Merge pull request #677 from tsingbx/bigInt

llgo support big.Int
This commit is contained in:
xushiwei
2024-08-08 14:23:32 +08:00
committed by GitHub
3 changed files with 199 additions and 35 deletions

View File

@@ -5,7 +5,7 @@ import (
"math/big"
)
func main() {
func fib() {
// Initialize two big ints with the first two numbers in the sequence.
a := big.NewInt(0)
b := big.NewInt(1)
@@ -23,3 +23,41 @@ func main() {
}
fmt.Println(a) // 100-digit Fibonacci number
}
func abs() {
a := big.NewInt(64)
b := big.NewInt(-52)
a.Set(b)
a.Abs(a)
a.Set(big.NewInt(-164))
a.Abs(a)
fmt.Println("value: ", a.String())
}
func neg() {
fmt.Println("value: ", big.NewInt(-64).Neg(big.NewInt(-64)))
fmt.Println("value: ", big.NewInt(64).Neg(big.NewInt(64)))
fmt.Println("value: ", big.NewInt(0).Neg(big.NewInt(0)))
}
func calc() {
a := big.NewInt(64)
b := big.NewInt(-52)
c := big.NewInt(54)
fmt.Println("value:", a.Add(a, b))
fmt.Println("value:", a.Sub(b, c))
d := big.NewInt(10)
e := big.NewInt(4)
fmt.Println("value:", d.Mul(d, e))
}
func bitop() {
a := big.NewInt(4)
fmt.Println("value:", a.Lsh(a, 1))
b := big.NewInt(16)
fmt.Println("value:", b.Rsh(b, 2))
}
func main() {
bitop()
}

