compiler: build separation runtime with clite

This commit is contained in:
Li Jie
2025-01-07 22:16:31 +08:00
parent 1172e5bdce
commit 6170973b48
316 changed files with 71331 additions and 178 deletions

View File

@@ -0,0 +1,31 @@
/*
* Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package abi
// llgo:skipall
import (
"unsafe"
"github.com/goplus/llgo/runtime/abi"
)
type InterfaceType = abi.InterfaceType
func NoEscape(p unsafe.Pointer) unsafe.Pointer {
x := uintptr(p)
return unsafe.Pointer(x ^ 0)
}

View File

@@ -0,0 +1,148 @@
/*
* Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package bytealg
// llgo:skip init CompareString
import (
"unsafe"
c "github.com/goplus/llgo/runtime/internal/clite"
"github.com/goplus/llgo/runtime/internal/runtime"
)
func IndexByte(b []byte, ch byte) int {
ptr := unsafe.Pointer(unsafe.SliceData(b))
ret := c.Memchr(ptr, c.Int(ch), uintptr(len(b)))
if ret != nil {
return int(uintptr(ret) - uintptr(ptr))
}
return -1
}
func IndexByteString(s string, ch byte) int {
ptr := unsafe.Pointer(unsafe.StringData(s))
ret := c.Memchr(ptr, c.Int(ch), uintptr(len(s)))
if ret != nil {
return int(uintptr(ret) - uintptr(ptr))
}
return -1
}
func Count(b []byte, c byte) (n int) {
for _, x := range b {
if x == c {
n++
}
}
return
}
func CountString(s string, c byte) (n int) {
for i := 0; i < len(s); i++ {
if s[i] == c {
n++
}
}
return
}
// Index returns the index of the first instance of b in a, or -1 if b is not present in a.
// Requires 2 <= len(b) <= MaxLen.
func Index(a, b []byte) int {
for i := 0; i <= len(a)-len(b); i++ {
if equal(a[i:i+len(b)], b) {
return i
}
}
return -1
}
func equal(a, b []byte) bool {
if n := len(a); n == len(b) {
return c.Memcmp(unsafe.Pointer(unsafe.SliceData(a)), unsafe.Pointer(unsafe.SliceData(b)), uintptr(n)) == 0
}
return false
}
// IndexString returns the index of the first instance of b in a, or -1 if b is not present in a.
// Requires 2 <= len(b) <= MaxLen.
func IndexString(a, b string) int {
for i := 0; i <= len(a)-len(b); i++ {
if a[i:i+len(b)] == b {
return i
}
}
return -1
}
// MakeNoZero makes a slice of length and capacity n without zeroing the bytes.
// It is the caller's responsibility to ensure uninitialized bytes
// do not leak to the end user.
func MakeNoZero(n int) (r []byte) {
s := (*sliceHead)(unsafe.Pointer(&r))
s.data = runtime.AllocU(uintptr(n))
s.len = n
s.cap = n
return
}
type sliceHead struct {
data unsafe.Pointer
len int
cap int
}
func LastIndexByte(s []byte, c byte) int {
for i := len(s) - 1; i >= 0; i-- {
if s[i] == c {
return i
}
}
return -1
}
func LastIndexByteString(s string, c byte) int {
for i := len(s) - 1; i >= 0; i-- {
if s[i] == c {
return i
}
}
return -1
}
func CompareString(a, b string) int {
l := len(a)
if len(b) < l {
l = len(b)
}
for i := 0; i < l; i++ {
c1, c2 := a[i], b[i]
if c1 < c2 {
return -1
}
if c1 > c2 {
return +1
}
}
if len(a) < len(b) {
return -1
}
if len(a) > len(b) {
return +1
}
return 0
}

