfork requires that the child not touch any of the parent's // vfork requires that the child not touch any of the parent's
// active stack frames. Hence, the child does all post-fork // active stack frames. Hence, the child does all post-fork
// processing in this stack frame and never returns, while the // processing in this stack frame and never returns, while the
// parent returns immediately from this frame and does all // parent returns immediately from this frame and does all
// post-fork processing in the outer frame. // post-fork processing in the outer frame.
// //
// Declare all variables at top in case any // Declare all variables at top in case any
// declarations require heap allocation (e.g., err2). // declarations require heap allocation (e.g., err2).
// ":=" should not be used to declare any variable after // ":=" should not be used to declare any variable after
// the call to runtime_BeforeFork. // the call to runtime_BeforeFork.
// //
// NOTE(bcmills): The allocation behavior described in the above comment // NOTE(bcmills): The allocation behavior described in the above comment
// seems to lack a corresponding test, and it may be rendered invalid // seems to lack a corresponding test, and it may be rendered invalid
// by an otherwise-correct change in the compiler. // by an otherwise-correct change in the compiler.
var ( var (
err2 Errno err2 Errno
nextfd int nextfd int
i int i int
caps caps caps caps
fd1, flags uintptr fd1, flags uintptr
puid, psetgroups, pgid []byte puid, psetgroups, pgid []byte
uidmap, setgroups, gidmap []byte uidmap, setgroups, gidmap []byte
clone3 *cloneArgs clone3 *cloneArgs
pgrp int32 pgrp int32
dirfd int dirfd int
cred *Credential cred *Credential
ngroups, groups uintptr ngroups, groups uintptr
c uintptr // c uintptr
) )
rlim, rlimOK := origRlimitNofile.Load().(Rlimit) rlim, rlimOK := origRlimitNofile.Load().(Rlimit)
if sys.UidMappings != nil { _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _ = rlim, rlimOK, psetgroups, groups, err2, caps, fd1, uidmap, puid, pgid, gidmap, setgroups, pgrp, dirfd, ngroups, i
if sys.UidMappings != nil {
/*
puid = []byte("/proc/self/uid_map\000") puid = []byte("/proc/self/uid_map\000")
uidmap = formatIDMappings(sys.UidMappings) uidmap = formatIDMappings(sys.UidMappings)
} */
panic("todo: syscall.forkAndExecInChild1 - sys.UidMappings")
}
if sys.GidMappings != nil { if sys.GidMappings != nil {
/*
psetgroups = []byte("/proc/self/setgroups\000") psetgroups = []byte("/proc/self/setgroups\000")
pgid = []byte("/proc/self/gid_map\000") pgid = []byte("/proc/self/gid_map\000")
@@ -260,389 +277,461 @@ func forkAndExecInChild1(argv0 *byte, argv, envv []*byte, chroot, dir *byte, att
setgroups = []byte("deny\000") setgroups = []byte("deny\000")
} }
gidmap = formatIDMappings(sys.GidMappings) gidmap = formatIDMappings(sys.GidMappings)
*/
panic("todo: syscall.forkAndExecInChild1 - sys.GidMappings")
}
// Record parent PID so child can test if it has died.
/**
ppid, _ := rawSyscallNoError(syscall.SYS_GETPID, 0, 0, 0)
*/
// Guard against side effects of shuffling fds below.
// Make sure that nextfd is beyond any currently open files so
// that we can't run the risk of overwriting any of them.
fd := make([]int, len(attr.Files))
nextfd = len(attr.Files)
for i, ufd := range attr.Files {
if nextfd < int(ufd) {
nextfd = int(ufd)
} }
fd[i] = int(ufd)
}
nextfd++
// Record parent PID so child can test if it has died. // Allocate another pipe for parent to child communication for
ppid, _ := rawSyscallNoError(SYS_GETPID, 0, 0, 0) // synchronizing writing of User ID/Group ID mappings.
if sys.UidMappings != nil || sys.GidMappings != nil {
// Guard against side effects of shuffling fds below. /*
// Make sure that nextfd is beyond any currently open files so
// that we can't run the risk of overwriting any of them.
fd := make([]int, len(attr.Files))
nextfd = len(attr.Files)
for i, ufd := range attr.Files {
if nextfd < int(ufd) {
nextfd = int(ufd)
}
fd[i] = int(ufd)
}
nextfd++
// Allocate another pipe for parent to child communication for
// synchronizing writing of User ID/Group ID mappings.
