/* * Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package reflect import ( "errors" "math" "unsafe" "github.com/goplus/llgo/c/bitcast" "github.com/goplus/llgo/internal/abi" "github.com/goplus/llgo/internal/runtime" "github.com/goplus/llgo/internal/runtime/goarch" "github.com/goplus/llgo/x/ffi" ) // Value is the reflection interface to a Go value. // // Not all methods apply to all kinds of values. Restrictions, // if any, are noted in the documentation for each method. // Use the Kind method to find out the kind of value before // calling kind-specific methods. Calling a method // inappropriate to the kind of type causes a run time panic. // // The zero Value represents no value. // Its IsValid method returns false, its Kind method returns Invalid, // its String method returns "", and all other methods panic. // Most functions and methods never return an invalid value. // If one does, its documentation states the conditions explicitly. // // A Value can be used concurrently by multiple goroutines provided that // the underlying Go value can be used concurrently for the equivalent // direct operations. // // To compare two Values, compare the results of the Interface method. // Using == on two Values does not compare the underlying values // they represent. type Value struct { // typ_ holds the type of the value represented by a Value. // Access using the typ method to avoid escape of v. typ_ *abi.Type // Pointer-valued data or, if flagIndir is set, pointer to data. // Valid when either flagIndir is set or typ.pointers() is true. ptr unsafe.Pointer // flag holds metadata about the value. // // The lowest five bits give the Kind of the value, mirroring typ.Kind(). // // The next set of bits are flag bits: // - flagStickyRO: obtained via unexported not embedded field, so read-only // - flagEmbedRO: obtained via unexported embedded field, so read-only // - flagIndir: val holds a pointer to the data // - flagAddr: v.CanAddr is true (implies flagIndir and ptr is non-nil) // - flagMethod: v is a method value. // If ifaceIndir(typ), code can assume that flagIndir is set. // // The remaining 22+ bits give a method number for method values. // If flag.kind() != Func, code can assume that flagMethod is unset. flag // A method value represents a curried method invocation // like r.Read for some receiver r. The typ+val+flag bits describe // the receiver r, but the flag's Kind bits say Func (methods are // functions), and the top bits of the flag give the method number // in r's type's method table. } type flag uintptr const ( flagKindWidth = 5 // there are 27 kinds flagKindMask flag = 1< len(prefix) && name[:len(prefix)] == prefix { methodName := name[len(prefix):] if len(methodName) > 0 && 'A' <= methodName[0] && methodName[0] <= 'Z' { return name } } } */ return "unknown method" } // emptyInterface is the header for an interface{} value. type emptyInterface struct { typ *abi.Type word unsafe.Pointer } // nonEmptyInterface is the header for an interface value with methods. type nonEmptyInterface struct { // see ../runtime/iface.go:/Itab itab *struct { ityp *abi.Type // static interface type typ *abi.Type // dynamic concrete type hash uint32 // copy of typ.hash _ [4]byte fun [100000]unsafe.Pointer // method table } word unsafe.Pointer } // mustBe panics if f's kind is not expected. // Making this a method on flag instead of on Value // (and embedding flag in Value) means that we can write // the very clear v.mustBe(Bool) and have it compile into // v.flag.mustBe(Bool), which will only bother to copy the // single important word for the receiver. func (f flag) mustBe(expected Kind) { // TODO(mvdan): use f.kind() again once mid-stack inlining gets better if Kind(f&flagKindMask) != expected { panic(&ValueError{valueMethodName(), f.kind()}) } } // mustBeExported panics if f records that the value was obtained using // an unexported field. func (f flag) mustBeExported() { if f == 0 || f&flagRO != 0 { f.mustBeExportedSlow() } } func (f flag) mustBeExportedSlow() { if f == 0 { panic(&ValueError{valueMethodName(), Invalid}) } if f&flagRO != 0 { panic("reflect: " + valueMethodName() + " using value obtained using unexported field") } } // mustBeAssignable panics if f records that the value is not assignable, // which is to say that either it was obtained using an unexported field // or it is not addressable. func (f flag) mustBeAssignable() { if f&flagRO != 0 || f&flagAddr == 0 { f.mustBeAssignableSlow() } } func (f flag) mustBeAssignableSlow() { if f == 0 { panic(&ValueError{valueMethodName(), Invalid}) } // Assignable if addressable and not read-only. if f&flagRO != 0 { panic("reflect: " + valueMethodName() + " using value obtained using unexported field") } if f&flagAddr == 0 { panic("reflect: " + valueMethodName() + " using unaddressable value") } } // Addr returns a pointer value representing the address of v. // It panics if CanAddr() returns false. // Addr is typically used to obtain a pointer to a struct field // or slice element in order to call a method that requires a // pointer receiver. func (v Value) Addr() Value { if v.flag&flagAddr == 0 { panic("reflect.Value.Addr of unaddressable value") } // Preserve flagRO instead of using v.flag.ro() so that // v.Addr().Elem() is equivalent to v (#32772) fl := v.flag & flagRO return Value{ptrTo(v.typ()), v.ptr, fl | flag(Pointer)} } // Bool returns v's underlying value. // It panics if v's kind is not Bool. func (v Value) Bool() bool { // panicNotBool is split out to keep Bool inlineable. if v.kind() != Bool { v.panicNotBool() } if v.flag&flagAddr != 0 { return *(*bool)(v.ptr) } return uintptr(v.ptr) != 0 } func (v Value) panicNotBool() { v.mustBe(Bool) } var bytesType = rtypeOf(([]byte)(nil)) // Bytes returns v's underlying value. // It panics if v's underlying value is not a slice of bytes or // an addressable array of bytes. func (v Value) Bytes() []byte { // bytesSlow is split out to keep Bytes inlineable for unnamed []byte. if v.typ_ == bytesType { // ok to use v.typ_ directly as comparison doesn't cause escape return *(*[]byte)(v.ptr) } return v.bytesSlow() } func (v Value) bytesSlow() []byte { switch v.kind() { case Slice: if v.typ().Elem().Kind() != abi.Uint8 { panic("reflect.Value.Bytes of non-byte slice") } // Slice is always bigger than a word; assume flagIndir. return *(*[]byte)(v.ptr) case Array: if v.typ().Elem().Kind() != abi.Uint8 { panic("reflect.Value.Bytes of non-byte array") } if !v.CanAddr() { panic("reflect.Value.Bytes of unaddressable byte array") } p := (*byte)(v.ptr) n := int((*arrayType)(unsafe.Pointer(v.typ())).Len) return unsafe.Slice(p, n) } panic(&ValueError{"reflect.Value.Bytes", v.kind()}) } // runes returns v's underlying value. // It panics if v's underlying value is not a slice of runes (int32s). func (v Value) runes() []rune { v.mustBe(Slice) if v.typ().Elem().Kind() != abi.Int32 { panic("reflect.Value.Bytes of non-rune slice") } // Slice is always bigger than a word; assume flagIndir. return *(*[]rune)(v.ptr) } // CanAddr reports whether the value's address can be obtained with Addr. // Such values are called addressable. A value is addressable if it is // an element of a slice, an element of an addressable array, // a field of an addressable struct, or the result of dereferencing a pointer. // If CanAddr returns false, calling Addr will panic. func (v Value) CanAddr() bool { return v.flag&flagAddr != 0 } // CanSet reports whether the value of v can be changed. // A Value can be changed only if it is addressable and was not // obtained by the use of unexported struct fields. // If CanSet returns false, calling Set or any type-specific // setter (e.g., SetBool, SetInt) will panic. func (v Value) CanSet() bool { return v.flag&(flagAddr|flagRO) == flagAddr } // Cap returns v's capacity. // It panics if v's Kind is not Array, Chan, Slice or pointer to Array. func (v Value) Cap() int { // capNonSlice is split out