View File

@@ -0,0 +1 @@
package filepathlite

View File

@@ -0,0 +1,220 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package fmtsort provides a general stable ordering mechanism
// for maps, on behalf of the fmt and text/template packages.
// It is not guaranteed to be efficient and works only for types
// that are valid map keys.
package fmtsort
// llgo:skipall
import (
"reflect"
"sort"
)
// Note: Throughout this package we avoid calling reflect.Value.Interface as
// it is not always legal to do so and it's easier to avoid the issue than to face it.
// SortedMap represents a map's keys and values. The keys and values are
// aligned in index order: Value[i] is the value in the map corresponding to Key[i].
type SortedMap struct {
Key []reflect.Value
Value []reflect.Value
}
func (o *SortedMap) Len() int { return len(o.Key) }
func (o *SortedMap) Less(i, j int) bool { return compare(o.Key[i], o.Key[j]) < 0 }
func (o *SortedMap) Swap(i, j int) {
o.Key[i], o.Key[j] = o.Key[j], o.Key[i]
o.Value[i], o.Value[j] = o.Value[j], o.Value[i]
}
// Sort accepts a map and returns a SortedMap that has the same keys and
// values but in a stable sorted order according to the keys, modulo issues
// raised by unorderable key values such as NaNs.
//
// The ordering rules are more general than with Go's < operator:
//
// - when applicable, nil compares low
// - ints, floats, and strings order by <
// - NaN compares less than non-NaN floats
// - bool compares false before true
// - complex compares real, then imag
// - pointers compare by machine address
// - channel values compare by machine address
// - structs compare each field in turn
// - arrays compare each element in turn.
// Otherwise identical arrays compare by length.
// - interface values compare first by reflect.Type describing the concrete type
// and then by concrete value as described in the previous rules.
func Sort(mapValue reflect.Value) *SortedMap {
if mapValue.Type().Kind() != reflect.Map {
return nil
}
// Note: this code is arranged to not panic even in the presence
// of a concurrent map update. The runtime is responsible for
// yelling loudly if that happens. See issue 33275.
n := mapValue.Len()
key := make([]reflect.Value, 0, n)
value := make([]reflect.Value, 0, n)
iter := mapValue.MapRange()
for iter.Next() {
key = append(key, iter.Key())
value = append(value, iter.Value())
}
sorted := &SortedMap{
Key: key,
Value: value,
}
sort.Stable(sorted)
return sorted
}
// compare compares two values of the same type. It returns -1, 0, 1
// according to whether a > b (1), a == b (0), or a < b (-1).
// If the types differ, it returns -1.
// See the comment on Sort for the comparison rules.
func compare(aVal, bVal reflect.Value) int {
aType, bType := aVal.Type(), bVal.Type()
if aType != bType {
return -1 // No good answer possible, but don't return 0: they're not equal.
}
switch aVal.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
a, b := aVal.Int(), bVal.Int()
switch {
case a < b:
return -1
case a > b:
return 1
default:
return 0
}
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
a, b := aVal.Uint(), bVal.Uint()
switch {
case a < b:
return -1
case a > b:
return 1
default:
return 0
}
case reflect.String:
a, b := aVal.String(), bVal.String()
switch {
case a < b:
return -1
case a > b:
return 1
default:
return 0
}
case reflect.Float32, reflect.Float64:
return floatCompare(aVal.Float(), bVal.Float())
case reflect.Complex64, reflect.Complex128:
a, b := aVal.Complex(), bVal.Complex()
if c := floatCompare(real(a), real(b)); c != 0 {
return c
}
return floatCompare(imag(a), imag(b))
case reflect.Bool:
a, b := aVal.Bool(), bVal.Bool()
switch {
case a == b:
return 0
case a:
return 1
default:
return -1
}
case reflect.Pointer, reflect.UnsafePointer:
a, b := aVal.Pointer(), bVal.Pointer()
switch {
case a < b:
return -1
case a > b:
return 1
default:
return 0
}
case reflect.Chan:
if c, ok := nilCompare(aVal, bVal); ok {
return c
}
ap, bp := aVal.Pointer(), bVal.Pointer()
switch {
case ap < bp:
return -1
case ap > bp:
return 1
default:
return 0
}
case reflect.Struct:
for i := 0; i < aVal.NumField(); i++ {
if c := compare(aVal.Field(i), bVal.Field(i)); c != 0 {
return c
}
}
return 0
case reflect.Array:
for i := 0; i < aVal.Len(); i++ {
if c := compare(aVal.Index(i), bVal.Index(i)); c != 0 {
return c
}
}
return 0
case reflect.Interface:
if c, ok := nilCompare(aVal, bVal); ok {
return c
}
c := compare(reflect.ValueOf(aVal.Elem().Type()), reflect.ValueOf(bVal.Elem().Type()))
if c != 0 {
return c
}
return compare(aVal.Elem(), bVal.Elem())
default:
// Certain types cannot appear as keys (maps, funcs, slices), but be explicit.
panic("bad type in compare: " + aType.String())
}
}
// nilCompare checks whether either value is nil. If not, the boolean is false.
// If either value is nil, the boolean is true and the integer is the comparison
// value. The comparison is defined to be 0 if both are nil, otherwise the one
// nil value compares low. Both arguments must represent a chan, func,
// interface, map, pointer, or slice.
func nilCompare(aVal, bVal reflect.Value) (int, bool) {
if aVal.IsNil() {
if bVal.IsNil() {
return 0, true
}
return -1, true
}
if bVal.IsNil() {
return 1, true
}
return 0, false
}
// floatCompare compares two floating-point values. NaNs compare low.
func floatCompare(a, b float64) int {
switch {
case isNaN(a):
return -1 // No good answer if b is a NaN so don't bother checking.
case isNaN(b):
return 1
case a < b:
return -1
case a > b:
return 1
}
return 0
}
func isNaN(a float64) bool {
return a != a
}

View File

@@ -0,0 +1,34 @@
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Simple conversions to avoid depending on strconv.
// llgo:skipall
package itoa
// Itoa converts val to a decimal string.
func Itoa(val int) string {
if val < 0 {
return "-" + Uitoa(uint(-val))
}
return Uitoa(uint(val))
}
// Uitoa converts val to a decimal string.
func Uitoa(val uint) string {
if val == 0 { // avoid string allocation
return "0"
}
var buf [20]byte // big enough for 64bit value base 10
i := len(buf) - 1
for val >= 10 {
q := val / 10
buf[i] = byte('0' + val - q*10)
i--
val = q
}
// val < 10
buf[i] = byte('0' + val)
return string(buf[i:])
}

View File

@@ -0,0 +1,19 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package oserror defines errors values used in the os package.
//
// These types are defined here to permit the syscall package to reference them.
package oserror
// llgo:skipall
import "errors"
var (
ErrInvalid = errors.New("invalid argument")
ErrPermission = errors.New("permission denied")
ErrExist = errors.New("file already exists")
ErrNotExist = errors.New("file does not exist")
ErrClosed = errors.New("file already closed")
)

View File

@@ -0,0 +1 @@
package race

View File

@@ -0,0 +1,22 @@
/*
* Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package reflectlite
// llgo:skipall
import (
_ "unsafe"
)