if sys.UidMappings != nil || sys.GidMappings != nil {
if err := forkExecPipe(mapPipe[:]); err != nil { if err := forkExecPipe(mapPipe[:]); err != nil {
err1 = err.(Errno) err1 = err.(Errno)
return return
} }
} */
panic("todo: syscall.forkAndExecInChild1 - sys.UidMappings")
}
flags = sys.Cloneflags flags = sys.Cloneflags
if sys.Cloneflags&CLONE_NEWUSER == 0 && sys.Unshareflags&CLONE_NEWUSER == 0 { if sys.Cloneflags&CLONE_NEWUSER == 0 && sys.Unshareflags&CLONE_NEWUSER == 0 {
flags |= CLONE_VFORK | CLONE_VM flags |= CLONE_VFORK | CLONE_VM
}
// Whether to use clone3.
if sys.UseCgroupFD {
clone3 = &cloneArgs{
flags: uint64(flags) | CLONE_INTO_CGROUP,
exitSignal: uint64(syscall.SIGCHLD),
cgroup: uint64(sys.CgroupFD),
} }
// Whether to use clone3. } else if flags&CLONE_NEWTIME != 0 {
if sys.UseCgroupFD { clone3 = &cloneArgs{
clone3 = &cloneArgs{ flags: uint64(flags),
flags: uint64(flags) | CLONE_INTO_CGROUP, exitSignal: uint64(syscall.SIGCHLD),
exitSignal: uint64(SIGCHLD),
cgroup: uint64(sys.CgroupFD),
}
} else if flags&CLONE_NEWTIME != 0 {
clone3 = &cloneArgs{
flags: uint64(flags),
exitSignal: uint64(SIGCHLD),
}
} }
}
// About to call fork. // About to call fork.
// No more allocation or calls of non-assembly functions. // No more allocation or calls of non-assembly functions.
runtime_BeforeFork() // runtime_BeforeFork()
locked = true var r1 uintptr
if clone3 != nil { r1, err1 = fork()
pid, err1 = rawVforkSyscall(_SYS_clone3, uintptr(unsafe.Pointer(clone3)), unsafe.Sizeof(*clone3)) if err1 != 0 {
// runtime_AfterFork()
return 0, err1, mapPipe, locked
}
if r1 != 0 {
// parent; return PID
// runtime_AfterFork()
return r1, 0, mapPipe, locked
}
locked = true
if clone3 != nil {
/**
pid, err1 = rawVforkSyscall(_SYS_clone3, uintptr(unsafe.Pointer(clone3)), unsafe.Sizeof(*clone3))
*/
panic("todo: syscall.forkAndExecInChild1 - clone3 != nil")
} else {
flags |= uintptr(syscall.SIGCHLD)
if runtime.GOARCH == "s390x" {
// On Linux/s390, the first two arguments of clone(2) are swapped.
// pid, err1 = rawVforkSyscall(syscall.SYS_CLONE, 0, flags)
} else { } else {
flags |= uintptr(SIGCHLD) // pid, err1 = rawVforkSyscall(syscall.SYS_CLONE, flags, 0)
if runtime.GOARCH == "s390x" { }
// On Linux/s390, the first two arguments of clone(2) are swapped. }
pid, err1 = rawVforkSyscall(SYS_CLONE, 0, flags) if err1 != 0 || pid != 0 {
} else { // If we're in the parent, we must return immediately
pid, err1 = rawVforkSyscall(SYS_CLONE, flags, 0) // so we're not in the same stack frame as the child.
// This can at most use the return PC, which the child
// will not modify, and the results of
// rawVforkSyscall, which must have been written after
// the child was replaced.
return
}
// Fork succeeded, now in child.