to keep Cap inlineable for slice kinds. if v.kind() == Slice { return (*unsafeheaderSlice)(v.ptr).Cap } return v.capNonSlice() } func (v Value) capNonSlice() int { k := v.kind() switch k { case Array: return v.typ().Len() case Chan: return chancap(v.pointer()) case Ptr: if v.typ().Elem().Kind() == abi.Array { return v.typ().Elem().Len() } panic("reflect: call of reflect.Value.Cap on ptr to non-array Value") } panic(&ValueError{"reflect.Value.Cap", v.kind()}) } // Close closes the channel v. // It panics if v's Kind is not Chan. func (v Value) Close() { /* TODO(xsw): v.mustBe(Chan) v.mustBeExported() chanclose(v.pointer()) */ panic("todo: reflect.Value.Close") } // CanComplex reports whether Complex can be used without panicking. func (v Value) CanComplex() bool { switch v.kind() { case Complex64, Complex128: return true default: return false } } // Complex returns v's underlying value, as a complex128. // It panics if v's Kind is not Complex64 or Complex128 func (v Value) Complex() complex128 { k := v.kind() switch k { case Complex64: return complex128(*(*complex64)(v.ptr)) case Complex128: return *(*complex128)(v.ptr) } panic(&ValueError{"reflect.Value.Complex", v.kind()}) } // Elem returns the value that the interface v contains // or that the pointer v points to. // It panics if v's Kind is not Interface or Pointer. // It returns the zero Value if v is nil. func (v Value) Elem() Value { k := v.kind() switch k { case Interface: var eface any if v.typ().NumMethod() == 0 { eface = *(*any)(v.ptr) } else { eface = (any)(*(*interface { M() })(v.ptr)) } x := unpackEface(eface) if x.flag != 0 { x.flag |= v.flag.ro() } return x case Pointer: ptr := v.ptr if v.flag&flagIndir != 0 { if ifaceIndir(v.typ()) { // This is a pointer to a not-in-heap object. ptr points to a uintptr // in the heap. That uintptr is the address of a not-in-heap object. // In general, pointers to not-in-heap objects can be total junk. // But Elem() is asking to dereference it, so the user has asserted // that at least it is a valid pointer (not just an integer stored in // a pointer slot). So let's check, to make sure that it isn't a pointer // that the runtime will crash on if it sees it during GC or write barriers. // Since it is a not-in-heap pointer, all pointers to the heap are // forbidden! That makes the test pretty easy. // See issue 48399. // if !verifyNotInHeapPtr(*(*uintptr)(ptr)) { // panic("reflect: reflect.Value.Elem on an invalid notinheap pointer") // } } ptr = *(*unsafe.Pointer)(ptr) } // The returned value's address is v's value. if ptr == nil { return Value{} } tt := (*ptrType)(unsafe.Pointer(v.typ())) typ := tt.Elem fl := v.flag&flagRO | flagIndir | flagAddr fl |= flag(typ.Kind()) return Value{typ, ptr, fl} } panic(&ValueError{"reflect.Value.Elem", v.kind()}) } func ifaceIndir(typ *abi.Type) bool { return typ.IfaceIndir() } // Field returns the i'th field of the struct v. // It panics if v's Kind is not Struct or i is out of range. func (v Value) Field(i int) Value { if v.kind() != Struct { panic(&ValueError{"reflect.Value.Field", v.kind()}) } tt := (*structType)(unsafe.Pointer(v.typ())) if uint(i) >= uint(len(tt.Fields)) { panic("reflect: Field index out of range") } field := &tt.Fields[i] typ := field.Typ // Inherit permission bits from v, but clear flagEmbedRO. fl := v.flag&(flagStickyRO|flagIndir|flagAddr) | flag(typ.Kind()) // Using an unexported field forces flagRO. if !field.Exported() { if field.Embedded() { fl |= flagEmbedRO } else { fl |= flagStickyRO } } // Either flagIndir is set and v.ptr points at struct, // or flagIndir is not set and v.ptr is the actual struct data. // In the former case, we want v.ptr + offset. // In the latter case, we must have field.offset = 0, // so v.ptr + field.offset is still the correct address. ptr := add(v.ptr, field.Offset, "same as non-reflect &v.field") return Value{typ, ptr, fl} } // FieldByIndex returns the nested field corresponding to index. // It panics if evaluation requires stepping through a nil // pointer or a field that is not a struct. func (v Value) FieldByIndex(index []int) Value { if len(index) == 1 { return v.Field(index[0]) } v.mustBe(Struct) for i, x := range index { if i > 0 { if v.Kind() == Pointer && v.typ().Elem().Kind() == abi.Struct { if v.IsNil() { panic("reflect: indirection through nil pointer to embedded struct") } v = v.Elem() } } v = v.Field(x) } return v } // FieldByIndexErr returns the nested field corresponding to index. // It returns an error if evaluation requires stepping through a nil // pointer, but panics if it must step through a field that // is not a struct. func (v Value) FieldByIndexErr(index []int) (Value, error) { if len(index) == 1 { return v.Field(index[0]), nil } v.mustBe(Struct) for i, x := range index { if i > 0 { if v.Kind() == Ptr && v.typ().Elem().Kind() == abi.Struct { if v.IsNil() { return Value{}, errors.New("reflect: indirection through nil pointer to embedded struct field " + nameFor(v.typ().Elem())) } v = v.Elem() } } v = v.Field(x) } return v, nil } // FieldByName returns the struct field with the given name. // It returns the zero Value if no field was found. // It panics if v's Kind is not struct. func (v Value) FieldByName(name string) Value { v.mustBe(Struct) if f, ok := toRType(v.typ()).FieldByName(name); ok { return v.FieldByIndex(f.Index) } return Value{} } // FieldByNameFunc returns the struct field with a name // that satisfies the match function. // It panics if v's Kind is not struct. // It returns the zero Value if no field was found. func (v Value) FieldByNameFunc(match func(string) bool) Value { if f, ok := toRType(v.typ()).FieldByNameFunc(match); ok { return v.FieldByIndex(f.Index) } return Value{} } // CanFloat reports whether Float can be used without panicking. func (v Value) CanFloat() bool { switch v.kind() { case Float32, Float64: return true default: return false } } // Float returns v's underlying value, as a float64. // It panics if v's Kind is not Float32 or Float64 func (v Value) Float() float64 { k := v.kind() if v.flag&flagAddr != 0 { switch k { case Float32: return float64(*(*float32)(v.ptr)) case Float64: return *(*float64)(v.ptr) } } else { switch k { case Float32: return float64(bitcast.ToFloat32(uintptr(v.ptr))) case Float64: return bitcast.ToFloat64(uintptr(v.ptr)) } } panic(&ValueError{"reflect.Value.Float", v.kind()}) } var uint8Type = rtypeOf(uint8(0)) // Index returns v's i'th element. // It panics if v's Kind is not Array, Slice, or String or i is out of range. func (v Value) Index(i int) Value { switch v.kind() { case Slice: // Element flag same as Elem of Pointer. // Addressable, indirect, possibly read-only. s := (*unsafeheaderSlice)(v.ptr) if uint(i) >= uint(s.Len) { panic("reflect: slice index out of range") } tt := (*sliceType)(unsafe.Pointer(v.typ())) typ := tt.Elem val := arrayAt(s.Data, i, typ.Size(), "i < s.Len") fl := flagAddr | flagIndir | v.flag.ro() | flag(typ.Kind()) return Value{typ, val, fl} case String: s := (*unsafeheaderString)(v.ptr) if uint(i) >= uint(s.Len) { panic("reflect: string index out of range") } p := arrayAt(s.Data, i, 1, "i < s.Len") fl := v.flag.ro() | flag(Uint8) | flagIndir return Value{uint8Type, p, fl} case Array: tt := (*arrayType)(unsafe.Pointer(v.typ())) if uint(i) >= uint(tt.Len) { panic("reflect: array index out of range") } typ := tt.Elem offset := uintptr(i) * typ.Size() // Either flagIndir is set and v.ptr points at array, // or flagIndir is not set and v.ptr is the actual array data. // In the former case, we want v.ptr + offset. // In the latter case, we must be doing Index(0), so offset = 0, // so v.ptr + offset is still the correct address. val := add(v.ptr, offset, "same as &v[i], i < tt.len") fl := v.flag&(flagIndir|flagAddr) | v.flag.ro() | flag(typ.Kind()) // bits same as overall array return Value{typ, val, fl} } panic(&ValueError{"reflect.Value.Index", v.kind()}) } // CanInt reports whether Int can