View File

@@ -0,0 +1,80 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package reflectlite
import (
"unsafe"
)
const (
goarchPtrSize = unsafe.Sizeof(uintptr(0))
)
// Swapper returns a function that swaps the elements in the provided
// slice.
//
// Swapper panics if the provided interface is not a slice.
func Swapper(slice any) func(i, j int) {
v := ValueOf(slice)
if v.Kind() != Slice {
panic(&ValueError{Method: "Swapper", Kind: v.Kind()})
}
// Fast path for slices of size 0 and 1. Nothing to swap.
switch v.Len() {
case 0:
return func(i, j int) { panic("reflect: slice index out of range") }
case 1:
return func(i, j int) {
if i != 0 || j != 0 {
panic("reflect: slice index out of range")
}
}
}
typ := v.Type().Elem().common()
size := typ.Size()
hasPtr := typ.PtrBytes != 0
// Some common & small cases, without using memmove:
if hasPtr {
if size == goarchPtrSize {
ps := *(*[]unsafe.Pointer)(v.ptr)
return func(i, j int) { ps[i], ps[j] = ps[j], ps[i] }
}
if typ.Kind() == String {
ss := *(*[]string)(v.ptr)
return func(i, j int) { ss[i], ss[j] = ss[j], ss[i] }
}
} else {
switch size {
case 8:
is := *(*[]int64)(v.ptr)
return func(i, j int) { is[i], is[j] = is[j], is[i] }
case 4:
is := *(*[]int32)(v.ptr)
return func(i, j int) { is[i], is[j] = is[j], is[i] }
case 2:
is := *(*[]int16)(v.ptr)
return func(i, j int) { is[i], is[j] = is[j], is[i] }
case 1:
is := *(*[]int8)(v.ptr)
return func(i, j int) { is[i], is[j] = is[j], is[i] }
}
}
s := (*unsafeheaderSlice)(v.ptr)
tmp := unsafe_New(typ) // swap scratch space
return func(i, j int) {
if uint(i) >= uint(s.Len) || uint(j) >= uint(s.Len) {
panic("reflect: slice index out of range")
}
val1 := arrayAt(s.Data, i, size, "i < s.Len")
val2 := arrayAt(s.Data, j, size, "j < s.Len")
typedmemmove(typ, tmp, val1)
typedmemmove(typ, val1, val2)
typedmemmove(typ, val2, tmp)
}
}