// Enable the "keep capabilities" flag to set ambient capabilities later.
if len(sys.AmbientCaps) > 0 {
/**
_, _, err1 = RawSyscall6(syscall.SYS_PRCTL, syscall.PR_SET_KEEPCAPS, 1, 0, 0, 0, 0)
if err1 != 0 {
goto childerror
}
*/
panic("todo: syscall.forkAndExecInChild1 - sys.AmbientCaps")
}
// Wait for User ID/Group ID mappings to be written.
if sys.UidMappings != nil || sys.GidMappings != nil {
/**
if _, _, err1 = RawSyscall(syscall.SYS_CLOSE, uintptr(mapPipe[1]), 0, 0); err1 != 0 {
goto childerror
}
pid, _, err1 = RawSyscall(syscall.SYS_READ, uintptr(mapPipe[0]), uintptr(unsafe.Pointer(&err2)), unsafe.Sizeof(err2))
if err1 != 0 {
goto childerror
}
if pid != unsafe.Sizeof(err2) {
err1 = syscall.EINVAL
goto childerror
}
if err2 != 0 {
err1 = err2
goto childerror
}
*/
panic("todo: syscall.forkAndExecInChild1 - sys.UidMappings")
}
// Session ID
if sys.Setsid {
/**
_, _, err1 = RawSyscall(syscall.SYS_SETSID, 0, 0, 0)
if err1 != 0 {
goto childerror
}
*/
panic("todo: syscall.forkAndExecInChild1 - sys.Setsid")
}
// Set process group
if sys.Setpgid || sys.Foreground {
// Place child in process group.
/**
_, _, err1 = RawSyscall(syscall.SYS_SETPGID, 0, uintptr(sys.Pgid), 0)
if err1 != 0 {
goto childerror
}
*/
panic("todo: syscall.forkAndExecInChild1 - sys.Setpgid")
}
if sys.Foreground {
/**
pgrp = int32(sys.Pgid)
if pgrp == 0 {
pid, _ = rawSyscallNoError(syscall.SYS_GETPID, 0, 0, 0)
pgrp = int32(pid)
}
// Place process group in foreground.
_, _, err1 = RawSyscall(syscall.SYS_IOCTL, uintptr(sys.Ctty), uintptr(syscall.TIOCSPGRP), uintptr(unsafe.Pointer(&pgrp)))
if err1 != 0 {
goto childerror
}
*/
panic("todo: syscall.forkAndExecInChild1 - sys.Foreground")
}
// Restore the signal mask. We do this after TIOCSPGRP to avoid
// having the kernel send a SIGTTOU signal to the process group.
// runtime_AfterForkInChild()
// Unshare
if sys.Unshareflags != 0 {
/**
_, _, err1 = RawSyscall(syscall.SYS_UNSHARE, sys.Unshareflags, 0, 0)
if err1 != 0 {
goto childerror
}
if sys.Unshareflags&CLONE_NEWUSER != 0 && sys.GidMappings != nil {
dirfd = int(syscall.AT_FDCWD)
if fd1, _, err1 = RawSyscall6(syscall.SYS_OPENAT, uintptr(dirfd), uintptr(unsafe.Pointer(&psetgroups[0])), uintptr(syscall.O_WRO∂∂∂NLY), 0, 0, 0); err1 != 0 {
goto childerror
}
pid, _, err1 = RawSyscall(syscall.SYS_WRITE, uintptr(fd1), uintptr(unsafe.Pointer(&setgroups[0])), uintptr(len(setgroups)))
if err1 != 0 {
goto childerror
}
if _, _, err1 = RawSyscall(syscall.SYS_CLOSE, uintptr(fd1), 0, 0); err1 != 0 {
goto childerror
}
if fd1, _, err1 = RawSyscall6(syscall.SYS_OPENAT, uintptr(dirfd), uintptr(unsafe.Pointer(&pgid[0])), uintptr(syscall.O_WRONLY), 0, 0, 0); err1 != 0 {
goto childerror
}
pid, _, err1 = RawSyscall(syscall.SYS_WRITE, uintptr(fd1), uintptr(unsafe.Pointer(&gidmap[0])), uintptr(len(gidmap)))
if err1 != 0 {
goto childerror
}
if _, _, err1 = RawSyscall(syscall.SYS_CLOSE, uintptr(fd1), 0, 0); err1 != 0 {
goto childerror
}
}
if sys.Unshareflags&CLONE_NEWUSER != 0 && sys.UidMappings != nil {
dirfd = int(syscall._AT_FDCWD)
if fd1, _, err1 = RawSyscall6(syscall.SYS_OPENAT, uintptr(dirfd), uintptr(unsafe.Pointer(&puid[0])), uintptr(syscall.O_WRONLY), 0, 0, 0); err1 != 0 {
goto childerror
}
pid, _, err1 = RawSyscall(syscall.SYS_WRITE, uintptr(fd1), uintptr(unsafe.Pointer(&uidmap[0])), uintptr(len(uidmap)))
if err1 != 0 {
goto childerror
}
if _, _, err1 = RawSyscall(syscall.SYS_CLOSE, uintptr(fd1), 0, 0); err1 != 0 {
goto childerror
} }
} }
if err1 != 0 || pid != 0 {
// If we're in the parent, we must return immediately
// so we're not in the same stack frame as the child.