be used without panicking. func (v Value) CanInt() bool { switch v.kind() { case Int, Int8, Int16, Int32, Int64: return true default: return false } } // Int returns v's underlying value, as an int64. // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64. func (v Value) Int() int64 { f := v.flag k := f.kind() p := v.ptr if f&flagAddr != 0 { switch k { case Int: return int64(*(*int)(p)) case Int8: return int64(*(*int8)(p)) case Int16: return int64(*(*int16)(p)) case Int32: return int64(*(*int32)(p)) case Int64: return *(*int64)(p) } } else if unsafe.Sizeof(uintptr(0)) == 8 { if k >= Int && k <= Int64 { return int64(uintptr(p)) } } else { if k >= Int && k <= Int32 { return int64(uintptr(p)) } if k == Int64 { return *(*int64)(p) } } panic(&ValueError{"reflect.Value.Int", v.kind()}) } // CanInterface reports whether Interface can be used without panicking. func (v Value) CanInterface() bool { if v.flag == 0 { panic(&ValueError{"reflect.Value.CanInterface", Invalid}) } return v.flag&flagRO == 0 } // Interface returns v's current value as an interface{}. // It is equivalent to: // // var i interface{} = (v's underlying value) // // It panics if the Value was obtained by accessing // unexported struct fields. func (v Value) Interface() (i any) { return valueInterface(v, true) } func valueInterface(v Value, safe bool) any { if v.flag == 0 { panic(&ValueError{"reflect.Value.Interface", Invalid}) } if safe && v.flag&flagRO != 0 { // Do not allow access to unexported values via Interface, // because they might be pointers that should not be // writable or methods or function that should not be callable. panic("reflect.Value.Interface: cannot return value obtained from unexported field or method") } if v.flag&flagMethod != 0 { v = makeMethodValue("Interface", v) } if v.kind() == Interface { // Special case: return the element inside the interface. // Empty interface has one layout, all interfaces with // methods have a second layout. if v.NumMethod() == 0 { return *(*any)(v.ptr) } return *(*interface { M() })(v.ptr) } // TODO: pass safe to packEface so we don't need to copy if safe==true? return packEface(v) } // InterfaceData returns a pair of unspecified uintptr values. // It panics if v's Kind is not Interface. // // In earlier versions of Go, this function returned the interface's // value as a uintptr pair. As of Go 1.4, the implementation of // interface values precludes any defined use of InterfaceData. // // Deprecated: The memory representation of interface values is not // compatible with InterfaceData. func (v Value) InterfaceData() [2]uintptr { v.mustBe(Interface) // The compiler loses track as it converts to uintptr. Force escape. escapes(v.ptr) // We treat this as a read operation, so we allow // it even for unexported data, because the caller // has to import "unsafe" to turn it into something // that can be abused. // Interface value is always bigger than a word; assume flagIndir. return *(*[2]uintptr)(v.ptr) } // IsNil reports whether its argument v is nil. The argument must be // a chan, func, interface, map, pointer, or slice value; if it is // not, IsNil panics. Note that IsNil is not always equivalent to a // regular comparison with nil in Go. For example, if v was created // by calling ValueOf with an uninitialized interface variable i, // i==nil will be true but v.IsNil will panic as v will be the zero // Value. func (v Value) IsNil() bool { k := v.kind() switch k { case Chan, Func, Map, Pointer, UnsafePointer: if v.flag&flagMethod != 0 { return false } ptr := v.ptr if v.flag&flagIndir != 0 { ptr = *(*unsafe.Pointer)(ptr) } return ptr == nil case Interface, Slice: // Both interface and slice are nil if first word is 0. // Both are always bigger than a word; assume flagIndir. return *(*unsafe.Pointer)(v.ptr) == nil } panic(&ValueError{"reflect.Value.IsNil", v.kind()}) } // IsValid reports whether v represents a value. // It returns false if v is the zero Value. // If IsValid returns false, all other methods except String panic. // Most functions and methods never return an invalid Value. // If one does, its documentation states the conditions explicitly. func (v Value) IsValid() bool { return v.flag != 0 } // IsZero reports whether v is the zero value for its type. // It panics if the argument is invalid. func (v Value) IsZero() bool { switch v.kind() { case Bool: return !v.Bool() case Int, Int8, Int16, Int32, Int64: return v.Int() == 0 case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr: return v.Uint() == 0 case Float32, Float64: return math.Float64bits(v.Float()) == 0 case Complex64, Complex128: c := v.Complex() return math.Float64bits(real(c)) == 0 && math.Float64bits(imag(c)) == 0 case Array: // If the type is comparable, then compare directly with zero. if v.typ().Equal != nil && v.typ().Size() <= maxZero { if v.flag&flagIndir == 0 { return v.ptr == nil } // v.ptr doesn't escape, as Equal functions are compiler generated // and never escape. The escape analysis doesn't know, as it is a // function pointer call. return v.typ().Equal(noescape(v.ptr), unsafe.Pointer(&zeroVal[0])) } n := v.Len() for i := 0; i < n; i++ { if !v.Index(i).IsZero() { return false } } return true case Chan, Func, Interface, Map, Pointer, Slice, UnsafePointer: return v.IsNil() case String: return v.Len() == 0 case Struct: // If the type is comparable, then compare directly with zero. if v.typ().Equal != nil && v.typ().Size() <= maxZero { if v.flag&flagIndir == 0 { return v.ptr == nil } // See noescape justification above. return v.typ().Equal(noescape(v.ptr), unsafe.Pointer(&zeroVal[0])) } n := v.NumField() for i := 0; i < n; i++ { if !v.Field(i).IsZero() { return false } } return true default: // This should never happen, but will act as a safeguard for later, // as a default value doesn't makes sense here. panic(&ValueError{"reflect.Value.IsZero", v.Kind()}) } } // SetZero sets v to be the zero value of v's type. // It panics if CanSet returns false. func (v Value) SetZero() { v.mustBeAssignable() switch v.kind() { case Bool: *(*bool)(v.ptr) = false case Int: *(*int)(v.ptr) = 0 case Int8: *(*int8)(v.ptr) = 0 case Int16: *(*int16)(v.ptr) = 0 case Int32: *(*int32)(v.ptr) = 0 case Int64: *(*int64)(v.ptr) = 0 case Uint: *(*uint)(v.ptr) = 0 case Uint8: *(*uint8)(v.ptr) = 0 case Uint16: *(*uint16)(v.ptr) = 0 case Uint32: *(*uint32)(v.ptr) = 0 case Uint64: *(*uint64)(v.ptr) = 0 case Uintptr: *(*uintptr)(v.ptr) = 0 case Float32: *(*float32)(v.ptr) = 0 case Float64: *(*float64)(v.ptr) = 0 case Complex64: *(*complex64)(v.ptr) = 0 case Complex128: *(*complex128)(v.ptr) = 0 case String: *(*string)(v.ptr) = "" case Slice: *(*unsafeheaderSlice)(v.ptr) = unsafeheaderSlice{} case Interface: *(*[2]unsafe.Pointer)(v.ptr) = [2]unsafe.Pointer{} case Chan, Func, Map, Pointer, UnsafePointer: *(*unsafe.Pointer)(v.ptr) = nil case Array, Struct: typedmemclr(v.typ(), v.ptr) default: // This should never happen, but will act as a safeguard for later, // as a default value doesn't makes sense here. panic(&ValueError{"reflect.Value.SetZero", v.Kind()}) } } // Kind returns v's Kind. // If v is the zero Value (IsValid returns false), Kind returns Invalid. func (v Value) Kind() Kind { return v.kind() } // Len returns v's length. // It panics if v's Kind is not Array, Chan, Map, Slice, String, or pointer to Array. func (v Value) Len() int { // lenNonSlice is split out to keep Len inlineable for slice kinds. if v.kind() == Slice { return (*unsafeheaderSlice)(v.ptr).Len } return v.lenNonSlice() } func (v Value) lenNonSlice() int { switch k := v.kind(); k { case Array: tt := (*arrayType)(unsafe.Pointer(v.typ())) return int(tt.Len) case Chan: return chanlen(v.pointer()) case Map: return maplen(v.pointer()) case String: // String is bigger than a word; assume flagIndir. return (*unsafeheaderString)(v.ptr).Len case Ptr: if v.typ().Elem().Kind() == abi.Array { return v.typ().Elem().Len() } panic("reflect: call of