View File

@@ -0,0 +1,565 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package reflectlite implements lightweight version of reflect, not using
// any package except for "runtime", "unsafe", and "internal/abi"
package reflectlite
import (
"unsafe"
"github.com/goplus/llgo/runtime/abi"
)
// Type is the representation of a Go type.
//
// Not all methods apply to all kinds of types. Restrictions,
// if any, are noted in the documentation for each method.
// Use the Kind method to find out the kind of type before
// calling kind-specific methods. Calling a method
// inappropriate to the kind of type causes a run-time panic.
//
// Type values are comparable, such as with the == operator,
// so they can be used as map keys.
// Two Type values are equal if they represent identical types.
type Type interface {
// Methods applicable to all types.
// Name returns the type's name within its package for a defined type.
// For other (non-defined) types it returns the empty string.
Name() string
// PkgPath returns a defined type's package path, that is, the import path
// that uniquely identifies the package, such as "encoding/base64".
// If the type was predeclared (string, error) or not defined (*T, struct{},
// []int, or A where A is an alias for a non-defined type), the package path
// will be the empty string.
PkgPath() string
// Size returns the number of bytes needed to store
// a value of the given type; it is analogous to unsafe.Sizeof.
Size() uintptr
// Kind returns the specific kind of this type.
Kind() Kind
// Implements reports whether the type implements the interface type u.
Implements(u Type) bool
// AssignableTo reports whether a value of the type is assignable to type u.
AssignableTo(u Type) bool
// Comparable reports whether values of this type are comparable.
Comparable() bool
// String returns a string representation of the type.
// The string representation may use shortened package names
// (e.g., base64 instead of "encoding/base64") and is not
// guaranteed to be unique among types. To test for type identity,
// compare the Types directly.
String() string
// Elem returns a type's element type.
// It panics if the type's Kind is not Ptr.
Elem() Type
common() *abi.Type
uncommon() *uncommonType
}
/*
* These data structures are known to the compiler (../../cmd/internal/reflectdata/reflect.go).
* A few are known to ../runtime/type.go to convey to debuggers.
* They are also known to ../runtime/type.go.
*/
// A Kind represents the specific kind of type that a Type represents.
// The zero Kind is not a valid kind.
type Kind = abi.Kind
const Ptr = abi.Pointer
const (
// Import-and-export these constants as necessary
Interface = abi.Interface
Slice = abi.Slice
String = abi.String
Struct = abi.Struct
)
type rtype struct {
*abi.Type
}
// uncommonType is present only for defined types or types with methods
// (if T is a defined type, the uncommonTypes for T and *T have methods).
// Using a pointer to this struct reduces the overall size required
// to describe a non-defined type with no methods.
type uncommonType = abi.UncommonType
// arrayType represents a fixed array type.
type arrayType = abi.ArrayType
// chanType represents a channel type.
type chanType = abi.ChanType
type funcType = abi.FuncType
type interfaceType = abi.InterfaceType
// mapType represents a map type.
type mapType struct {
rtype
Key *abi.Type // map key type
Elem *abi.Type // map element (value) type
Bucket *abi.Type // internal bucket structure
// function for hashing keys (ptr to key, seed) -> hash
Hasher func(unsafe.Pointer, uintptr) uintptr
KeySize uint8 // size of key slot
ValueSize uint8 // size of value slot
BucketSize uint16 // size of bucket
Flags uint32
}
// ptrType represents a pointer type.
type ptrType = abi.PtrType
// sliceType represents a slice type.
type sliceType = abi.SliceType
// structType represents a struct type.
type structType = abi.StructType
func (t rtype) uncommon() *uncommonType {
return t.Uncommon()
}
func (t rtype) String() string {
return t.Type.String()
}
func (t rtype) common() *abi.Type { return t.Type }
func (t rtype) exportedMethods() []abi.Method {
ut := t.uncommon()
if ut == nil {
return nil
}
return ut.ExportedMethods()
}
func (t rtype) NumMethod() int {
/*
tt := t.Type.InterfaceType()
if tt != nil {
return tt.NumMethod()
}
return len(t.exportedMethods())
*/
panic("todo: reflectlite.rtype.NumMethod")
}
func (t rtype) PkgPath() string {
/*
if t.TFlag&abi.TFlagNamed == 0 {
return ""
}
ut := t.uncommon()
if ut == nil {
return ""
}
return t.nameOff(ut.PkgPath).Name()
*/
panic("todo: reflectlite.rtype.PkgPath")
}
func (t rtype) Name() string {
/*
if !t.HasName() {
return ""
}
s := t.String()
i := len(s) - 1
sqBrackets := 0
for i >= 0 && (s[i] != '.' || sqBrackets != 0) {
switch s[i] {
case ']':
sqBrackets++
case '[':
sqBrackets--
}
i--
}
return s[i+1:]
*/
panic("todo: reflectlite.rtype.Name")
}
func toRType(t *abi.Type) rtype {
return rtype{t}
}
func elem(t *abi.Type) *abi.Type {
et := t.Elem()
if et != nil {
return et
}
panic("reflect: Elem of invalid type " + toRType(t).String())
}
func (t rtype) Elem() Type {
return toType(elem(t.common()))
}
func (t rtype) In(i int) Type {
/*
tt := t.Type.FuncType()
if tt == nil {
panic("reflect: In of non-func type")
}
return toType(tt.InSlice()[i])
*/
panic("todo: reflectlite.rtype.In")
}
func (t rtype) Key() Type {
tt := t.Type.MapType()
if tt == nil {
panic("reflect: Key of non-map type")
}
return toType(tt.Key)
}
func (t rtype) Len() int {
tt := t.Type.ArrayType()
if tt == nil {
panic("reflect: Len of non-array type")
}
return int(tt.Len)
}
func (t rtype) NumField() int {
tt := t.Type.StructType()
if tt == nil {
panic("reflect: NumField of non-struct type")
}
return len(tt.Fields)
}
func (t rtype) NumIn() int {
/*
tt := t.Type.FuncType()
if tt == nil {
panic("reflect: NumIn of non-func type")
}
return int(tt.InCount)
*/
panic("todo: reflectlite.rtype.NumIn")
}
func (t rtype) NumOut() int {
/*
tt := t.Type.FuncType()
if tt == nil {
panic("reflect: NumOut of non-func type")
}
return tt.NumOut()
*/
panic("todo: reflectlite.rtype.NumOut")
}
func (t rtype) Out(i int) Type {
/*
tt := t.Type.FuncType()
if tt == nil {
panic("reflect: Out of non-func type")
}
return toType(tt.OutSlice()[i])
*/
panic("todo: reflectlite.rtype.Out")
}
// add returns p+x.
//
// The whySafe string is ignored, so that the function still inlines
// as efficiently as p+x, but all call sites should use the string to
// record why the addition is safe, which is to say why the addition
// does not cause x to advance to the very end of p's allocation
// and therefore point incorrectly at the next block in memory.
func add(p unsafe.Pointer, x uintptr, whySafe string) unsafe.Pointer {
