llgo/ssa: {datstruct, interface}.go
This commit is contained in:
337
ssa/datastruct.go
Normal file
337
ssa/datastruct.go
Normal file
@@ -0,0 +1,337 @@
|
||||
/*
|
||||
* Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
package ssa
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"go/token"
|
||||
"go/types"
|
||||
"log"
|
||||
|
||||
"github.com/goplus/llvm"
|
||||
)
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
// The FieldAddr instruction yields the address of Field of *struct X.
|
||||
//
|
||||
// The field is identified by its index within the field list of the
|
||||
// struct type of X.
|
||||
//
|
||||
// Dynamically, this instruction panics if X evaluates to a nil
|
||||
// pointer.
|
||||
//
|
||||
// Type() returns a (possibly named) *types.Pointer.
|
||||
//
|
||||
// Example printed form:
|
||||
//
|
||||
// t1 = &t0.name [#1]
|
||||
func (b Builder) FieldAddr(x Expr, idx int) Expr {
|
||||
if debugInstr {
|
||||
log.Printf("FieldAddr %v, %d\n", x.impl, idx)
|
||||
}
|
||||
prog := b.Prog
|
||||
tstruc := prog.Elem(x.Type)
|
||||
telem := prog.Field(tstruc, idx)
|
||||
pt := prog.Pointer(telem)
|
||||
return Expr{llvm.CreateStructGEP(b.impl, tstruc.ll, x.impl, idx), pt}
|
||||
}
|
||||
|
||||
// The Field instruction yields the value of Field of struct X.
|
||||
func (b Builder) Field(x Expr, idx int) Expr {
|
||||
if debugInstr {
|
||||
log.Printf("Field %v, %d\n", x.impl, idx)
|
||||
}
|
||||
return b.getField(x, idx)
|
||||
}
|
||||
|
||||
func (b Builder) getField(x Expr, idx int) Expr {
|
||||
tfld := b.Prog.Field(x.Type, idx)
|
||||
fld := llvm.CreateExtractValue(b.impl, x.impl, idx)
|
||||
return Expr{fld, tfld}
|
||||
}
|
||||
|
||||
// StringData returns the data pointer of a string.
|
||||
func (b Builder) StringData(x Expr) Expr {
|
||||
if debugInstr {
|
||||
log.Printf("StringData %v\n", x.impl)
|
||||
}
|
||||
prog := b.Prog
|
||||
ptr := llvm.CreateExtractValue(b.impl, x.impl, 0)
|
||||
return Expr{ptr, prog.CStr()}
|
||||
}
|
||||
|
||||
// StringLen returns the length of a string.
|
||||
func (b Builder) StringLen(x Expr) Expr {
|
||||
if debugInstr {
|
||||
log.Printf("StringLen %v\n", x.impl)
|
||||
}
|
||||
prog := b.Prog
|
||||
ptr := llvm.CreateExtractValue(b.impl, x.impl, 1)
|
||||
return Expr{ptr, prog.Int()}
|
||||
}
|
||||
|
||||
// SliceData returns the data pointer of a slice.
|
||||
func (b Builder) SliceData(x Expr) Expr {
|
||||
if debugInstr {
|
||||
log.Printf("SliceData %v\n", x.impl)
|
||||
}
|
||||
prog := b.Prog
|
||||
ptr := llvm.CreateExtractValue(b.impl, x.impl, 0)
|
||||
return Expr{ptr, prog.CStr()}
|
||||
}
|
||||
|
||||
// SliceLen returns the length of a slice.
|
||||
func (b Builder) SliceLen(x Expr) Expr {
|
||||
if debugInstr {
|
||||
log.Printf("SliceLen %v\n", x.impl)
|
||||
}
|
||||
prog := b.Prog
|
||||
ptr := llvm.CreateExtractValue(b.impl, x.impl, 1)
|
||||
return Expr{ptr, prog.Int()}
|
||||
}
|
||||
|
||||
// SliceCap returns the length of a slice cap.
|
||||
func (b Builder) SliceCap(x Expr) Expr {
|
||||
if debugInstr {
|
||||
log.Printf("SliceCap %v\n", x.impl)
|
||||
}
|
||||
prog := b.Prog
|
||||
ptr := llvm.CreateExtractValue(b.impl, x.impl, 2)
|
||||
return Expr{ptr, prog.Int()}
|
||||
}
|
||||
|
||||
// The IndexAddr instruction yields the address of the element at
|
||||
// index `idx` of collection `x`. `idx` is an integer expression.
|
||||
//
|
||||
// The elements of maps and strings are not addressable; use Lookup (map),
|
||||
// Index (string), or MapUpdate instead.
|
||||
//
|
||||
// Dynamically, this instruction panics if `x` evaluates to a nil *array
|
||||
// pointer.