reflect.Value.Len on ptr to non-array Value") } panic(&ValueError{"reflect.Value.Len", v.kind()}) } // Pointer returns v's value as a uintptr. // It panics if v's Kind is not Chan, Func, Map, Pointer, Slice, or UnsafePointer. // // If v's Kind is Func, the returned pointer is an underlying // code pointer, but not necessarily enough to identify a // single function uniquely. The only guarantee is that the // result is zero if and only if v is a nil func Value. // // If v's Kind is Slice, the returned pointer is to the first // element of the slice. If the slice is nil the returned value // is 0. If the slice is empty but non-nil the return value is non-zero. // // It's preferred to use uintptr(Value.UnsafePointer()) to get the equivalent result. func (v Value) Pointer() uintptr { // The compiler loses track as it converts to uintptr. Force escape. escapes(v.ptr) k := v.kind() switch k { case Pointer: if v.typ().PtrBytes == 0 { val := *(*uintptr)(v.ptr) // Since it is a not-in-heap pointer, all pointers to the heap are // forbidden! See comment in Value.Elem and issue #48399. // if !verifyNotInHeapPtr(val) { // panic("reflect: reflect.Value.Pointer on an invalid notinheap pointer") // } return val } fallthrough case Chan, Map, UnsafePointer: return uintptr(v.pointer()) case Func: if v.flag&flagMethod != 0 { // As the doc comment says, the returned pointer is an // underlying code pointer but not necessarily enough to // identify a single function uniquely. All method expressions // created via reflect have the same underlying code pointer, // so their Pointers are equal. The function used here must // match the one used in makeMethodValue. // return methodValueCallCodePtr() _, _, fn := methodReceiver("unsafePointer", v, int(v.flag)>>flagMethodShift) return uintptr(fn) } p := v.pointer() // Non-nil func value points at data block. // First word of data block is actual code. if p != nil { p = *(*unsafe.Pointer)(p) } return uintptr(p) case Slice: return uintptr((*unsafeheaderSlice)(v.ptr).Data) } panic(&ValueError{"reflect.Value.Pointer", v.kind()}) } // Recv receives and returns a value from the channel v. // It panics if v's Kind is not Chan. // The receive blocks until a value is ready. // The boolean value ok is true if the value x corresponds to a send // on the channel, false if it is a zero value received because the channel is closed. func (v Value) Recv() (x Value, ok bool) { v.mustBe(Chan) v.mustBeExported() return v.recv(false) } // internal recv, possibly non-blocking (nb). // v is known to be a channel. func (v Value) recv(nb bool) (val Value, ok bool) { /* TODO(xsw): tt := (*chanType)(unsafe.Pointer(v.typ())) if ChanDir(tt.Dir)&RecvDir == 0 { panic("reflect: recv on send-only channel") } t := tt.Elem val = Value{t, nil, flag(t.Kind())} var p unsafe.Pointer if ifaceIndir(t) { p = unsafe_New(t) val.ptr = p val.flag |= flagIndir } else { p = unsafe.Pointer(&val.ptr) } selected, ok := chanrecv(v.pointer(), nb, p) if !selected { val = Value{} } return */ panic("todo: reflect.Value.recv") } // Send sends x on the channel v. // It panics if v's kind is not Chan or if x's type is not the same type as v's element type. // As in Go, x's value must be assignable to the channel's element type. func (v Value) Send(x Value) { v.mustBe(Chan) v.mustBeExported() v.send(x, false) } // internal send, possibly non-blocking. // v is known to be a channel. func (v Value) send(x Value, nb bool) (selected bool) { /* TODO(xsw): tt := (*chanType)(unsafe.Pointer(v.typ())) if ChanDir(tt.Dir)&SendDir == 0 { panic("reflect: send on recv-only channel") } x.mustBeExported() x = x.assignTo("reflect.Value.Send", tt.Elem, nil) var p unsafe.Pointer if x.flag&flagIndir != 0 { p = x.ptr } else { p = unsafe.Pointer(&x.ptr) } return chansend(v.pointer(), p, nb) */ panic("todo: reflect.Value.send") } // Set assigns x to the value v. // It panics if CanSet returns false. // As in Go, x's value must be assignable to v's type and // must not be derived from an unexported field. func (v Value) Set(x Value) { v.mustBeAssignable() x.mustBeExported() // do not let unexported x leak var target unsafe.Pointer if v.kind() == Interface { target = v.ptr } x = x.assignTo("reflect.Set", v.typ(), target) if x.flag&flagIndir != 0 { if x.ptr == unsafe.Pointer(&runtime.ZeroVal[0]) { typedmemclr(v.typ(), v.ptr) } else { typedmemmove(v.typ(), v.ptr, x.ptr) } } else { *(*unsafe.Pointer)(v.ptr) = x.ptr } } // SetBool sets v's underlying value. // It panics if v's Kind is not Bool or if CanSet() is false. func (v Value) SetBool(x bool) { v.mustBeAssignable() v.mustBe(Bool) *(*bool)(v.ptr) = x } // SetBytes sets v's underlying value. // It panics if v's underlying value is not a slice of bytes. func (v Value) SetBytes(x []byte) { v.mustBeAssignable() v.mustBe(Slice) if toRType(v.typ()).Elem().Kind() != Uint8 { // TODO add Elem method, fix mustBe(Slice) to return slice. panic("reflect.Value.SetBytes of non-byte slice") } *(*[]byte)(v.ptr) = x } // setRunes sets v's underlying value. // It panics if v's underlying value is not a slice of runes (int32s). func (v Value) setRunes(x []rune) { v.mustBeAssignable() v.mustBe(Slice) if v.typ().Elem().Kind() != abi.Int32 { panic("reflect.Value.setRunes of non-rune slice") } *(*[]rune)(v.ptr) = x } // SetComplex sets v's underlying value to x. // It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false. func (v Value) SetComplex(x complex128) { v.mustBeAssignable() switch k := v.kind(); k { default: panic(&ValueError{"reflect.Value.SetComplex", v.kind()}) case Complex64: *(*complex64)(v.ptr) = complex64(x) case Complex128: *(*complex128)(v.ptr) = x } } // SetFloat sets v's underlying value to x. // It panics if v's Kind is not Float32 or Float64, or if CanSet() is false. func (v Value) SetFloat(x float64) { v.mustBeAssignable() switch k := v.kind(); k { default: panic(&ValueError{"reflect.Value.SetFloat", v.kind()}) case Float32: *(*float32)(v.ptr) = float32(x) case Float64: *(*float64)(v.ptr) = x } } // SetInt sets v's underlying value to x. // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false. func (v Value) SetInt(x int64) { v.mustBeAssignable() switch k := v.kind(); k { default: panic(&ValueError{"reflect.Value.SetInt", v.kind()}) case Int: *(*int)(v.ptr) = int(x) case Int8: *(*int8)(v.ptr) = int8(x) case Int16: *(*int16)(v.ptr) = int16(x) case Int32: *(*int32)(v.ptr) = int32(x) case Int64: *(*int64)(v.ptr) = x } } // SetLen sets v's length to n. // It panics if v's Kind is not Slice or if n is negative or // greater than the capacity of the slice. func (v Value) SetLen(n int) { v.mustBeAssignable() v.mustBe(Slice) s := (*unsafeheaderSlice)(v.ptr) if uint(n) > uint(s.Cap) { panic("reflect: slice length out of range in SetLen") } s.Len = n } // SetCap sets v's capacity to n. // It panics if v's Kind is not Slice or if n is smaller than the length or // greater than the capacity of the slice. func (v Value) SetCap(n int) { v.mustBeAssignable() v.mustBe(Slice) s := (*unsafeheaderSlice)(v.ptr) if n < s.Len || n > s.Cap { panic("reflect: slice capacity out of range in SetCap") } s.Cap = n } // SetMapIndex sets the element associated with key in the map v to elem. // It panics if v's Kind is not Map. // If elem is the zero Value, SetMapIndex deletes the key from the map. // Otherwise if v holds a nil map, SetMapIndex will panic. // As in Go, key's elem must be assignable to the map's key type, // and elem's value must be assignable to the map's elem type. func (v Value) SetMapIndex(key, elem Value) { /* TODO(xsw): v.mustBe(Map) v.mustBeExported() key.mustBeExported() tt := (*mapType)(unsafe.Pointer(v.typ())) if (tt.Key == stringType || key.kind() == String) && tt.Key == key.typ() && tt.Elem.Size() <= maxValSize { k := *(*string)(key.ptr) if elem.typ() == nil { mapdelete_faststr(v.typ(), v.pointer(), k) return } elem.mustBeExported() elem = elem.assignTo("reflect.Value.SetMapIndex", tt.Elem, nil) var