return unsafe.Pointer(uintptr(p) + x)
}
// TypeOf returns the reflection Type that represents the dynamic type of i.
// If i is a nil interface value, TypeOf returns nil.
func TypeOf(i any) Type {
eface := *(*emptyInterface)(unsafe.Pointer(&i))
return toType(eface.typ)
}
func (t rtype) Implements(u Type) bool {
if u == nil {
panic("reflect: nil type passed to Type.Implements")
}
if u.Kind() != Interface {
panic("reflect: non-interface type passed to Type.Implements")
}
return implements(u.common(), t.common())
}
func (t rtype) AssignableTo(u Type) bool {
if u == nil {
panic("reflect: nil type passed to Type.AssignableTo")
}
uu := u.common()
tt := t.common()
return directlyAssignable(uu, tt) || implements(uu, tt)
}
func (t rtype) Comparable() bool {
return t.Equal != nil
}
// implements reports whether the type V implements the interface type T.
func implements(T, V *abi.Type) bool {
/*
t := T.InterfaceType()
if t == nil {
return false
}
if len(t.Methods) == 0 {
return true
}
rT := toRType(T)
rV := toRType(V)
// The same algorithm applies in both cases, but the
// method tables for an interface type and a concrete type
// are different, so the code is duplicated.
// In both cases the algorithm is a linear scan over the two
// lists - T's methods and V's methods - simultaneously.
// Since method tables are stored in a unique sorted order
// (alphabetical, with no duplicate method names), the scan
// through V's methods must hit a match for each of T's
// methods along the way, or else V does not implement T.
// This lets us run the scan in overall linear time instead of
// the quadratic time a naive search would require.
// See also ../runtime/iface.go.
if V.Kind() == Interface {
v := (*interfaceType)(unsafe.Pointer(V))
i := 0
for j := 0; j < len(v.Methods); j++ {
tm := &t.Methods[i]
tmName := rT.nameOff(tm.Name)
vm := &v.Methods[j]
vmName := rV.nameOff(vm.Name)
if vmName.Name() == tmName.Name() && rV.typeOff(vm.Typ) == rT.typeOff(tm.Typ) {
if !tmName.IsExported() {
tmPkgPath := pkgPath(tmName)
if tmPkgPath == "" {
tmPkgPath = t.PkgPath.Name()
}
vmPkgPath := pkgPath(vmName)
if vmPkgPath == "" {
vmPkgPath = v.PkgPath.Name()
}
if tmPkgPath != vmPkgPath {
continue
}
}
if i++; i >= len(t.Methods) {
return true
}
}
}
return false
}
v := V.Uncommon()
if v == nil {
return false
}
i := 0
vmethods := v.Methods()
for j := 0; j < int(v.Mcount); j++ {
tm := &t.Methods[i]
tmName := rT.nameOff(tm.Name)
vm := vmethods[j]
vmName := rV.nameOff(vm.Name)
if vmName.Name() == tmName.Name() && rV.typeOff(vm.Mtyp) == rT.typeOff(tm.Typ) {
if !tmName.IsExported() {
tmPkgPath := pkgPath(tmName)
if tmPkgPath == "" {
tmPkgPath = t.PkgPath.Name()
}
vmPkgPath := pkgPath(vmName)
if vmPkgPath == "" {
vmPkgPath = rV.nameOff(v.PkgPath).Name()
}
if tmPkgPath != vmPkgPath {
continue
}
}
if i++; i >= len(t.Methods) {
return true
}
}
}
return false
*/
panic("todo: reflectlite.implements")
}
// directlyAssignable reports whether a value x of type V can be directly
// assigned (using memmove) to a value of type T.
// https://golang.org/doc/go_spec.html#Assignability
// Ignoring the interface rules (implemented elsewhere)
// and the ideal constant rules (no ideal constants at run time).
func directlyAssignable(T, V *abi.Type) bool {
// x's type V is identical to T?
if T == V {
return true
}
// Otherwise at least one of T and V must not be defined
// and they must have the same kind.
if T.HasName() && V.HasName() || T.Kind() != V.Kind() {
return false
}
// x's type T and V must have identical underlying types.
return haveIdenticalUnderlyingType(T, V, true)
}
func haveIdenticalType(T, V *abi.Type, cmpTags bool) bool {
if cmpTags {
return T == V
}
if toRType(T).Name() != toRType(V).Name() || T.Kind() != V.Kind() {
return false
}
return haveIdenticalUnderlyingType(T, V, false)
}
func haveIdenticalUnderlyingType(T, V *abi.Type, cmpTags bool) bool {
if T == V {
return true
}
kind := T.Kind()
if kind != V.Kind() {
return false
}
// Non-composite types of equal kind have same underlying type
// (the predefined instance of the type).
if abi.Bool <= kind && kind <= abi.Complex128 || kind == abi.String || kind == abi.UnsafePointer {
return true
}
/*
// Composite types.
switch kind {
case abi.Array:
return T.Len() == V.Len() && haveIdenticalType(T.Elem(), V.Elem(), cmpTags)
case abi.Chan:
// Special case:
// x is a bidirectional channel value, T is a channel type,
// and x's type V and T have identical element types.
if V.ChanDir() == abi.BothDir && haveIdenticalType(T.Elem(), V.Elem(), cmpTags) {
return true
}
// Otherwise continue test for identical underlying type.
return V.ChanDir() == T.ChanDir() && haveIdenticalType(T.Elem(), V.Elem(), cmpTags)
case abi.Func:
t := (*funcType)(unsafe.Pointer(T))
v := (*funcType)(unsafe.Pointer(V))
if t.OutCount != v.OutCount || t.InCount != v.InCount {
return false
}
for i := 0; i < t.NumIn(); i++ {
if !haveIdenticalType(t.In(i), v.In(i), cmpTags) {
return false
}
}
for i := 0; i < t.NumOut(); i++ {
if !haveIdenticalType(t.Out(i), v.Out(i), cmpTags) {
return false
}
}
return true
case Interface:
t := (*interfaceType)(unsafe.Pointer(T))
v := (*interfaceType)(unsafe.Pointer(V))
if len(t.Methods) == 0 && len(v.Methods) == 0 {
return true
}
// Might have the same methods but still
// need a run time conversion.
return false
case abi.Map:
return haveIdenticalType(T.Key(), V.Key(), cmpTags) && haveIdenticalType(T.Elem(), V.Elem(), cmpTags)
case Ptr, abi.Slice:
return haveIdenticalType(T.Elem(), V.Elem(), cmpTags)
case abi.Struct:
t := (*structType)(unsafe.Pointer(T))
v := (*structType)(unsafe.Pointer(V))
if len(t.Fields) != len(v.Fields) {
return false
}
if t.PkgPath.Name() != v.PkgPath.Name() {
return false
}
for i := range t.Fields {
tf := &t.Fields[i]
vf := &v.Fields[i]
if tf.Name.Name() != vf.Name.Name() {
return false
}
if !haveIdenticalType(tf.Typ, vf.Typ, cmpTags) {
return false
}
if cmpTags && tf.Name.Tag() != vf.Name.Tag() {
return false
}
if tf.Offset != vf.Offset {
return false
}
if tf.Embedded() != vf.Embedded() {
return false
}
}
return true
}
return false
*/
panic("todo: reflectlite.haveIdenticalUnderlyingType")
}
// toType converts from a *rtype to a Type that can be returned
// to the client of package reflect. In gc, the only concern is that
// a nil *rtype must be replaced by a nil Type, but in gccgo this
// function takes care of ensuring that multiple *rtype for the same
// type are coalesced into a single Type.
func toType(t *abi.Type) Type {
if t == nil {
return nil
}
return toRType(t)
}
// ifaceIndir reports whether t is stored indirectly in an interface value.
func ifaceIndir(t *abi.Type) bool {
return t.Kind_&abi.KindDirectIface == 0
}