View File

@@ -49,8 +49,19 @@ func BN_CTXSecureNew() *BN_CTX
func (*BN_CTX) Free() {}
// void BN_CTX_start(BN_CTX *ctx);
//
// llgo:link (*BN_CTX).Start C.BN_CTX_start
func (*BN_CTX) Start() {}
// BIGNUM *BN_CTX_get(BN_CTX *ctx);
//
// llgo:link (*BN_CTX).Get C.BN_CTX_get
func (*BN_CTX) Get() *BIGNUM { return nil }
// void BN_CTX_end(BN_CTX *ctx);
//
// llgo:link (*BN_CTX).End C.BN_CTX_end
func (*BN_CTX) End() {}
// -----------------------------------------------------------------------------
@@ -191,23 +202,80 @@ func BNDec2bn(a **BIGNUM, str *c.Char) c.Int
//go:linkname BNAsc2bn C.BN_asc2bn
func BNAsc2bn(a **BIGNUM, str *c.Char) c.Int
/*
BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret);
BIGNUM *BN_signed_bin2bn(const unsigned char *s, int len, BIGNUM *ret);
int BN_bn2bin(const BIGNUM *a, unsigned char *to);
int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen);
int BN_signed_bn2bin(const BIGNUM *a, unsigned char *to, int tolen);
BIGNUM *BN_lebin2bn(const unsigned char *s, int len, BIGNUM *ret);
BIGNUM *BN_signed_lebin2bn(const unsigned char *s, int len, BIGNUM *ret);
int BN_bn2lebinpad(const BIGNUM *a, unsigned char *to, int tolen);
int BN_signed_bn2lebin(const BIGNUM *a, unsigned char *to, int tolen);
BIGNUM *BN_native2bn(const unsigned char *s, int len, BIGNUM *ret);
BIGNUM *BN_signed_native2bn(const unsigned char *s, int len, BIGNUM *ret);
int BN_bn2nativepad(const BIGNUM *a, unsigned char *to, int tolen);
int BN_signed_bn2native(const BIGNUM *a, unsigned char *to, int tolen);
BIGNUM *BN_mpi2bn(const unsigned char *s, int len, BIGNUM *ret);
int BN_bn2mpi(const BIGNUM *a, unsigned char *to);
*/
// BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret);
//
//go:linkname BNBin2bn C.BN_bin2bn
func BNBin2bn(s *byte, len c.Int, ret *BIGNUM) *BIGNUM
// BIGNUM *BN_signed_bin2bn(const unsigned char *s, int len, BIGNUM *ret);
//
//go:linkname BNSignedBin2bn C.BN_signed_bin2bn
func BNSignedBin2bn(s *byte, len c.Int, ret *BIGNUM) *BIGNUM
// int BN_bn2bin(const BIGNUM *a, unsigned char *to);
//
// llgo:link (*BIGNUM).Bn2bin C.BN_bn2bin
func (bn *BIGNUM) Bn2bin(to *byte) c.Int { return 0 }
// int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen);
//
// llgo:link (*BIGNUM).Bn2binpad C.BN_bn2binpad
func (bn *BIGNUM) Bn2binpad(to *byte, tolen c.Int) c.Int { return 0 }
// int BN_signed_bn2bin(const BIGNUM *a, unsigned char *to, int tolen);
//
// llgo:link (*BIGNUM).SignedBn2bin C.BN_signed_bn2bin
func (bn *BIGNUM) SignedBn2bin(to *byte, tolen c.Int) c.Int { return 0 }
// BIGNUM *BN_lebin2bn(const unsigned char *s, int len, BIGNUM *ret);
//
//go:linkname BNLebin2bn C.BN_lebin2bn
func BNLebin2bn(s *byte, len c.Int, ret *BIGNUM) *BIGNUM
// BIGNUM *BN_signed_lebin2bn(const unsigned char *s, int len, BIGNUM *ret);
//
//go:linkname BNSignedLebin2bn C.BN_signed_lebin2bn
func BNSignedLebin2bn(s *byte, len c.Int, ret *BIGNUM) *BIGNUM
// int BN_bn2lebinpad(const BIGNUM *a, unsigned char *to, int tolen);
//
// llgo:link (*BIGNUM).Bn2lebinpad C.BN_bn2lebinpad
func (bn *BIGNUM) Bn2lebinpad(to *byte, tolen c.Int) c.Int { return 0 }
// int BN_signed_bn2lebin(const BIGNUM *a, unsigned char *to, int tolen);
//
// llgo:link (*BIGNUM).SignedBn2lebin C.BN_signed_bn2lebin
func (bn *BIGNUM) SignedBn2lebin(to *byte, tolen c.Int) c.Int { return 0 }
// BIGNUM *BN_native2bn(const unsigned char *s, int len, BIGNUM *ret);
//
//go:linkname BNNative2bn C.BN_native2bn
func BNNative2bn(s *byte, len c.Int, ret *BIGNUM) *BIGNUM
// BIGNUM *BN_signed_native2bn(const unsigned char *s, int len, BIGNUM *ret);
//
//go:linkname BNSignedNative2bn C.BN_signed_native2bn
func BNSignedNative2bn(s *byte, len c.Int, ret *BIGNUM) *BIGNUM
// int BN_bn2nativepad(const BIGNUM *a, unsigned char *to, int tolen);
//
// llgo:link (*BIGNUM).Bn2nativepad C.BN_bn2nativepad
func (bn *BIGNUM) Bn2nativepad(to *byte, tolen c.Int) c.Int { return 0 }
// int BN_signed_bn2native(const BIGNUM *a, unsigned char *to, int tolen);
//
// llgo:link (*BIGNUM).SignedBn2native C.BN_signed_bn2native
func (bn *BIGNUM) SignedBn2native(to *byte, tolen c.Int) c.Int { return 0 }
// BIGNUM *BN_mpi2bn(const unsigned char *s, int len, BIGNUM *ret);
//
//go:linkname BNMpi2bn C.BN_mpi2bn
func BNMpi2bn(s *byte, len c.Int, ret *BIGNUM) *BIGNUM
// int BN_bn2mpi(const BIGNUM *a, unsigned char *to);
//
// llgo:link (*BIGNUM).Bn2mpi C.BN_bn2mpi
func (bn *BIGNUM) Bn2mpi(to *byte) c.Int { return 0 }
// int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
//