e unsafe.Pointer if elem.flag&flagIndir != 0 { e = elem.ptr } else { e = unsafe.Pointer(&elem.ptr) } mapassign_faststr(v.typ(), v.pointer(), k, e) return } key = key.assignTo("reflect.Value.SetMapIndex", tt.Key, nil) var k unsafe.Pointer if key.flag&flagIndir != 0 { k = key.ptr } else { k = unsafe.Pointer(&key.ptr) } if elem.typ() == nil { mapdelete(v.typ(), v.pointer(), k) return } elem.mustBeExported() elem = elem.assignTo("reflect.Value.SetMapIndex", tt.Elem, nil) var e unsafe.Pointer if elem.flag&flagIndir != 0 { e = elem.ptr } else { e = unsafe.Pointer(&elem.ptr) } mapassign(v.typ(), v.pointer(), k, e) */ panic("todo: reflect.Value.SetMapIndex") } // SetUint sets v's underlying value to x. // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false. func (v Value) SetUint(x uint64) { v.mustBeAssignable() switch k := v.kind(); k { default: panic(&ValueError{"reflect.Value.SetUint", v.kind()}) case Uint: *(*uint)(v.ptr) = uint(x) case Uint8: *(*uint8)(v.ptr) = uint8(x) case Uint16: *(*uint16)(v.ptr) = uint16(x) case Uint32: *(*uint32)(v.ptr) = uint32(x) case Uint64: *(*uint64)(v.ptr) = x case Uintptr: *(*uintptr)(v.ptr) = uintptr(x) } } // SetPointer sets the [unsafe.Pointer] value v to x. // It panics if v's Kind is not UnsafePointer. func (v Value) SetPointer(x unsafe.Pointer) { v.mustBeAssignable() v.mustBe(UnsafePointer) *(*unsafe.Pointer)(v.ptr) = x } // SetString sets v's underlying value to x. // It panics if v's Kind is not String or if CanSet() is false. func (v Value) SetString(x string) { v.mustBeAssignable() v.mustBe(String) *(*string)(v.ptr) = x } // Slice returns v[i:j]. // It panics if v's Kind is not Array, Slice or String, or if v is an unaddressable array, // or if the indexes are out of bounds. func (v Value) Slice(i, j int) Value { var ( cap int typ *sliceType base unsafe.Pointer ) switch kind := v.kind(); kind { default: panic(&ValueError{"reflect.Value.Slice", v.kind()}) case Array: if v.flag&flagAddr == 0 { panic("reflect.Value.Slice: slice of unaddressable array") } tt := (*arrayType)(unsafe.Pointer(v.typ())) cap = int(tt.Len) typ = (*sliceType)(unsafe.Pointer(tt.Slice)) base = v.ptr case Slice: typ = (*sliceType)(unsafe.Pointer(v.typ())) s := (*unsafeheaderSlice)(v.ptr) base = s.Data cap = s.Cap case String: s := (*unsafeheaderString)(v.ptr) if i < 0 || j < i || j > s.Len { panic("reflect.Value.Slice: string slice index out of bounds") } var t unsafeheaderString if i < s.Len { t = unsafeheaderString{Data: arrayAt(s.Data, i, 1, "i < s.Len"), Len: j - i} } return Value{v.typ(), unsafe.Pointer(&t), v.flag} } if i < 0 || j < i || j > cap { panic("reflect.Value.Slice: slice index out of bounds") } // Declare slice so that gc can see the base pointer in it. var x []unsafe.Pointer // Reinterpret as *unsafeheader.Slice to edit. s := (*unsafeheaderSlice)(unsafe.Pointer(&x)) s.Len = j - i s.Cap = cap - i if cap-i > 0 { s.Data = arrayAt(base, i, typ.Elem.Size(), "i < cap") } else { // do not advance pointer, to avoid pointing beyond end of slice s.Data = base } fl := v.flag.ro() | flagIndir | flag(Slice) return Value{typ.Common(), unsafe.Pointer(&x), fl} } // Slice3 is the 3-index form of the slice operation: it returns v[i:j:k]. // It panics if v's Kind is not Array or Slice, or if v is an unaddressable array, // or if the indexes are out of bounds. func (v Value) Slice3(i, j, k int) Value { var ( cap int typ *sliceType base unsafe.Pointer ) switch kind := v.kind(); kind { default: panic(&ValueError{"reflect.Value.Slice3", v.kind()}) case Array: if v.flag&flagAddr == 0 { panic("reflect.Value.Slice3: slice of unaddressable array") } tt := (*arrayType)(unsafe.Pointer(v.typ())) cap = int(tt.Len) typ = (*sliceType)(unsafe.Pointer(tt.Slice)) base = v.ptr case Slice: typ = (*sliceType)(unsafe.Pointer(v.typ())) s := (*unsafeheaderSlice)(v.ptr) base = s.Data cap = s.Cap } if i < 0 || j < i || k < j || k > cap { panic("reflect.Value.Slice3: slice index out of bounds") } // Declare slice so that the garbage collector // can see the base pointer in it. var x []unsafe.Pointer // Reinterpret as *unsafeheader.Slice to edit. s := (*unsafeheaderSlice)(unsafe.Pointer(&x)) s.Len = j - i s.Cap = k - i if k-i > 0 { s.Data = arrayAt(base, i, typ.Elem.Size(), "i < k <= cap") } else { // do not advance pointer, to avoid pointing beyond end of slice s.Data = base } fl := v.flag.ro() | flagIndir | flag(Slice) return Value{typ.Common(), unsafe.Pointer(&x), fl} } // String returns the string v's underlying value, as a string. // String is a special case because of Go's String method convention. // Unlike the other getters, it does not panic if v's Kind is not String. // Instead, it returns a string of the form "" where T is v's type. // The fmt package treats Values specially. It does not call their String // method implicitly but instead prints the concrete values they hold. func (v Value) String() string { // stringNonString is split out to keep String inlineable for string kinds. if v.kind() == String { return *(*string)(v.ptr) } return v.stringNonString() } func (v Value) stringNonString() string { if v.kind() == Invalid { return "" } // If you call String on a reflect.Value of other type, it's better to // print something than to panic. Useful in debugging. return "<" + v.Type().String() + " Value>" } // TryRecv attempts to receive a value from the channel v but will not block. // It panics if v's Kind is not Chan. // If the receive delivers a value, x is the transferred value and ok is true. // If the receive cannot finish without blocking, x is the zero Value and ok is false. // If the channel is closed, x is the zero value for the channel's element type and ok is false. func (v Value) TryRecv() (x Value, ok bool) { /* TODO(xsw): v.mustBe(Chan) v.mustBeExported() return v.recv(true) */ panic("todo: reflect.Value.TryRecv") } // TrySend attempts to send x on the channel v but will not block. // It panics if v's Kind is not Chan. // It reports whether the value was sent. // As in Go, x's value must be assignable to the channel's element type. func (v Value) TrySend(x Value) bool { /* TODO(xsw): v.mustBe(Chan) v.mustBeExported() return v.send(x, true) */ panic("todo: reflect.Value.TrySend") } // Type returns v's type. func (v Value) Type() Type { if v.flag != 0 && v.flag&flagMethod == 0 && !v.typ_.IsClosure() { return (*rtype)(unsafe.Pointer(v.typ_)) // inline of toRType(v.typ()), for own inlining in inline test } return v.typeSlow() } func (v Value) typeSlow() Type { if v.flag == 0 { panic(&ValueError{"reflect.Value.Type", Invalid}) } typ := v.typ() // closure func if v.typ_.IsClosure() { return toRType(&v.closureFunc().Type) } if v.flag&flagMethod == 0 { return toRType(v.typ()) } // Method value. // v.typ describes the receiver, not the method type. i := int(v.flag) >> flagMethodShift if v.typ().Kind() == abi.Interface { // Method on interface. tt := (*interfaceType)(unsafe.Pointer(typ)) if uint(i) >= uint(len(tt.Methods)) { panic("reflect: internal error: invalid method index") } m := &tt.Methods[i] return toRType(&m.Typ_.Type) } // Method on concrete type. ms := typ.ExportedMethods() if uint(i) >= uint(len(ms)) { panic("reflect: internal error: invalid method index") } m := ms[i] return toRType(&m.Mtyp_.Type) } // CanUint reports whether Uint can be used without panicking. func (v Value) CanUint() bool { switch v.kind() { case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr: return true default: return false } } // Uint returns v's underlying value, as a uint64. // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64. func (v Value) Uint() uint64 { f := v.flag k := v.kind() p := v.ptr if f&flagAddr != 0 { switch k { case Uint: return uint64(*(*uint)(p)) case Uint8: return uint64(*(*uint8)(p)) case Uint16: return uint64(*(*uint16)(p)) case Uint32: return uint64(*(*uint32)(p)) case Uint64: return *(*uint64)(p) case Uintptr: return uint64(*(*uintptr)(p)) } } else if