/* * Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package ssa import ( "go/token" "go/types" "log" "github.com/goplus/llgo/ssa/abi" "github.com/goplus/llvm" ) // ----------------------------------------------------------------------------- // unsafeEface(t *abi.Type, data unsafe.Pointer) Eface func (b Builder) unsafeEface(t, data llvm.Value) llvm.Value { return aggregateValue(b.impl, b.Prog.rtEface(), t, data) } // unsafeIface(itab *runtime.Itab, data unsafe.Pointer) Eface func (b Builder) unsafeIface(itab, data llvm.Value) llvm.Value { return aggregateValue(b.impl, b.Prog.rtIface(), itab, data) } // func NewItab(tintf *InterfaceType, typ *Type) *runtime.Itab func (b Builder) newItab(tintf, typ Expr) Expr { return b.Call(b.Pkg.rtFunc("NewItab"), tintf, typ) } func (b Builder) unsafeInterface(rawIntf *types.Interface, t Expr, data llvm.Value) llvm.Value { if rawIntf.Empty() { return b.unsafeEface(t.impl, data) } tintf := b.abiType(rawIntf) itab := b.newItab(tintf, t) return b.unsafeIface(itab.impl, data) } func iMethodOf(rawIntf *types.Interface, name string) int { n := rawIntf.NumMethods() for i := 0; i < n; i++ { m := rawIntf.Method(i) if m.Name() == name { // TODO(xsw): check signature return i } } return -1 } // Imethod returns closure of an interface method. func (b Builder) Imethod(intf Expr, method *types.Func) Expr { prog := b.Prog rawIntf := intf.raw.Type.Underlying().(*types.Interface) tclosure := prog.Type(method.Type(), InGo) i := iMethodOf(rawIntf, method.Name()) data := b.InlineCall(b.Pkg.rtFunc("IfacePtrData"), intf) impl := intf.impl itab := Expr{b.faceItab(impl), prog.VoidPtrPtr()} pfn := b.Advance(itab, prog.IntVal(uint64(i+3), prog.Int())) fn := b.Load(pfn) ret := b.aggregateValue(tclosure, fn.impl, data.impl) return ret } // ----------------------------------------------------------------------------- // MakeInterface constructs an instance of an interface type from a // value of a concrete type. // // Use Program.MethodSets.MethodSet(X.Type()) to find the method-set // of X, and Program.MethodValue(m) to find the implementation of a method. // // To construct the zero value of an interface type T, use: // // NewConst(constant.MakeNil(), T, pos) // // Example printed form: // // t1 = make interface{} <- int (42:int) // t2 = make Stringer <- t0 func (b Builder) MakeInterface(tinter Type, x Expr) (ret Expr) { rawIntf := tinter.raw.Type.Underlying().(*types.Interface) if debugInstr { log.Printf("MakeInterface %v, %v\n", rawIntf, x.impl) } if x.kind == vkFuncDecl { typ := b.Prog.Type(x.raw.Type, InGo) x = checkExpr(x, typ.raw.Type, b) } prog := b.Prog typ := x.Type tabi := b.abiType(typ.raw.Type) kind, _, lvl := abi.DataKindOf(typ.raw.Type, 0, prog.is32Bits) switch kind { case abi.Indirect: vptr := b.AllocU(typ) b.Store(vptr, x) return Expr{b.unsafeInterface(rawIntf, tabi, vptr.impl), tinter} } ximpl := x.impl if lvl > 0 { ximpl = extractVal(b.impl, ximpl, lvl) } var u llvm.Value switch kind { case abi.Pointer: return Expr{b.unsafeInterface(rawIntf, tabi, ximpl), tinter} case abi.Integer: tu := prog.Uintptr() u = llvm.CreateIntCast(b.impl, ximpl, tu.ll) case abi.BitCast: tu := prog.Uintptr() if b.Prog.td.TypeAllocSize(typ.ll) < b.Prog.td.TypeAllocSize(tu.ll) { u = llvm.CreateBitCast(b.impl, ximpl, prog.Uint32().ll) } else { u = llvm.CreateBitCast(b.impl, ximpl, tu.ll) } default: panic("todo") } data := llvm.CreateIntToPtr(b.impl, u, prog.tyVoidPtr()) return Expr{b.unsafeInterface(rawIntf, tabi, data), tinter} } func (b Builder) valFromData(typ Type, data llvm.Value) Expr { prog := b.Prog kind, real, lvl := abi.DataKindOf(typ.raw.Type, 0, prog.is32Bits) switch kind { case abi.Indirect: impl := b.impl tll := typ.ll tptr := llvm.PointerType(tll, 0) ptr := llvm.CreatePointerCast(impl, data, tptr) return Expr{llvm.CreateLoad(impl, tll, ptr), typ} } t := typ if lvl > 0 { t = prog.rawType(real) } switch