// This can at most use the return PC, which the child
// will not modify, and the results of
// rawVforkSyscall, which must have been written after
// the child was replaced.
return
}
// Fork succeeded, now in child. // The unshare system call in Linux doesn't unshare mount points
// mounted with --shared. Systemd mounts / with --shared. For a
// Enable the "keep capabilities" flag to set ambient capabilities later. // long discussion of the pros and cons of this see debian bug 739593.
if len(sys.AmbientCaps) > 0 { // The Go model of unsharing is more like Plan 9, where you ask
_, _, err1 = RawSyscall6(SYS_PRCTL, PR_SET_KEEPCAPS, 1, 0, 0, 0, 0) // to unshare and the namespaces are unconditionally unshared.
// To make this model work we must further mark / as MS_PRIVATE.
// This is what the standard unshare command does.
if sys.Unshareflags&CLONE_NEWNS == CLONE_NEWNS {
_, _, err1 = RawSyscall6(syscall.SYS_MOUNT, uintptr(unsafe.Pointer(&none[0])), uintptr(unsafe.Pointer(&slash[0])), 0, syscall.MS_REC|syscall.MS_PRIVATE, 0, 0)
if err1 != 0 { if err1 != 0 {
goto childerror goto childerror
} }
} }
*/
panic("todo: syscall.forkAndExecInChild1 - sys.Unshareflags")
}
// Wait for User ID/Group ID mappings to be written. // Chroot
if sys.UidMappings != nil || sys.GidMappings != nil { if chroot != nil {
if _, _, err1 = RawSyscall(SYS_CLOSE, uintptr(mapPipe[1]), 0, 0); err1 != 0 { /**
goto childerror _, _, err1 = RawSyscall(syscall.SYS_CHROOT, uintptr(unsafe.Pointer(chroot)), 0, 0)
} if err1 != 0 {
pid, _, err1 = RawSyscall(SYS_READ, uintptr(mapPipe[0]), uintptr(unsafe.Pointer(&err2)), unsafe.Sizeof(err2)) goto childerror
if err1 != 0 {
goto childerror
}
if pid != unsafe.Sizeof(err2) {
err1 = EINVAL
goto childerror
}
if err2 != 0 {
err1 = err2
goto childerror
}
} }
*/
panic("todo: syscall.forkAndExecInChild1 - chroot")
}
// Session ID // User and groups
if sys.Setsid { if cred = sys.Credential; cred != nil {
_, _, err1 = RawSyscall(SYS_SETSID, 0, 0, 0) /**
ngroups = uintptr(len(cred.Groups))
groups = uintptr(0)
if ngroups > 0 {
groups = uintptr(unsafe.Pointer(&cred.Groups[0]))
}
if !(sys.GidMappings != nil && !sys.GidMappingsEnableSetgroups && ngroups == 0) && !cred.NoSetGroups {
_, _, err1 = RawSyscall(_SYS_setgroups, ngroups, groups, 0)
if err1 != 0 { if err1 != 0 {
goto childerror goto childerror
} }
} }
_, _, err1 = RawSyscall(syscall.SYS_SETUID, uintptr(cred.Gid), 0, 0)
if err1 != 0 {
goto childerror
}
_, _, err1 = RawSyscall(syscall.SYS_SETUID, uintptr(cred.Uid), 0, 0)
if err1 != 0 {
goto childerror
}
*/
panic("todo: syscall.forkAndExecInChild1 - chroot")
}
// Set process group if len(sys.AmbientCaps) != 0 {
if sys.Setpgid || sys.Foreground { // Ambient capabilities were added in the 4.3 kernel,
// Place child in process group. // so it is safe to always use _LINUX_CAPABILITY_VERSION_3.