unsafe.Sizeof(uintptr(0)) == 8 { if k >= Uint && k <= Uintptr { return uint64(uintptr(p)) } } else { if k >= Uint && k <= Uint32 { return uint64(uintptr(p)) } if k == Uint64 || k == Uintptr { return *(*uint64)(p) } } panic(&ValueError{"reflect.Value.Uint", v.kind()}) } // This prevents inlining Value.UnsafeAddr when -d=checkptr is enabled, // which ensures cmd/compile can recognize unsafe.Pointer(v.UnsafeAddr()) // and make an exception. // UnsafeAddr returns a pointer to v's data, as a uintptr. // It panics if v is not addressable. // // It's preferred to use uintptr(Value.Addr().UnsafePointer()) to get the equivalent result. func (v Value) UnsafeAddr() uintptr { if v.typ() == nil { panic(&ValueError{"reflect.Value.UnsafeAddr", Invalid}) } if v.flag&flagAddr == 0 { panic("reflect.Value.UnsafeAddr of unaddressable value") } return uintptr(v.ptr) } // UnsafePointer returns v's value as a [unsafe.Pointer]. // It panics if v's Kind is not Chan, Func, Map, Pointer, Slice, or UnsafePointer. // // If v's Kind is Func, the returned pointer is an underlying // code pointer, but not necessarily enough to identify a // single function uniquely. The only guarantee is that the // result is zero if and only if v is a nil func Value. // // If v's Kind is Slice, the returned pointer is to the first // element of the slice. If the slice is nil the returned value // is nil. If the slice is empty but non-nil the return value is non-nil. func (v Value) UnsafePointer() unsafe.Pointer { k := v.kind() switch k { case Pointer: if v.typ().PtrBytes == 0 { // Since it is a not-in-heap pointer, all pointers to the heap are // forbidden! See comment in Value.Elem and issue #48399. if !verifyNotInHeapPtr(*(*uintptr)(v.ptr)) { panic("reflect: reflect.Value.UnsafePointer on an invalid notinheap pointer") } return *(*unsafe.Pointer)(v.ptr) } fallthrough case Chan, Map, UnsafePointer: return v.pointer() case Func: if v.flag&flagMethod != 0 { // As the doc comment says, the returned pointer is an // underlying code pointer but not necessarily enough to // identify a single function uniquely. All method expressions // created via reflect have the same underlying code pointer, // so their Pointers are equal. The function used here must // match the one used in makeMethodValue. _, _, fn := methodReceiver("unsafePointer", v, int(v.flag)>>flagMethodShift) return fn } p := v.pointer() // Non-nil func value points at data block. // First word of data block is actual code. if p != nil { p = *(*unsafe.Pointer)(p) } return p case Slice: return (*unsafeheaderSlice)(v.ptr).Data } panic(&ValueError{"reflect.Value.UnsafePointer", v.kind()}) } //go:linkname unsafe_New github.com/goplus/llgo/internal/runtime.New func unsafe_New(*abi.Type) unsafe.Pointer //go:linkname unsafe_NewArray github.com/goplus/llgo/internal/runtime.NewArray func unsafe_NewArray(*abi.Type, int) unsafe.Pointer // ValueOf returns a new Value initialized to the concrete value // stored in the interface i. ValueOf(nil) returns the zero Value. func ValueOf(i any) Value { if i == nil { return Value{} } return unpackEface(i) } // arrayAt returns the i-th element of p, // an array whose elements are eltSize bytes wide. // The array pointed at by p must have at least i+1 elements: // it is invalid (but impossible to check here) to pass i >= len, // because then the result will point outside the array. // whySafe must explain why i < len. (Passing "i < len" is fine; // the benefit is to surface this assumption at the call site.) func arrayAt(p unsafe.Pointer, i int, eltSize uintptr, whySafe string) unsafe.Pointer { return add(p, uintptr(i)*eltSize, "i < len") } // Grow increases the slice's capacity, if necessary, to guarantee space for // another n elements. After Grow(n), at least n elements can be appended // to the slice without another allocation. // // It panics if v's Kind is not a Slice or if n is negative or too large to // allocate the memory. func (v Value) Grow(n int) { v.mustBeAssignable() v.mustBe(Slice) v.grow(n) } // grow is identical to Grow but does not check for assignability. func (v Value) grow(n int) { p := (*unsafeheaderSlice)(v.ptr) oldLen := p.Len switch { case n < 0: panic("reflect.Value.Grow: negative len") case oldLen+n < 0: panic("reflect.Value.Grow: slice overflow") case oldLen+n > p.Cap: t := v.typ().Elem() *p = growslice(*p, n, int(t.Size_)) p.Len = oldLen // set oldLen back } } // extendSlice extends a slice by n elements. // // Unlike Value.grow, which modifies the slice in place and // does not change the length of the slice in place, // extendSlice returns a new slice value with the length // incremented by the number of specified elements. func (v Value) extendSlice(n int) Value { v.mustBeExported() v.mustBe(Slice) // Shallow copy the slice header to avoid mutating the source slice. sh := *(*unsafeheaderSlice)(v.ptr) s := &sh v.ptr = unsafe.Pointer(s) v.flag = flagIndir | flag(Slice) // equivalent flag to MakeSlice v.grow(n) // fine to treat as assignable since we allocate a new slice header s.Len += n return v } // Append appends the values x to a slice s and returns the resulting slice. // As in Go, each x's value must be assignable to the slice's element type. func Append(s Value, x ...Value) Value { s.mustBe(Slice) n := s.Len() s = s.extendSlice(len(x)) for i, v := range x { s.Index(n + i).Set(v) } return s } // AppendSlice appends a slice t to a slice s and returns the resulting slice. // The slices s and t must have the same element type. func AppendSlice(s, t Value) Value { /* s.mustBe(Slice) t.mustBe(Slice) typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem()) ns := s.Len() nt := t.Len() s = s.extendSlice(nt) Copy(s.Slice(ns, ns+nt), t) return s */ panic("todo: reflect.AppendSlice") } // Zero returns a Value representing the zero value for the specified type. // The result is different from the zero value of the Value struct, // which represents no value at all. // For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0. // The returned value is neither addressable nor settable. func Zero(typ Type) Value { if typ == nil { panic("reflect: Zero(nil)") } t := &typ.(*rtype).t fl := flag(t.Kind()) if t.IfaceIndir() { var p unsafe.Pointer if t.Size() <= maxZero { p = unsafe.Pointer(&runtime.ZeroVal[0]) } else { p = unsafe_New(t) } return Value{t, p, fl | flagIndir} } return Value{t, nil, fl} } // TODO(xsw): check this // must match declarations in runtime/map.go. const maxZero = runtime.MaxZero //go:linkname zeroVal runtime.ZeroVal var zeroVal [maxZero]byte // New returns a Value representing a pointer to a new zero value // for the specified type. That is, the returned Value's Type is PointerTo(typ). func New(typ Type) Value { if typ == nil { panic("reflect: New(nil)") } t := &typ.(*rtype).t pt := ptrTo(t) if ifaceIndir(pt) { // This is a pointer to a not-in-heap type. panic("reflect: New of type that may not be allocated in heap (possibly undefined cgo C type)") } ptr := unsafe_New(t) fl := flag(Pointer) return Value{pt, ptr, fl} } // NewAt returns a Value representing a pointer to a value of the // specified type, using p as that pointer. func NewAt(typ Type, p unsafe.Pointer) Value { fl := flag(Pointer) t := typ.