View File

@@ -0,0 +1,32 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package reflectlite
import (
"unsafe"
)
// unsafeheaderSlice is the runtime representation of a slice.
// It cannot be used safely or portably and its representation may
// change in a later release.
//
// Unlike reflect.SliceHeader, its Data field is sufficient to guarantee the
// data it references will not be garbage collected.
type unsafeheaderSlice struct {
Data unsafe.Pointer
Len int
Cap int
}
// unsafeheaderString is the runtime representation of a string.
// It cannot be used safely or portably and its representation may
// change in a later release.
//
// Unlike reflect.StringHeader, its Data field is sufficient to guarantee the
// data it references will not be garbage collected.
type unsafeheaderString struct {
Data unsafe.Pointer
Len int
}

View File

@@ -0,0 +1,477 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package reflectlite
import (
"unsafe"
"github.com/goplus/llgo/runtime/abi"
_ "github.com/goplus/llgo/runtime/internal/runtime"
)
// Value is the reflection interface to a Go value.
//
// Not all methods apply to all kinds of values. Restrictions,
// if any, are noted in the documentation for each method.
// Use the Kind method to find out the kind of value before
// calling kind-specific methods. Calling a method
// inappropriate to the kind of type causes a run time panic.
//
// The zero Value represents no value.
// Its IsValid method returns false, its Kind method returns Invalid,
// its String method returns "<invalid Value>", and all other methods panic.
// Most functions and methods never return an invalid value.
// If one does, its documentation states the conditions explicitly.
//
// A Value can be used concurrently by multiple goroutines provided that
// the underlying Go value can be used concurrently for the equivalent
// direct operations.
//
// To compare two Values, compare the results of the Interface method.
// Using == on two Values does not compare the underlying values
// they represent.
type Value struct {
// typ holds the type of the value represented by a Value.
typ *abi.Type
// Pointer-valued data or, if flagIndir is set, pointer to data.
// Valid when either flagIndir is set or typ.pointers() is true.
ptr unsafe.Pointer
// flag holds metadata about the value.
// The lowest bits are flag bits:
// - flagStickyRO: obtained via unexported not embedded field, so read-only
// - flagEmbedRO: obtained via unexported embedded field, so read-only
// - flagIndir: val holds a pointer to the data
// - flagAddr: v.CanAddr is true (implies flagIndir)
// Value cannot represent method values.
// The next five bits give the Kind of the value.
// This repeats typ.Kind() except for method values.
// The remaining 23+ bits give a method number for method values.
// If flag.kind() != Func, code can assume that flagMethod is unset.
// If ifaceIndir(typ), code can assume that flagIndir is set.
flag
// A method value represents a curried method invocation
// like r.Read for some receiver r. The typ+val+flag bits describe
// the receiver r, but the flag's Kind bits say Func (methods are
// functions), and the top bits of the flag give the method number
// in r's type's method table.
}
type flag uintptr
const (
flagKindWidth = 5 // there are 27 kinds
flagKindMask flag = 1<<flagKindWidth - 1
flagStickyRO flag = 1 << 5
flagEmbedRO flag = 1 << 6
flagIndir flag = 1 << 7
flagAddr flag = 1 << 8
flagMethod flag = 1 << 9
flagMethodShift = 10
flagRO flag = flagStickyRO | flagEmbedRO
)
func (f flag) kind() Kind {
return Kind(f & flagKindMask)
}
func (f flag) ro() flag {
if f&flagRO != 0 {
return flagStickyRO
}
return 0
}
// pointer returns the underlying pointer represented by v.
// v.Kind() must be Pointer, Map, Chan, Func, or UnsafePointer
func (v Value) pointer() unsafe.Pointer {
/*
if v.typ.Size() != goarch.PtrSize || !v.typ.Pointers() {
panic("can't call pointer on a non-pointer Value")
}
if v.flag&flagIndir != 0 {
return *(*unsafe.Pointer)(v.ptr)
}
return v.ptr
*/
panic("todo: reflectlite.Value.pointer")
}
// packEface converts v to the empty interface.
func packEface(v Value) any {
t := v.typ
var i any
e := (*emptyInterface)(unsafe.Pointer(&i))
// First, fill in the data portion of the interface.
switch {
case ifaceIndir(t):
if v.flag&flagIndir == 0 {
panic("bad indir")
}
// Value is indirect, and so is the interface we're making.
ptr := v.ptr
if v.flag&flagAddr != 0 {
// TODO: pass safe boolean from valueInterface so
// we don't need to copy if safe==true?
c := unsafe_New(t)
typedmemmove(t, c, ptr)
ptr = c
}
e.word = ptr
case v.flag&flagIndir != 0:
// Value is indirect, but interface is direct. We need
// to load the data at v.ptr into the interface data word.
e.word = *(*unsafe.Pointer)(v.ptr)
default:
// Value is direct, and so is the interface.
e.word = v.ptr
}
// Now, fill in the type portion. We're very careful here not
// to have any operation between the e.word and e.typ assignments
// that would let the garbage collector observe the partially-built
// interface value.
e.typ = t
return i
}
// unpackEface converts the empty interface i to a Value.
func unpackEface(i any) Value {
e := (*emptyInterface)(unsafe.Pointer(&i))
// NOTE: don't read e.word until we know whether it is really a pointer or not.
t := e.typ
if t == nil {
return Value{}
}
f := flag(t.Kind())
if ifaceIndir(t) {
f |= flagIndir
}
return Value{t, e.word, f}
}
// A ValueError occurs when a Value method is invoked on
// a Value that does not support it. Such cases are documented
// in the description of each method.
type ValueError struct {
Method string
Kind Kind
}
func (e *ValueError) Error() string {
if e.Kind == 0 {
return "reflect: call of " + e.Method + " on zero Value"
}
return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value"
}
// methodName returns the name of the calling method,
// assumed to be two stack frames above.
func methodName() string {
/* TODO(xsw):
pc, _, _, _ := runtime.Caller(2)
f := runtime.FuncForPC(pc)
if f == nil {
return "unknown method"
}
return f.Name()
*/
return "unknown method"
}
// emptyInterface is the header for an interface{} value.
type emptyInterface struct {
typ *abi.Type
word unsafe.Pointer
}
// mustBeExported panics if f records that the value was obtained using
// an unexported field.
func (f flag) mustBeExported() {
if f == 0 {
panic(&ValueError{methodName(), 0})
}
if f&flagRO != 0 {
panic("reflect: " + methodName() + " using value obtained using unexported field")
}
}
// mustBeAssignable panics if f records that the value is not assignable,
// which is to say that either it was obtained using an unexported field
// or it is not addressable.
func (f flag) mustBeAssignable() {
if f == 0 {
panic(&ValueError{methodName(), abi.Invalid})
}
// Assignable if addressable and not read-only.
if f&flagRO != 0 {
panic("reflect: " + methodName() + " using value obtained using unexported field")
}
if f&flagAddr == 0 {
panic("reflect: " + methodName() + " using unaddressable value")
}
}
// CanSet reports whether the value of v can be changed.