_, _, err1 = RawSyscall(SYS_SETPGID, 0, uintptr(sys.Pgid), 0) /**
caps.hdr.version = _LINUX_CAPABILITY_VERSION_3
if _, _, err1 = RawSyscall(syscall.SYS_CAPGET, uintptr(unsafe.Pointer(&caps.hdr)), uintptr(unsafe.Pointer(&caps.data[0])), 0); err1 != 0 {
goto childerror
}
for _, c = range sys.AmbientCaps {
// Add the c capability to the permitted and inheritable capability mask,
// otherwise we will not be able to add it to the ambient capability mask.
caps.data[capToIndex(c)].permitted |= capToMask(c)
caps.data[capToIndex(c)].inheritable |= capToMask(c)
}
if _, _, err1 = RawSyscall(syscall.SYS_CAPSET, uintptr(unsafe.Pointer(&caps.hdr)), uintptr(unsafe.Pointer(&caps.data[0])), 0); err1 != 0 {
goto childerror
}
for _, c = range sys.AmbientCaps {
_, _, err1 = RawSyscall6(syscall.SYS_PRCTL, PR_CAP_AMBIENT, uintptr(PR_CAP_AMBIENT_RAISE), c, 0, 0, 0)
if err1 != 0 { if err1 != 0 {
goto childerror goto childerror
} }
} }
*/
panic("todo: syscall.forkAndExecInChild1 - chroot")
}
if sys.Foreground { // Chdir
pgrp = int32(sys.Pgid) if dir != nil {
if pgrp == 0 { /**
pid, _ = rawSyscallNoError(SYS_GETPID, 0, 0, 0) _, _, err1 = RawSyscall(syscall.SYS_CHDIR, uintptr(unsafe.Pointer(dir)), 0, 0)
if err1 != 0 {
goto childerror
}
*/
panic("todo: syscall.forkAndExecInChild1 - dir")
}
pgrp = int32(pid) // Parent death signal
} if sys.Pdeathsig != 0 {
/**
_, _, err1 = RawSyscall6(syscall.SYS_PRCTL, syscall.PR_SET_PDEATHSIG, uintptr(sys.Pdeathsig), 0, 0, 0, 0)
if err1 != 0 {
goto childerror
}
// Place process group in foreground. // Signal self if parent is already dead. This might cause a
_, _, err1 = RawSyscall(SYS_IOCTL, uintptr(sys.Ctty), uintptr(TIOCSPGRP), uintptr(unsafe.Pointer(&pgrp))) // duplicate signal in rare cases, but it won't matter when
// using SIGKILL.
pid, _ = rawSyscallNoError(syscall.SYS_GETPPID, 0, 0, 0)
if pid != ppid {
pid, _ = rawSyscallNoError(syscall.SYS_GETPID, 0, 0, 0)
_, _, err1 = RawSyscall(syscall.SYS_KILL, pid, uintptr(sys.Pdeathsig), 0)
if err1 != 0 { if err1 != 0 {
goto childerror goto childerror
} }
} }
*/
panic("todo: syscall.forkAndExecInChild1 - sys.Pdeathsig")
}
// Restore the signal mask. We do this after TIOCSPGRP to avoid // Pass 1: look for fd[i] < i and move those up above len(fd)
// having the kernel send a SIGTTOU signal to the process group. // so that pass 2 won't stomp on an fd it needs later.