(*rtype) return Value{t.ptrTo(), p, fl} } // assignTo returns a value v that can be assigned directly to dst. // It panics if v is not assignable to dst. // For a conversion to an interface type, target, if not nil, // is a suggested scratch space to use. // target must be initialized memory (or nil). func (v Value) assignTo(context string, dst *abi.Type, target unsafe.Pointer) Value { if v.flag&flagMethod != 0 { v = makeMethodValue(context, v) } switch { case directlyAssignable(dst, v.typ()): // Overwrite type so that they match. // Same memory layout, so no harm done. fl := v.flag&(flagAddr|flagIndir) | v.flag.ro() fl |= flag(dst.Kind()) return Value{dst, v.ptr, fl} case implements(dst, v.typ()): if v.Kind() == Interface && v.IsNil() { // A nil ReadWriter passed to nil Reader is OK, // but using ifaceE2I below will panic. // Avoid the panic by returning a nil dst (e.g., Reader) explicitly. return Value{dst, nil, flag(Interface)} } /* TODO(xsw): x := valueInterface(v, false) if target == nil { target = unsafe_New(dst) } if dst.NumMethod() == 0 { *(*any)(target) = x } else { ifaceE2I(dst, x, target) } return Value{dst, target, flagIndir | flag(Interface)} */ } // Failed. // TODO(xsw): // panic(context + ": value of type " + stringFor(v.typ()) + " is not assignable to type " + stringFor(dst)) panic("todo: reflect.Value.assignTo") } // memmove copies size bytes to dst from src. No write barriers are used. // //go:linkname memmove C.memmove func memmove(dst, src unsafe.Pointer, size uintptr) // typedmemmove copies a value of type t to dst from src. // //go:linkname typedmemmove github.com/goplus/llgo/internal/runtime.Typedmemmove func typedmemmove(t *abi.Type, dst, src unsafe.Pointer) // typedmemclr zeros the value at ptr of type t. // //go:linkname typedmemclr github.com/goplus/llgo/internal/runtime.Typedmemclr func typedmemclr(t *abi.Type, ptr unsafe.Pointer) /* TODO(xsw): // typedmemclrpartial is like typedmemclr but assumes that // dst points off bytes into the value and only clears size bytes. // //go:noescape func typedmemclrpartial(t *abi.Type, ptr unsafe.Pointer, off, size uintptr) // typedslicecopy copies a slice of elemType values from src to dst, // returning the number of elements copied. // //go:noescape func typedslicecopy(t *abi.Type, dst, src unsafeheaderSlice) int // typedarrayclear zeroes the value at ptr of an array of elemType, // only clears len elem. // //go:noescape func typedarrayclear(elemType *abi.Type, ptr unsafe.Pointer, len int) //go:noescape func typehash(t *abi.Type, p unsafe.Pointer, h uintptr) uintptr */ func verifyNotInHeapPtr(p uintptr) bool { return true } //go:linkname growslice github.com/goplus/llgo/internal/runtime.GrowSlice func growslice(src unsafeheaderSlice, num, etSize int) unsafeheaderSlice // Dummy annotation marking that the value x escapes, // for use in cases where the reflect code is so clever that // the compiler cannot follow. func escapes(x any) { if dummy.b { dummy.x = x } } var dummy struct { b bool x any } // Dummy annotation marking that the content of value x // escapes (i.e. modeling roughly heap=*x), // for use in cases where the reflect code is so clever that // the compiler cannot follow. func contentEscapes(x unsafe.Pointer) { if dummy.b { escapes(*(*any)(x)) // the dereference may not always be safe, but never executed } } //go:nosplit func noescape(p unsafe.Pointer) unsafe.Pointer { x := uintptr(p) return unsafe.Pointer(x ^ 0) } // Method returns a function value corresponding to v's i'th method. // The arguments to a Call on the returned function should not include // a receiver; the returned function will always use v as the receiver. // Method panics if i is out of range or if v is a nil interface value. func (v Value) Method(i int) Value { if v.typ() == nil { panic(&ValueError{"reflect.Value.Method", Invalid}) } if v.flag&flagMethod != 0 || uint(i) >= uint(toRType(v.typ()).NumMethod()) { panic("reflect: Method index out of range") } if v.typ().Kind() == abi.Interface && v.IsNil() { panic("reflect: Method on nil interface value") } fl := v.flag.ro() | (v.flag & flagIndir) fl |= flag(Func) fl |= flag(i)<= abi.Bool && kind <= abi.Complex128: return ffi.Typ[kind] case kind == abi.Pointer || kind == abi.UnsafePointer: return ffi.TypePointer } panic("unsupport type " + typ.String()) } func toFFISig(tin, tout []*abi.Type) (*ffi.Signature, error) { args := make([]*ffi.Type, len(tin)) for i, in := range tin { args[i] = toFFIType(in) } var ret *ffi.Type switch n := len(tout); n { case 0: ret = ffi.TypeVoid case 1: ret = toFFIType(tout[0]) default: fields := make([]*ffi.Type, n) for i, out := range tout { fields[i] = toFFIType(out) } ret = ffi.StructOf(fields...) } return ffi.NewSignature(ret, args...) } func (v Value) closureFunc() *abi.FuncType { ft := *v.typ_.StructType().Fields[0].Typ.FuncType() ft.In = ft.In[1:] return &ft } func (v Value) call(op string, in []Value) (out []Value) { var ( tin []*abi.Type tout []*abi.Type args []unsafe.Pointer fn unsafe.Pointer ret unsafe.Pointer ) if v.typ_.IsClosure() { ft := v.typ_.StructType().Fields[0].Typ.FuncType() tin = ft.In tout = ft.Out c := (*struct { fn unsafe.Pointer env unsafe.Pointer })(v.ptr) fn = c.fn args = append(args, unsafe.Pointer(&c.env)) } else { if v.flag&flagMethod != 0 { var ( rcvrtype *abi.Type ft *abi.FuncType ) rcvrtype, ft, fn = methodReceiver(op, v, int(v.flag)>>flagMethodShift) tin = append([]*abi.Type{rcvrtype}, ft.In...) tout = ft.Out if v.flag&flagIndir != 0 { args = append(args, v.ptr) } else { args = append(args, unsafe.Pointer(&v.ptr)) } } else { if v.flag&flagIndir != 0 { fn = *(*unsafe.Pointer)(v.ptr) } else { fn = v.ptr } ft := v.typ_.FuncType() tin = ft.In tout = ft.Out } } sig, err := toFFISig(tin, tout) if err != nil { panic(err) } if sig.RType != ffi.TypeVoid { v := runtime.AllocZ(sig.RType.Size) ret = unsafe.Pointer(&v) } for _, in := range in { if in.flag&flagIndir != 0 { args = append(args, in.ptr) } else { args = append(args, unsafe.Pointer(&in.ptr)) } } ffi.Call(sig, fn, ret, args...) switch n := len(tout); n { case 0: case 1: return []Value{NewAt(toType(tout[0]), ret).Elem()} default: panic("TODO multi ret") } return } // var callGC bool // for testing; see TestCallMethodJump and TestCallArgLive // const debugReflectCall = false // func (v Value) call(op string, in []Value) []Value { // // Get function pointer, type. // t := (*funcType)(unsafe.Pointer(v.typ())) // var ( // fn unsafe.Pointer // rcvr Value // rcvrtype *abi.Type // ) // if v.flag&flagMethod != 0 { // rcvr = v // rcvrtype, t, fn = methodReceiver(op, v, int(v.flag)>>flagMethodShift) // } else if v.flag&flagIndir != 0 { // fn = *(*unsafe.Pointer)(v.ptr) // } else { // fn = v.ptr // } // if fn == nil { // panic("reflect.Value.Call: call of nil function") // } // isSlice := op == "CallSlice" // n := t.NumIn() // isVariadic := t.IsVariadic() // if isSlice { // if !isVariadic { // panic("reflect: CallSlice of non-variadic function") // } // if len(in) < n { // panic("reflect: CallSlice with too few input arguments") // } // if len(in) > n { // panic("reflect: CallSlice with too many input arguments") // } // } else { // if isVariadic { // n-- // } // if len(in) < n { // panic("reflect: Call with too few input arguments") // } // if !isVariadic && len(in) > n { // panic("reflect: Call with too many input arguments") // } // } // for _, x := range in { // if x.Kind() == Invalid { // panic("reflect: " + op + " using zero Value argument") // } // } // for i := 0; i < n; i++ { // if xt, targ := in[i].Type(), t.In(i); !xt.AssignableTo(toRType(targ)) { // panic("reflect: " + op + " using " + xt.String() + " as type " + stringFor(targ)) // } // } // if !isSlice && isVariadic { // // prepare slice for remaining values // m := len(in) - n // slice := MakeSlice(toRType(t.In(n)), m, m) // elem := toRType(t.In(n)).Elem() // FIXME cast to slice type and Elem() // for i := 0; i < m; i++ { // x := in[n+i] // if xt := x.Type(); !xt.AssignableTo(elem) { // panic("reflect: cannot use " + xt.String() + " as type " + elem.String() + " in " + op) // } // slice.Index(i).Set(x) // } // origIn := in // in = make([]Value, n+1) // copy(in[:n], origIn) // in[n] = slice // } // nin := len(in) // if nin != t.NumIn() { // panic("reflect.Value.Call: wrong argument count") // } // nout := t.NumOut() // // Register argument space. // var regArgs abi.RegArgs // // Compute frame type. // frametype, framePool, abid := funcLayout(t, rcvrtype) // // Allocate a chunk of memory for frame if needed. // var stackArgs unsafe.Pointer // if frametype.Size() != 0 { // if nout == 0 { // stackArgs = framePool.Get().