|
||||
//
|
||||
// Example printed form:
|
||||
//
|
||||
// t2 = &t0[t1]
|
||||
func (b Builder) IndexAddr(x, idx Expr) Expr {
|
||||
if debugInstr {
|
||||
log.Printf("IndexAddr %v, %v\n", x.impl, idx.impl)
|
||||
}
|
||||
idx = b.checkIndex(idx)
|
||||
prog := b.Prog
|
||||
telem := prog.Index(x.Type)
|
||||
pt := prog.Pointer(telem)
|
||||
switch x.raw.Type.Underlying().(type) {
|
||||
case *types.Slice:
|
||||
ptr := b.SliceData(x)
|
||||
indices := []llvm.Value{idx.impl}
|
||||
return Expr{llvm.CreateInBoundsGEP(b.impl, telem.ll, ptr.impl, indices), pt}
|
||||
}
|
||||
// case *types.Pointer:
|
||||
indices := []llvm.Value{idx.impl}
|
||||
return Expr{llvm.CreateInBoundsGEP(b.impl, telem.ll, x.impl, indices), pt}
|
||||
}
|
||||
|
||||
// check index >= 0 and size to uint
|
||||
func (b Builder) checkIndex(idx Expr) Expr {
|
||||
if needsNegativeCheck(idx) {
|
||||
check := Expr{b.impl.CreateICmp(llvm.IntSLT, idx.impl, llvm.ConstInt(idx.ll, 0, false), ""), b.Prog.Bool()}
|
||||
b.InlineCall(b.Func.Pkg.rtFunc("AssertIndexRange"), check)
|
||||
}
|
||||
typ := b.Prog.Uint()
|
||||
if b.Prog.SizeOf(idx.Type) < b.Prog.SizeOf(typ) {
|
||||
idx.Type = typ
|
||||
idx.impl = castUintptr(b, idx.impl, typ)
|
||||
}
|
||||
return idx
|
||||
}
|
||||
|
||||
// The Index instruction yields element Index of collection X, an array,
|
||||
// string or type parameter containing an array, a string, a pointer to an,
|
||||
// array or a slice.
|
||||
//
|
||||
// Example printed form:
|
||||
//
|
||||
// t2 = t0[t1]
|
||||
func (b Builder) Index(x, idx Expr, addr func(Expr) Expr) Expr {
|
||||
if debugInstr {
|
||||
log.Printf("Index %v, %v\n", x.impl, idx.impl)
|
||||
}
|
||||
prog := b.Prog
|
||||
var telem Type
|
||||
var ptr Expr
|
||||
switch t := x.raw.Type.Underlying().(type) {
|
||||
case *types.Basic:
|
||||
if t.Kind() != types.String {
|
||||
panic(fmt.Errorf("invalid operation: cannot index %v", t))
|
||||
}
|
||||
telem = prog.rawType(types.Typ[types.Byte])
|
||||
ptr = b.StringData(x)
|
||||
case *types.Array:
|
||||
telem = prog.Index(x.Type)
|
||||
if addr != nil {
|
||||
ptr = addr(x)
|
||||
} else {
|
||||
size := b.SizeOf(telem, t.Len())
|
||||
ptr = b.Alloca(size)
|
||||
b.Store(ptr, x)
|
||||
}
|
||||
}
|
||||
idx = b.checkIndex(idx)
|
||||
pt := prog.Pointer(telem)
|
||||
indices := []llvm.Value{idx.impl}
|
||||
buf := Expr{llvm.CreateInBoundsGEP(b.impl, telem.ll, ptr.impl, indices), pt}
|
||||
return b.Load(buf)
|
||||
}
|
||||
|
||||
// The Lookup instruction yields element Index of collection map X.
|
||||
// Index is the appropriate key type.
|
||||
//
|
||||
// If CommaOk, the result is a 2-tuple of the value above and a
|
||||
// boolean indicating the result of a map membership test for the key.
|
||||
// The components of the tuple are accessed using Extract.
|
||||
//
|
||||
// Example printed form:
|
||||
//
|
||||
// t2 = t0[t1]
|
||||
// t5 = t3[t4],ok
|
||||
func (b Builder) Lookup(x, key Expr, commaOk bool) (ret Expr) {
|
||||
if debugInstr {
|
||||
log.Printf("Lookup %v, %v, %v\n", x.impl, key.impl, commaOk)
|
||||
}
|
||||
// TODO(xsw)
|
||||
// panic("todo")
|
||||
return
|
||||
}
|
||||
|
||||
// The Slice instruction yields a slice of an existing string, slice
|
||||
// or *array X between optional integer bounds Low and High.
|
||||
//
|
||||
// Dynamically, this instruction panics if X evaluates to a nil *array
|
||||
// pointer.
|
||||
//
|
||||
// Type() returns string if the type of X was string, otherwise a
|
||||
// *types.Slice with the same element type as X.