runtime_AfterForkInChild() if pipe < nextfd {
/**
// Unshare _, _, err1 = RawSyscall(syscall.SYS_DUP3, uintptr(pipe), uintptr(nextfd), syscall.O_CLOEXEC)
if sys.Unshareflags != 0 { if err1 != 0 {
_, _, err1 = RawSyscall(SYS_UNSHARE, sys.Unshareflags, 0, 0) goto childerror
if err1 != 0 {
goto childerror
}
if sys.Unshareflags&CLONE_NEWUSER != 0 && sys.GidMappings != nil {
dirfd = int(_AT_FDCWD)
if fd1, _, err1 = RawSyscall6(SYS_OPENAT, uintptr(dirfd), uintptr(unsafe.Pointer(&psetgroups[0])), uintptr(O_WRONLY), 0, 0, 0); err1 != 0 {
goto childerror
}
pid, _, err1 = RawSyscall(SYS_WRITE, uintptr(fd1), uintptr(unsafe.Pointer(&setgroups[0])), uintptr(len(setgroups)))
if err1 != 0 {
goto childerror
}
if _, _, err1 = RawSyscall(SYS_CLOSE, uintptr(fd1), 0, 0); err1 != 0 {
goto childerror
}
if fd1, _, err1 = RawSyscall6(SYS_OPENAT, uintptr(dirfd), uintptr(unsafe.Pointer(&pgid[0])), uintptr(O_WRONLY), 0, 0, 0); err1 != 0 {
goto childerror
}
pid, _, err1 = RawSyscall(SYS_WRITE, uintptr(fd1), uintptr(unsafe.Pointer(&gidmap[0])), uintptr(len(gidmap)))
if err1 != 0 {
goto childerror
}
if _, _, err1 = RawSyscall(SYS_CLOSE, uintptr(fd1), 0, 0); err1 != 0 {
goto childerror
}
}
if sys.Unshareflags&CLONE_NEWUSER != 0 && sys.UidMappings != nil {
dirfd = int(_AT_FDCWD)
if fd1, _, err1 = RawSyscall6(SYS_OPENAT, uintptr(dirfd), uintptr(unsafe.Pointer(&puid[0])), uintptr(O_WRONLY), 0, 0, 0); err1 != 0 {
goto childerror
}
pid, _, err1 = RawSyscall(SYS_WRITE, uintptr(fd1), uintptr(unsafe.Pointer(&uidmap[0])), uintptr(len(uidmap)))
if err1 != 0 {
goto childerror
}
if _, _, err1 = RawSyscall(SYS_CLOSE, uintptr(fd1), 0, 0); err1 != 0 {
goto childerror
}
}
// The unshare system call in Linux doesn't unshare mount points
// mounted with --shared. Systemd mounts / with --shared. For a
// long discussion of the pros and cons of this see debian bug 739593.
// The Go model of unsharing is more like Plan 9, where you ask
// to unshare and the namespaces are unconditionally unshared.
// To make this model work we must further mark / as MS_PRIVATE.
// This is what the standard unshare command does.
if sys.Unshareflags&CLONE_NEWNS == CLONE_NEWNS {
_, _, err1 = RawSyscall6(SYS_MOUNT, uintptr(unsafe.Pointer(&none[0])), uintptr(unsafe.Pointer(&slash[0])), 0, MS_REC|MS_PRIVATE, 0, 0)
if err1 != 0 {
goto childerror
}
}
} }
pipe = nextfd
nextfd++
*/
panic("todo: syscall.forkAndExecInChild1 - pipe < nextfd")
}
// Chroot for i = 0; i < len(fd); i++ {
if chroot != nil { if fd[i] >= 0 && fd[i] < i {
_, _, err1 = RawSyscall(SYS_CHROOT, uintptr(unsafe.Pointer(chroot)), 0, 0) if nextfd == pipe { // don't stomp on pipe
if err1 != 0 {
goto childerror
}
}
// User and groups
if cred = sys.Credential; cred != nil {
ngroups = uintptr(len(cred.Groups))
groups = uintptr(0)
if ngroups > 0 {
groups = uintptr(unsafe.Pointer(&cred.Groups[0]))
}
if !(sys.GidMappings != nil && !sys.GidMappingsEnableSetgroups && ngroups == 0) && !cred.NoSetGroups {
_, _, err1 = RawSyscall(_SYS_setgroups, ngroups, groups, 0)
if err1 != 0 {
goto childerror
}
}
_, _, err1 = RawSyscall(sys_SETGID, uintptr(cred.Gid), 0, 0)
if err1 != 0 {
goto childerror
}
_, _, err1 = RawSyscall(sys_SETUID, uintptr(cred.Uid), 0, 0)
if err1 != 0 {
goto childerror
}
}
if len(sys.AmbientCaps) != 0 {
// Ambient capabilities were added in the 4.3 kernel,
// so it is safe to always use _LINUX_CAPABILITY_VERSION_3.
caps.hdr.version = _LINUX_CAPABILITY_VERSION_3
if _, _, err1 = RawSyscall(SYS_CAPGET, uintptr(unsafe.Pointer(&caps.hdr)), uintptr(unsafe.Pointer(&caps.data[0])), 0); err1 != 0 {
goto childerror
}
for _, c = range sys.AmbientCaps {
// Add the c capability to the permitted and inheritable capability mask,
// otherwise we will not be able to add it to the ambient capability mask.