(unsafe.Pointer) // } else { // // Can't use pool if the function has return values. // // We will leak pointer to args in ret, so its lifetime is not scoped. // stackArgs = unsafe_New(frametype) // } // } // frameSize := frametype.Size() // if debugReflectCall { // println("reflect.call", stringFor(&t.Type)) // abid.dump() // } // // Copy inputs into args. // // Handle receiver. // inStart := 0 // if rcvrtype != nil { // // Guaranteed to only be one word in size, // // so it will only take up exactly 1 abiStep (either // // in a register or on the stack). // switch st := abid.call.steps[0]; st.kind { // case abiStepStack: // storeRcvr(rcvr, stackArgs) // case abiStepPointer: // storeRcvr(rcvr, unsafe.Pointer(®Args.Ptrs[st.ireg])) // fallthrough // case abiStepIntReg: // storeRcvr(rcvr, unsafe.Pointer(®Args.Ints[st.ireg])) // case abiStepFloatReg: // storeRcvr(rcvr, unsafe.Pointer(®Args.Floats[st.freg])) // default: // panic("unknown ABI parameter kind") // } // inStart = 1 // } // // Handle arguments. // for i, v := range in { // v.mustBeExported() // targ := toRType(t.In(i)) // // TODO(mknyszek): Figure out if it's possible to get some // // scratch space for this assignment check. Previously, it // // was possible to use space in the argument frame. // v = v.assignTo("reflect.Value.Call", &targ.t, nil) // stepsLoop: // for _, st := range abid.call.stepsForValue(i + inStart) { // switch st.kind { // case abiStepStack: // // Copy values to the "stack." // addr := add(stackArgs, st.stkOff, "precomputed stack arg offset") // if v.flag&flagIndir != 0 { // typedmemmove(&targ.t, addr, v.ptr) // } else { // *(*unsafe.Pointer)(addr) = v.ptr // } // // There's only one step for a stack-allocated value. // break stepsLoop // case abiStepIntReg, abiStepPointer: // // Copy values to "integer registers." // if v.flag&flagIndir != 0 { // offset := add(v.ptr, st.offset, "precomputed value offset") // if st.kind == abiStepPointer { // // Duplicate this pointer in the pointer area of the // // register space. Otherwise, there's the potential for // // this to be the last reference to v.ptr. // regArgs.Ptrs[st.ireg] = *(*unsafe.Pointer)(offset) // } // intToReg(®Args, st.ireg, st.size, offset) // } else { // if st.kind == abiStepPointer { // // See the comment in abiStepPointer case above. // regArgs.Ptrs[st.ireg] = v.ptr // } // regArgs.Ints[st.ireg] = uintptr(v.ptr) // } // case abiStepFloatReg: // // Copy values to "float registers." // if v.flag&flagIndir == 0 { // panic("attempted to copy pointer to FP register") // } // offset := add(v.ptr, st.offset, "precomputed value offset") // floatToReg(®Args, st.freg, st.size, offset) // default: // panic("unknown ABI part kind") // } // } // } // // TODO(mknyszek): Remove this when we no longer have // // caller reserved spill space. // frameSize = align(frameSize, goarch.PtrSize) // frameSize += abid.spill // // Mark pointers in registers for the return path. // regArgs.ReturnIsPtr = abid.outRegPtrs // if debugReflectCall { // regArgs.Dump() // } // // For testing; see TestCallArgLive. // if callGC { // runtime.GC() // } // // Call. // call(frametype, fn, stackArgs, uint32(frametype.Size()), uint32(abid.retOffset), uint32(frameSize), ®Args) // // For testing; see TestCallMethodJump. // if callGC { // runtime.GC() // } // var ret []Value // if nout == 0 { // if stackArgs != nil { // typedmemclr(frametype, stackArgs) // framePool.Put(stackArgs) // } // } else { // if stackArgs != nil { // // Zero the now unused input area of args, // // because the Values returned by this function contain pointers to the args object, // // and will thus keep the args object alive indefinitely. // typedmemclrpartial(frametype, stackArgs, 0, abid.retOffset) // } // // Wrap Values around return values in args. // ret = make([]Value, nout) // for i := 0; i < nout; i++ { // tv := t.Out(i) // if tv.Size() == 0 { // // For zero-sized return value, args+off may point to the next object. // // In this case, return the zero value instead. // ret[i] = Zero(toRType(tv)) // continue // } // steps := abid.ret.stepsForValue(i) // if st := steps[0]; st.kind == abiStepStack { // // This value is on the stack. If part of a value is stack // // allocated, the entire value is according to the ABI. So // // just make an indirection into the allocated frame. // fl := flagIndir | flag(tv.Kind()) // ret[i] = Value{tv, add(stackArgs, st.stkOff, "tv.Size() != 0"), fl} // // Note: this does introduce false sharing between results - // // if any result is live, they are all live. // // (And the space for the args is live as well, but as we've // // cleared that space it isn't as big a deal.) // continue // } // // Handle pointers passed in registers. // if !ifaceIndir(tv) { // // Pointer-valued data gets put directly // // into v.ptr. // if steps[0].kind != abiStepPointer { // print("kind=", steps[0].kind, ", type=", stringFor(tv), "\n") // panic("mismatch between ABI description and types") // } // ret[i] = Value{tv, regArgs.Ptrs[steps[0].ireg], flag(tv.Kind())} // continue // } // // All that's left is values passed in registers that we need to // // create space for and copy values back into. // // // // TODO(mknyszek): We make a new allocation for each register-allocated // // value, but previously we could always point into the heap-allocated // // stack frame. This is a regression that could be fixed by adding // // additional space to the allocated stack frame and storing the // // register-allocated return values into the allocated stack frame and // // referring there in the resulting Value. // s := unsafe_New(tv) // for _, st := range steps { // switch st.kind { // case abiStepIntReg: // offset := add(s, st.offset, "precomputed value offset") // intFromReg(®Args, st.ireg, st.size, offset) // case abiStepPointer: // s := add(s, st.offset, "precomputed value offset") // *((*unsafe.Pointer)(s)) = regArgs.Ptrs[st.ireg] // case abiStepFloatReg: // offset := add(s, st.offset, "precomputed value offset") // floatFromReg(®Args, st.freg, st.size, offset) // case abiStepStack: // panic("register-based return value has stack component") // default: // panic("unknown ABI part kind") // } // } // ret[i] = Value{tv, s, flagIndir | flag(tv.Kind())} // } // } // return ret // } // methodReceiver returns information about the receiver // described by v. The Value v may or may not have the // flagMethod bit set, so the kind cached in v.flag should // not be used. // The return value rcvrtype gives the method's actual receiver type. // The return value t gives the method type signature (without the receiver). // The return value fn is a pointer to the method code. func methodReceiver(op string, v Value, methodIndex int) (rcvrtype *abi.Type, t *funcType, fn unsafe.Pointer) { i := methodIndex if v.typ().Kind() == abi.Interface { tt := (*interfaceType)(unsafe.Pointer(v.typ())) if uint(i) >= uint(len(tt.Methods)) { panic("reflect: internal error: invalid method index") } m := &tt.Methods[i] if !abi.IsExported(m.Name()) { panic("reflect: " + op + " of unexported method") } iface := (*nonEmptyInterface)(v.ptr) if iface.itab == nil { panic("reflect: " + op + " of method on nil interface value") } rcvrtype = iface.itab.typ fn = unsafe.Pointer(&iface.itab.fun[i]) t = (*funcType)(unsafe.Pointer(m.Typ_)) } else { rcvrtype = v.typ() ms := v.typ().ExportedMethods() if uint(i) >= uint(len(ms)) { panic("reflect: internal error: invalid method index") } m := ms[i] if !abi.IsExported(m.Name()) { panic("reflect: " + op + " of unexported method") } ifn := m.Ifn_ fn = unsafe.Pointer(ifn) t = (*funcType)(unsafe.Pointer(m.Mtyp_)) } return } //go:linkname chancap github.com/goplus/llgo/internal/runtime.ChanCap func chancap(ch unsafe.Pointer) int //go:linkname chanlen github.com/goplus/llgo/internal/runtime.ChanLen func chanlen(ch unsafe.Pointer) int //go:linkname maplen github.com/goplus/llgo/internal/runtime.MapLen func maplen(ch unsafe.Pointer) int