View File

@@ -18,6 +18,9 @@ package big
// llgo:skipall
import (
"math/rand"
"github.com/goplus/llgo/c"
"github.com/goplus/llgo/c/openssl"
)
@@ -81,9 +84,34 @@ func NewInt(x int64) *Int {
return z.SetInt64(x)
}
/*
// Set sets z to x and returns z.
func (z *Int) Set(x *Int) *Int {
if z != x {
a := (*openssl.BIGNUM)(z)
b := (*openssl.BIGNUM)(x)
a.Copy(b)
}
return z
}
// Abs sets z to |x| (the absolute value of x) and returns z.
func (z *Int) Abs(x *Int) *Int {
z.Set(x)
a := (*openssl.BIGNUM)(z)
a.SetNegative(0)
return z
}
// Neg sets z to -x and returns z.
func (z *Int) Neg(x *Int) *Int {
z.Set(x)
a := (*openssl.BIGNUM)(z)
if a.IsNegative() != 0 {
a.SetNegative(0)
} else {
a.SetNegative(1)
}
return z
}
// Bits provides raw (unchecked but fast) access to x by returning its
@@ -92,6 +120,7 @@ func (z *Int) Set(x *Int) *Int {
// Bits is intended to support implementation of missing low-level Int
// functionality outside this package; it should be avoided otherwise.
func (x *Int) Bits() []Word {
panic("todo big.Bits")
}
// SetBits provides raw (unchecked but fast) access to z by setting its
@@ -100,17 +129,9 @@ func (x *Int) Bits() []Word {
// SetBits is intended to support implementation of missing low-level Int
// functionality outside this package; it should be avoided otherwise.
func (z *Int) SetBits(abs []Word) *Int {
panic("todo big.SetBits")
}
// Abs sets z to |x| (the absolute value of x) and returns z.
func (z *Int) Abs(x *Int) *Int {
}
// Neg sets z to -x and returns z.
func (z *Int) Neg(x *Int) *Int {
}
*/
// Add sets z to the sum x+y and returns z.
func (z *Int) Add(x, y *Int) *Int {
(*openssl.BIGNUM)(z).Add((*openssl.BIGNUM)(x), (*openssl.BIGNUM)(y))
@@ -123,31 +144,35 @@ func (z *Int) Sub(x, y *Int) *Int {
return z
}
/*
// Mul sets z to the product x*y and returns z.
func (z *Int) Mul(x, y *Int) *Int {
panic("todo big.Mul")
}
// MulRange sets z to the product of all integers
// in the range [a, b] inclusively and returns z.
// If a > b (empty range), the result is 1.
func (z *Int) MulRange(a, b int64) *Int {
panic("todo big.MulRange")
}
// Binomial sets z to the binomial coefficient C(n, k) and returns z.
func (z *Int) Binomial(n, k int64) *Int {
panic("todo big.Binomial")
}
// Quo sets z to the quotient x/y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Quo implements truncated division (like Go); see QuoRem for more details.
func (z *Int) Quo(x, y *Int) *Int {
panic("todo big.Quo")
}
// Rem sets z to the remainder x%y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Rem implements truncated modulus (like Go); see QuoRem for more details.
func (z *Int) Rem(x, y *Int) *Int {
panic("todo big.Rem")
}
// QuoRem sets z to the quotient x/y and r to the remainder x%y
@@ -162,18 +187,21 @@ func (z *Int) Rem(x, y *Int) *Int {
// (See Daan Leijen, “Division and Modulus for Computer Scientists”.)
// See DivMod for Euclidean division and modulus (unlike Go).
func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {
panic("todo big.QuoRem")
}
// Div sets z to the quotient x/y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Div implements Euclidean division (unlike Go); see DivMod for more details.
func (z *Int) Div(x, y *Int) *Int {
panic("todo big.Div")
}
// Mod sets z to the modulus x%y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Mod implements Euclidean modulus (unlike Go); see DivMod for more details.
func (z *Int) Mod(x, y *Int) *Int {
panic("todo big.Mod")
}
// DivMod sets z to the quotient x div y and m to the modulus x mod y
@@ -191,8 +219,8 @@ func (z *Int) Mod(x, y *Int) *Int {
// ACM press.)
// See QuoRem for T-division and modulus (like Go).
func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {
panic("big.DivMod")
}
*/
// Cmp compares x and y and returns:
//
@@ -212,29 +240,35 @@ func (x *Int) CmpAbs(y *Int) int {
return int((*openssl.BIGNUM)(x).Ucmp((*openssl.BIGNUM)(y)))
}
/*
// Int64 returns the int64 representation of x.
// If x cannot be represented in an int64, the result is undefined.
func (x *Int) Int64() int64 {
panic("todo big.Int64")
}
// Uint64 returns the uint64 representation of x.
// If x cannot be represented in a uint64, the result is undefined.
func (x *Int) Uint64() uint64 {
panic("todo big.Uint64")
}
// IsInt64 reports whether x can be represented as an int64.
func (x *Int) IsInt64() bool {
panic("todo big.IsInt64")
}
// IsUint64 reports whether x can be represented as a uint64.
func (x *Int) IsUint64() bool {
panic("todo big.IsUint64")
}
// Float64 returns the float64 value nearest x,
// and an indication of any rounding that occurred.
// TODO(xsw):
// func (x *Int) Float64() (float64, Accuracy)
/*
func (x *Int) Float64() (float64, Accuracy) {