// A Value can be changed only if it is addressable and was not
// obtained by the use of unexported struct fields.
// If CanSet returns false, calling Set or any type-specific
// setter (e.g., SetBool, SetInt) will panic.
func (v Value) CanSet() bool {
return v.flag&(flagAddr|flagRO) == flagAddr
}
// Elem returns the value that the interface v contains
// or that the pointer v points to.
// It panics if v's Kind is not Interface or Pointer.
// It returns the zero Value if v is nil.
func (v Value) Elem() Value {
/*
k := v.kind()
switch k {
case abi.Interface:
var eface any
if v.typ.NumMethod() == 0 {
eface = *(*any)(v.ptr)
} else {
eface = (any)(*(*interface {
M()
})(v.ptr))
}
x := unpackEface(eface)
if x.flag != 0 {
x.flag |= v.flag.ro()
}
return x
case abi.Pointer:
ptr := v.ptr
if v.flag&flagIndir != 0 {
ptr = *(*unsafe.Pointer)(ptr)
}
// The returned value's address is v's value.
if ptr == nil {
return Value{}
}
tt := (*ptrType)(unsafe.Pointer(v.typ))
typ := tt.Elem
fl := v.flag&flagRO | flagIndir | flagAddr
fl |= flag(typ.Kind())
return Value{typ, ptr, fl}
}
panic(&ValueError{"reflectlite.Value.Elem", v.kind()})
*/
panic("todo: reflectlite.Value.Elem")
}
func valueInterface(v Value) any {
if v.flag == 0 {
panic(&ValueError{"reflectlite.Value.Interface", 0})
}
if v.kind() == abi.Interface {
// Special case: return the element inside the interface.
// Empty interface has one layout, all interfaces with
// methods have a second layout.
if v.numMethod() == 0 {
return *(*any)(v.ptr)
}
return *(*interface {
M()
})(v.ptr)
}
// TODO: pass safe to packEface so we don't need to copy if safe==true?
return packEface(v)
}
// IsNil reports whether its argument v is nil. The argument must be
// a chan, func, interface, map, pointer, or slice value; if it is
// not, IsNil panics. Note that IsNil is not always equivalent to a
// regular comparison with nil in Go. For example, if v was created
// by calling ValueOf with an uninitialized interface variable i,
// i==nil will be true but v.IsNil will panic as v will be the zero
// Value.
func (v Value) IsNil() bool {
k := v.kind()
switch k {
case abi.Chan, abi.Func, abi.Map, abi.Pointer, abi.UnsafePointer:
// if v.flag&flagMethod != 0 {
// return false
// }
ptr := v.ptr
if v.flag&flagIndir != 0 {
ptr = *(*unsafe.Pointer)(ptr)
}
return ptr == nil
case abi.Interface, abi.Slice:
// Both interface and slice are nil if first word is 0.
// Both are always bigger than a word; assume flagIndir.
return *(*unsafe.Pointer)(v.ptr) == nil
}
panic(&ValueError{"reflectlite.Value.IsNil", v.kind()})
}
// IsValid reports whether v represents a value.
// It returns false if v is the zero Value.
// If IsValid returns false, all other methods except String panic.
// Most functions and methods never return an invalid Value.
// If one does, its documentation states the conditions explicitly.
func (v Value) IsValid() bool {
return v.flag != 0
}
// Kind returns v's Kind.
// If v is the zero Value (IsValid returns false), Kind returns Invalid.
func (v Value) Kind() Kind {
return v.kind()
}
/* TODO(xsw):
// implemented in runtime:
func chanlen(unsafe.Pointer) int
func maplen(unsafe.Pointer) int
*/
// Len returns v's length.
// It panics if v's Kind is not Array, Chan, Map, Slice, or String.
func (v Value) Len() int {
k := v.kind()
switch k {
case abi.Slice:
// Slice is bigger than a word; assume flagIndir.
return (*unsafeheaderSlice)(v.ptr).Len
case abi.String:
// String is bigger than a word; assume flagIndir.
return (*unsafeheaderString)(v.ptr).Len
case abi.Array:
tt := (*arrayType)(unsafe.Pointer(v.typ))
return int(tt.Len)
/* TODO(xsw):
case abi.Chan:
return chanlen(v.pointer())
case abi.Map:
return maplen(v.pointer())
*/
}
panic(&ValueError{"reflect.Value.Len", v.kind()})
}
// NumMethod returns the number of exported methods in the value's method set.
func (v Value) numMethod() int {
/*
if v.typ == nil {
panic(&ValueError{"reflectlite.Value.NumMethod", abi.Invalid})
}
return v.typ.NumMethod()
*/
panic("todo: reflectlite.Value.numMethod")
}
// Set assigns x to the value v.
// It panics if CanSet returns false.
// As in Go, x's value must be assignable to v's type.
func (v Value) Set(x Value) {
v.mustBeAssignable()
x.mustBeExported() // do not let unexported x leak
var target unsafe.Pointer
if v.kind() == abi.Interface {
target = v.ptr
}
x = x.assignTo("reflectlite.Set", v.typ, target)
if x.flag&flagIndir != 0 {
typedmemmove(v.typ, v.ptr, x.ptr)
} else {
*(*unsafe.Pointer)(v.ptr) = x.ptr
}
}
// Type returns v's type.
func (v Value) Type() Type {
f := v.flag
if f == 0 {
panic(&ValueError{"reflectlite.Value.Type", abi.Invalid})
}
// Method values not supported.
return toRType(v.typ)
}
/*
* constructors
*/
//go:linkname unsafe_New github.com/goplus/llgo/runtime/internal/runtime.New
func unsafe_New(*abi.Type) unsafe.Pointer
// ValueOf returns a new Value initialized to the concrete value
// stored in the interface i. ValueOf(nil) returns the zero Value.
func ValueOf(i any) Value {
if i == nil {
return Value{}
}
return unpackEface(i)
}
// assignTo returns a value v that can be assigned directly to typ.
// It panics if v is not assignable to typ.
// For a conversion to an interface type, target is a suggested scratch space to use.
func (v Value) assignTo(context string, dst *abi.Type, target unsafe.Pointer) Value {
// if v.flag&flagMethod != 0 {
// v = makeMethodValue(context, v)
// }
switch {
case directlyAssignable(dst, v.typ):
// Overwrite type so that they match.
// Same memory layout, so no harm done.
fl := v.flag&(flagAddr|flagIndir) | v.flag.ro()
fl |= flag(dst.Kind())
return Value{dst, v.ptr, fl}
case implements(dst, v.typ):
if target == nil {
target = unsafe_New(dst)
}
if v.Kind() == abi.Interface && v.IsNil() {
// A nil ReadWriter passed to nil Reader is OK,
// but using ifaceE2I below will panic.
// Avoid the panic by returning a nil dst (e.g., Reader) explicitly.
return Value{dst, nil, flag(abi.Interface)}
}
/* TODO(xsw):
x := valueInterface(v)
if dst.NumMethod() == 0 {
*(*any)(target) = x
} else {
ifaceE2I(dst, x, target)
}
return Value{dst, target, flagIndir | flag(abi.Interface)}
*/
}
// Failed.
// TODO(xsw):
// panic(context + ": value of type " + toRType(v.typ).String() + " is not assignable to type " + toRType(dst).String())
panic("todo: reflectlite.Value.assignTo")
}
// arrayAt returns the i-th element of p,
// an array whose elements are eltSize bytes wide.
// The array pointed at by p must have at least i+1 elements:
// it is invalid (but impossible to check here) to pass i >= len,
// because then the result will point outside the array.
// whySafe must explain why i < len. (Passing "i < len" is fine;
// the benefit is to surface this assumption at the call site.)
func arrayAt(p unsafe.Pointer, i int, eltSize uintptr, whySafe string) unsafe.Pointer {
return add(p, uintptr(i)*eltSize, "i < len")
}
// func ifaceE2I(t *abi.Type, src any, dst unsafe.Pointer)
// typedmemmove copies a value of type t to dst from src.
//
//go:linkname typedmemmove github.com/goplus/llgo/runtime/internal/runtime.Typedmemmove
func typedmemmove(t *abi.Type, dst, src unsafe.Pointer)