caps.data[capToIndex(c)].permitted |= capToMask(c)
caps.data[capToIndex(c)].inheritable |= capToMask(c)
}
if _, _, err1 = RawSyscall(SYS_CAPSET, uintptr(unsafe.Pointer(&caps.hdr)), uintptr(unsafe.Pointer(&caps.data[0])), 0); err1 != 0 {
goto childerror
}
for _, c = range sys.AmbientCaps {
_, _, err1 = RawSyscall6(SYS_PRCTL, PR_CAP_AMBIENT, uintptr(PR_CAP_AMBIENT_RAISE), c, 0, 0, 0)
if err1 != 0 {
goto childerror
}
}
}
// Chdir
if dir != nil {
_, _, err1 = RawSyscall(SYS_CHDIR, uintptr(unsafe.Pointer(dir)), 0, 0)
if err1 != 0 {
goto childerror
}
}
// Parent death signal
if sys.Pdeathsig != 0 {
_, _, err1 = RawSyscall6(SYS_PRCTL, PR_SET_PDEATHSIG, uintptr(sys.Pdeathsig), 0, 0, 0, 0)
if err1 != 0 {
goto childerror
}
// Signal self if parent is already dead. This might cause a
// duplicate signal in rare cases, but it won't matter when
// using SIGKILL.
pid, _ = rawSyscallNoError(SYS_GETPPID, 0, 0, 0)
if pid != ppid {
pid, _ = rawSyscallNoError(SYS_GETPID, 0, 0, 0)
_, _, err1 = RawSyscall(SYS_KILL, pid, uintptr(sys.Pdeathsig), 0)
if err1 != 0 {
goto childerror
}
}
}
// Pass 1: look for fd[i] < i and move those up above len(fd)
// so that pass 2 won't stomp on an fd it needs later.
if pipe < nextfd {
_, _, err1 = RawSyscall(SYS_DUP3, uintptr(pipe), uintptr(nextfd), O_CLOEXEC)
if err1 != 0 {
goto childerror
}
pipe = nextfd
nextfd++
}
for i = 0; i < len(fd); i++ {
if fd[i] >= 0 && fd[i] < i {
if nextfd == pipe { // don't stomp on pipe
nextfd++
}
_, _, err1 = RawSyscall(SYS_DUP3, uintptr(fd[i]), uintptr(nextfd), O_CLOEXEC)
if err1 != 0 {
goto childerror
}
fd[i] = nextfd
nextfd++ nextfd++
} }
} if ret := os.Dup3(c.Int(fd[i]), c.Int(nextfd), syscall.O_CLOEXEC); ret < 0 {
err1 = Errno(os.Errno())
// Pass 2: dup fd[i] down onto i.
for i = 0; i < len(fd); i++ {
if fd[i] == -1 {
RawSyscall(SYS_CLOSE, uintptr(i), 0, 0)
continue
}
if fd[i] == i {
// dup2(i, i) won't clear close-on-exec flag on Linux,
// probably not elsewhere either.
_, _, err1 = RawSyscall(fcntl64Syscall, uintptr(fd[i]), F_SETFD, 0)
if err1 != 0 {
goto childerror
}
continue
}
// The new fd is created NOT close-on-exec,
// which is exactly what we want.
_, _, err1 = RawSyscall(SYS_DUP3, uintptr(fd[i]), uintptr(i), 0)
if err1 != 0 {
goto childerror goto childerror
} }
fd[i] = nextfd
nextfd++
} }
}
// By convention, we don't close-on-exec the fds we are // Pass 2: dup fd[i] down onto i.
// started with, so if len(fd) < 3, close 0, 1, 2 as needed. for i = 0; i < len(fd); i++ {
// Programs that know they inherit fds >= 3 will need if fd[i] == -1 {
// to set them close-on-exec. os.Close(c.Int(i))
for i = len(fd); i < 3; i++ { continue
RawSyscall(SYS_CLOSE, uintptr(i), 0, 0)
} }
if fd[i] == i {
// Detach fd 0 from tty // dup2(i, i) won't clear close-on-exec flag on Linux,
if sys.Noctty { // probably not elsewhere either.