panic("todo big.Float64")
}*/
// SetString sets z to the value of s, interpreted in the given base,
// and returns z and a boolean indicating success. The entire string
@@ -259,17 +293,20 @@ func (x *Int) IsUint64() bool {
// are no other errors. If base != 0, underscores are not recognized
// and act like any other character that is not a valid digit.
func (z *Int) SetString(s string, base int) (*Int, bool) {
panic("todo big.SetString")
}
// SetBytes interprets buf as the bytes of a big-endian unsigned
// integer, sets z to that value, and returns z.
func (z *Int) SetBytes(buf []byte) *Int {
panic("todo big.SetBytes")
}
// Bytes returns the absolute value of x as a big-endian byte slice.
//
// To use a fixed length slice, or a preallocated one, use FillBytes.
func (x *Int) Bytes() []byte {
panic("todo big.Bytes")
}
// FillBytes sets buf to the absolute value of x, storing it as a zero-extended
@@ -277,18 +314,20 @@ func (x *Int) Bytes() []byte {
//
// If the absolute value of x doesn't fit in buf, FillBytes will panic.
func (x *Int) FillBytes(buf []byte) []byte {
panic("todo big.FillBytes")
}
// BitLen returns the length of the absolute value of x in bits.
// The bit length of 0 is 0.
func (x *Int) BitLen() int {
panic("todo big.BitLen")
}
// TrailingZeroBits returns the number of consecutive least significant zero
// bits of |x|.
func (x *Int) TrailingZeroBits() uint {
panic("todo big.TrailingZeroBits")
}
*/
// Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z.
// If m == nil or m == 0, z = x**y unless y <= 0 then z = 1. If m != 0, y < 0,
@@ -308,7 +347,6 @@ func (z *Int) Exp(x, y, m *Int) *Int {
return z
}
/*
// GCD sets z to the greatest common divisor of a and b and returns z.
// If x or y are not nil, GCD sets their value such that z = a*x + b*y.
//
@@ -321,6 +359,7 @@ func (z *Int) Exp(x, y, m *Int) *Int {
//
// If a != 0 and b == 0, GCD sets z = |a|, x = sign(a) * 1, y = 0.
func (z *Int) GCD(x, y, a, b *Int) *Int {
panic("todo big.GCD")
}
// Rand sets z to a pseudo-random number in [0, n) and returns z.
@@ -328,6 +367,7 @@ func (z *Int) GCD(x, y, a, b *Int) *Int {
// As this uses the math/rand package, it must not be used for
// security-sensitive work. Use crypto/rand.Int instead.
func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
panic("todo big.Rand")
}
// ModInverse sets z to the multiplicative inverse of g in the ring /n
@@ -335,11 +375,13 @@ func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
// inverse in the ring /n. In this case, z is unchanged and the return value
// is nil. If n == 0, a division-by-zero run-time panic occurs.
func (z *Int) ModInverse(g, n *Int) *Int {
panic("todo big.ModInverse")
}
// Jacobi returns the Jacobi symbol (x/y), either +1, -1, or 0.
// The y argument must be an odd integer.
func Jacobi(x, y *Int) int {
panic("todo big.Jacobi")
}
// ModSqrt sets z to a square root of x mod p if such a square root exists, and
@@ -347,19 +389,29 @@ func Jacobi(x, y *Int) int {
// ModSqrt leaves z unchanged and returns nil. This function panics if p is
// not an odd integer, its behavior is undefined if p is odd but not prime.
func (z *Int) ModSqrt(x, p *Int) *Int {
panic("todo big.ModSqrt")
}
// Lsh sets z = x << n and returns z.
func (z *Int) Lsh(x *Int, n uint) *Int {
a := (*openssl.BIGNUM)(z)
b := (*openssl.BIGNUM)(x)
a.Lshift(b, c.Int(n))
return z
}
// Rsh sets z = x >> n and returns z.
func (z *Int) Rsh(x *Int, n uint) *Int {
a := (*openssl.BIGNUM)(z)
b := (*openssl.BIGNUM)(x)
a.Rshift(b, c.Int(n))
return z
}
// Bit returns the value of the i'th bit of x. That is, it
// returns (x>>i)&1. The bit index i must be >= 0.
func (x *Int) Bit(i int) uint {
panic("todo big.Bit")
}
// SetBit sets z to x, with x's i'th bit set to b (0 or 1).
@@ -367,32 +419,38 @@ func (x *Int) Bit(i int) uint {
// if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1,
// SetBit will panic.
func (z *Int) SetBit(x *Int, i int, b uint) *Int {
panic("todo big.SetBit")
}
// And sets z = x & y and returns z.
func (z *Int) And(x, y *Int) *Int {
panic("todo big.And")
}
// AndNot sets z = x &^ y and returns z.
func (z *Int) AndNot(x, y *Int) *Int {
panic("todo big.AndNot")
}
// Or sets z = x | y and returns z.
func (z *Int) Or(x, y *Int) *Int {
panic("todo big.Or")
}
// Xor sets z = x ^ y and returns z.
func (z *Int) Xor(x, y *Int) *Int {
panic("todo big.Xor")
}
// Not sets z = ^x and returns z.
func (z *Int) Not(x *Int) *Int {
panic("todo big.Not")
}
// Sqrt sets z to ⌊√x⌋, the largest integer such that z² ≤ x, and returns z.
// It panics if x is negative.
func (z *Int) Sqrt(x *Int) *Int {
panic("todo big.Sqrt")
}
*/
// -----------------------------------------------------------------------------