View File

@@ -0,0 +1 @@
package stringslite

View File

@@ -0,0 +1,20 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !windows
package execenv
// llgo:skipall
import "syscall"
// Default will return the default environment
// variables based on the process attributes
// provided.
//
// Defaults to syscall.Environ() on all platforms
// other than Windows.
func Default(sys *syscall.SysProcAttr) ([]string, error) {
return syscall.Environ(), nil
}

View File

@@ -0,0 +1,48 @@
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build windows
package execenv
// llgo:skipall
import (
"internal/syscall/windows"
"syscall"
"unsafe"
)
// Default will return the default environment
// variables based on the process attributes
// provided.
//
// If the process attributes contain a token, then
// the environment variables will be sourced from
// the defaults for that user token, otherwise they
// will be sourced from syscall.Environ().
func Default(sys *syscall.SysProcAttr) (env []string, err error) {
if sys == nil || sys.Token == 0 {
return syscall.Environ(), nil
}
var blockp *uint16
err = windows.CreateEnvironmentBlock(&blockp, sys.Token, false)
if err != nil {
return nil, err
}
defer windows.DestroyEnvironmentBlock(blockp)
const size = unsafe.Sizeof(*blockp)
for *blockp != 0 { // environment block ends with empty string
// find NUL terminator
end := unsafe.Add(unsafe.Pointer(blockp), size)
for *(*uint16)(end) != 0 {
end = unsafe.Add(end, size)
}
entry := unsafe.Slice(blockp, (uintptr(end)-uintptr(unsafe.Pointer(blockp)))/2)
env = append(env, syscall.UTF16ToString(entry))
blockp = (*uint16)(unsafe.Add(end, size))
}
return
}

View File

@@ -0,0 +1,15 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build js && wasm
package unix
func IsNonblock(fd int) (nonblocking bool, err error) {
return false, nil
}
func HasNonblockFlag(flag int) bool {
return false
}

View File

@@ -0,0 +1,23 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build unix
package unix
import "github.com/goplus/llgo/runtime/internal/clite/syscall"
/* TODO(xsw):
func IsNonblock(fd int) (nonblocking bool, err error) {
flag, e1 := Fcntl(fd, syscall.F_GETFL, 0)
if e1 != nil {
return false, e1
}
return flag&syscall.O_NONBLOCK != 0, nil
}
*/
func HasNonblockFlag(flag int) bool {
return flag&syscall.O_NONBLOCK != 0
}

View File

@@ -0,0 +1,37 @@
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build wasip1
package unix
import "github.com/goplus/llgo/runtime/internal/clite/syscall"
/* TODO(xsw):
import (
"syscall"
_ "unsafe" // for go:linkname
)
func IsNonblock(fd int) (nonblocking bool, err error) {
flags, e1 := fd_fdstat_get_flags(fd)
if e1 != nil {
return false, e1
}
return flags&syscall.FDFLAG_NONBLOCK != 0, nil
}
*/
func HasNonblockFlag(flag int) bool {
return flag&syscall.FDFLAG_NONBLOCK != 0
}
/* TODO(xsw):
// This helper is implemented in the syscall package. It means we don't have
// to redefine the fd_fdstat_get host import or the fdstat struct it
// populates.
//
//-go:linkname fd_fdstat_get_flags syscall.fd_fdstat_get_flags
func fd_fdstat_get_flags(fd int) (uint32, error)
*/

View File

@@ -0,0 +1,22 @@
/*
* Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package unix
// llgo:skipall
import (
_ "unsafe"
)