_, _, err1 = RawSyscall(SYS_IOCTL, 0, uintptr(TIOCNOTTY), 0) if ret := os.Fcntl(c.Int(fd[i]), syscall.F_SETFD, 0); ret < 0 {
if err1 != 0 { err1 = Errno(os.Errno())
goto childerror goto childerror
} }
continue
} }
// The new fd is created NOT close-on-exec,
// Set the controlling TTY to Ctty // which is exactly what we want.
if sys.Setctty { if ret := os.Dup3(c.Int(fd[i]), c.Int(i), 0); ret < 0 {
_, _, err1 = RawSyscall(SYS_IOCTL, uintptr(sys.Ctty), uintptr(TIOCSCTTY), 1) err1 = Errno(os.Errno())
if err1 != 0 { goto childerror
goto childerror
}
} }
}
// Restore original rlimit. // By convention, we don't close-on-exec the fds we are
if rlimOK && rlim.Cur != 0 { // started with, so if len(fd) < 3, close 0, 1, 2 as needed.
rawSetrlimit(RLIMIT_NOFILE, &rlim) // Programs that know they inherit fds >= 3 will need
} // to set them close-on-exec.
/**
// Enable tracing if requested. for i = len(fd); i < 3; i++ {
// Do this right before exec so that we don't unnecessarily trace the runtime RawSyscall(syscall.SYS_CLOSE, uintptr(i), 0, 0)
// setting up after the fork. See issue #21428. }
if sys.Ptrace {
_, _, err1 = RawSyscall(SYS_PTRACE, uintptr(PTRACE_TRACEME), 0, 0)
if err1 != 0 {
goto childerror
}
}
// Time to exec.
_, _, err1 = RawSyscall(SYS_EXECVE,
uintptr(unsafe.Pointer(argv0)),
uintptr(unsafe.Pointer(&argv[0])),
uintptr(unsafe.Pointer(&envv[0])))
childerror:
// send error code on pipe
RawSyscall(SYS_WRITE, uintptr(pipe), uintptr(unsafe.Pointer(&err1)), unsafe.Sizeof(err1))
for {
RawSyscall(SYS_EXIT, 253, 0, 0)
}
*/ */
panic("todo: syscall.forkAndExecInChild1")
// Detach fd 0 from tty
if sys.Noctty {
/**
_, _, err1 = RawSyscall(syscall.SYS_IOCTL, 0, uintptr(syscall.TIOCNOTTY), 0)
if err1 != 0 {
goto childerror
}
*/
panic("todo: syscall.forkAndExecInChild1 - sys.Noctty")
}
// Set the controlling TTY to Ctty
if sys.Setctty {
/**
_, _, err1 = RawSyscall(syscall.SYS_IOCTL, uintptr(sys.Ctty), uintptr(syscall.TIOCSCTTY), 1)
if err1 != 0 {
goto childerror
}
*/
panic("todo: syscall.forkAndExecInChild1 - sys.Setctty")
}
// Restore original rlimit.
if rlimOK && rlim.Cur != 0 {
os.Setrlimit(syscall.RLIMIT_NOFILE, (*syscall.Rlimit)(&rlim))
}
// Enable tracing if requested.
// Do this right before exec so that we don't unnecessarily trace the runtime
// setting up after the fork. See issue #21428.
if sys.Ptrace {
/**
_, _, err1 = RawSyscall(syscall.SYS_PTRACE, uintptr(syscall.PTRACE_TRACEME), 0, 0)
if err1 != 0 {
goto childerror
}
*/
panic("todo: syscall.forkAndExecInChild1 - sys.Ptrace")
}
// Time to exec.
os.Execve(argv0, argv, envv)
/**
_, _, err1 = RawSyscall(SYS_EXECVE,
uintptr(unsafe.Pointer(argv0)),
uintptr(unsafe.Pointer(&argv[0])),
uintptr(unsafe.Pointer(&envv[0])))
*/
childerror:
// send error code on pipe
os.Write(c.Int(pipe), unsafe.Pointer(&err1), unsafe.Sizeof(err1))
for {
os.Exit(253)
}
} }
func formatIDMappings(idMap []SysProcIDMap) []byte { func formatIDMappings(idMap []SysProcIDMap) []byte {