|
||||
//
|
||||
// Example printed form:
|
||||
//
|
||||
// t1 = slice t0[1:]
|
||||
func (b Builder) Slice(x, low, high, max Expr) (ret Expr) {
|
||||
if debugInstr {
|
||||
log.Printf("Slice %v, %v, %v\n", x.impl, low.impl, high.impl)
|
||||
}
|
||||
prog := b.Prog
|
||||
pkg := b.Func.Pkg
|
||||
var nCap Expr
|
||||
var nEltSize Expr
|
||||
var base Expr
|
||||
if low.IsNil() {
|
||||
low = prog.IntVal(0, prog.Int())
|
||||
}
|
||||
switch t := x.raw.Type.Underlying().(type) {
|
||||
case *types.Basic:
|
||||
if t.Kind() != types.String {
|
||||
panic(fmt.Errorf("invalid operation: cannot slice %v", t))
|
||||
}
|
||||
if high.IsNil() {
|
||||
high = b.StringLen(x)
|
||||
}
|
||||
ret.Type = x.Type
|
||||
ret.impl = b.InlineCall(pkg.rtFunc("NewStringSlice"), x, low, high).impl
|
||||
return
|
||||
case *types.Slice:
|
||||
nEltSize = b.SizeOf(prog.Index(x.Type))
|
||||
nCap = b.SliceCap(x)
|
||||
if high.IsNil() {
|
||||
high = b.SliceCap(x)
|
||||
}
|
||||
ret.Type = x.Type
|
||||
base = b.SliceData(x)
|
||||
case *types.Pointer:
|
||||
telem := t.Elem()
|
||||
switch te := telem.Underlying().(type) {
|
||||
case *types.Array:
|
||||
elem := prog.rawType(te.Elem())
|
||||
ret.Type = prog.Slice(elem)
|
||||
nEltSize = b.SizeOf(elem)
|
||||
nCap = prog.IntVal(uint64(te.Len()), prog.Int())
|
||||
if high.IsNil() {
|
||||
high = nCap
|
||||
}
|
||||
base = x
|
||||
}
|
||||
}
|
||||
if max.IsNil() {
|
||||
max = nCap
|
||||
}
|
||||
ret.impl = b.InlineCall(pkg.rtFunc("NewSlice3"), base, nEltSize, nCap, low, high, max).impl
|
||||
return
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
|
||||
// The MakeMap instruction creates a new hash-table-based map object
|
||||
// and yields a value of kind map.
|
||||
//
|
||||
// t is a (possibly named) *types.Map.
|
||||
//
|
||||
// Example printed form:
|
||||
//
|
||||
// t1 = make map[string]int t0
|
||||
// t1 = make StringIntMap t0
|
||||
func (b Builder) MakeMap(t Type, nReserve Expr) (ret Expr) {
|
||||
if debugInstr {
|
||||
log.Printf("MakeMap %v, %v\n", t.RawType(), nReserve.impl)
|
||||
}
|
||||
pkg := b.Func.Pkg
|
||||
ret.Type = t
|
||||
ret.impl = b.InlineCall(pkg.rtFunc("MakeSmallMap")).impl
|
||||
// TODO(xsw): nReserve
|
||||
return
|
||||
}
|
||||
|
||||
// The MakeSlice instruction yields a slice of length Len backed by a
|
||||
// newly allocated array of length Cap.
|
||||
//
|
||||
// Both Len and Cap must be non-nil Values of integer type.
|
||||
//
|
||||
// (Alloc(types.Array) followed by Slice will not suffice because
|
||||
// Alloc can only create arrays of constant length.)
|
||||
//
|
||||
// Type() returns a (possibly named) *types.Slice.
|
||||
//
|
||||
// Example printed form:
|
||||
//
|
||||
// t1 = make []string 1:int t0
|
||||
// t1 = make StringSlice 1:int t0
|
||||
func (b Builder) MakeSlice(t Type, len, cap Expr) (ret Expr) {
|
||||
if debugInstr {
|
||||
log.Printf("MakeSlice %v, %v, %v\n", t.RawType(), len.impl, cap.impl)
|
||||
}
|
||||
pkg := b.Func.Pkg
|
||||
if cap.IsNil() {
|
||||
cap = len
|
||||
}
|
||||
elemSize := b.SizeOf(b.Prog.Index(t))
|
||||
size := b.BinOp(token.MUL, cap, elemSize)
|
||||
ptr := b.InlineCall(pkg.rtFunc("AllocZ"), size)
|
||||
ret.impl = b.InlineCall(pkg.rtFunc("NewSlice"), ptr, len, cap).impl
|
||||
ret.Type = t
|
||||
return
|
||||
}
|
||||
|
||||
// -----------------------------------------------------------------------------
|
||||
Reference in New Issue
Block a user