kind { case abi.Pointer: return b.buildVal(typ, data, lvl) case abi.Integer: x := castUintptr(b, data, prog.Uintptr()) return b.buildVal(typ, castInt(b, x, t), lvl) case abi.BitCast: x := castUintptr(b, data, prog.Uintptr()) if int(prog.SizeOf(t)) != prog.PointerSize() { x = castInt(b, x, prog.Int32()) } return b.buildVal(typ, llvm.CreateBitCast(b.impl, x, t.ll), lvl) } panic("todo") } func extractVal(b llvm.Builder, val llvm.Value, lvl int) llvm.Value { for lvl > 0 { // TODO(xsw): check array support val = llvm.CreateExtractValue(b, val, 0) lvl-- } return val } func (b Builder) buildVal(typ Type, val llvm.Value, lvl int) Expr { if lvl == 0 { return Expr{val, typ} } switch t := typ.raw.Type.Underlying().(type) { case *types.Struct: telem := b.Prog.rawType(t.Field(0).Type()) elem := b.buildVal(telem, val, lvl-1) return Expr{aggregateValue(b.impl, typ.ll, elem.impl), typ} case *types.Array: telem := b.Prog.rawType(t.Elem()) elem := b.buildVal(telem, val, lvl-1) return Expr{llvm.ConstArray(typ.ll, []llvm.Value{elem.impl}), typ} } panic("todo") } // The TypeAssert instruction tests whether interface value X has type // AssertedType. // // If !CommaOk, on success it returns v, the result of the conversion // (defined below); on failure it panics. // // If CommaOk: on success it returns a pair (v, true) where v is the // result of the conversion; on failure it returns (z, false) where z // is AssertedType's zero value. The components of the pair must be // accessed using the Extract instruction. // // If Underlying: tests whether interface value X has the underlying // type AssertedType. // // If AssertedType is a concrete type, TypeAssert checks whether the // dynamic type in interface X is equal to it, and if so, the result // of the conversion is a copy of the value in the interface. // // If AssertedType is an interface, TypeAssert checks whether the // dynamic type of the interface is assignable to it, and if so, the // result of the conversion is a copy of the interface value X. // If AssertedType is a superinterface of X.Type(), the operation will // fail iff the operand is nil. (Contrast with ChangeInterface, which // performs no nil-check.) // // Type() reflects the actual type of the result, possibly a // 2-types.Tuple; AssertedType is the asserted type. // // Depending on the TypeAssert's purpose, Pos may return: // - the ast.CallExpr.Lparen of an explicit T(e) conversion; // - the ast.TypeAssertExpr.Lparen of an explicit e.(T) operation; // - the ast.CaseClause.Case of a case of a type-switch statement; // - the Ident(m).NamePos of an interface method value i.m // (for which TypeAssert may be used to effect the nil check). // // Example printed form: // // t1 = typeassert t0.(int) // t3 = typeassert,ok t2.(T) func (b Builder) TypeAssert(x Expr, assertedTyp Type, commaOk bool) Expr { if debugInstr { log.Printf("TypeAssert %v, %v, %v\n", x.impl, assertedTyp.raw.Type, commaOk) } tx := b.faceAbiType(x) tabi := b.abiType(assertedTyp.raw.Type) var eq Expr var val func() Expr if rawIntf, ok := assertedTyp.raw.Type.Underlying().(*types.Interface); ok { eq = b.InlineCall(b.Pkg.rtFunc("Implements"), tabi, tx) val = func() Expr { return Expr{b.unsafeInterface(rawIntf, tx, b.faceData(x.impl)), assertedTyp} } } else { eq = b.BinOp(token.EQL, tx, tabi) val = func() Expr { return b.valFromData(assertedTyp, b.faceData(x.impl)) } } if commaOk { prog := b.Prog t := prog.Struct(assertedTyp, prog.Bool()) blks := b.Func.MakeBlocks(3) b.If(eq, blks[0], blks[1]) b.SetBlockEx(blks[2], AtEnd, false) phi := b.Phi(t) phi.AddIncoming(b, blks[:2], func(i int, blk BasicBlock) Expr { b.SetBlockEx(blk, AtEnd, false) if i == 0 { valTrue := aggregateValue(b.impl, t.ll, val().impl, prog.BoolVal(true).impl) b.Jump(blks[2]) return Expr{valTrue, t} } zero := prog.Zero(assertedTyp) valFalse := aggregateValue(b.impl, t.ll, zero.impl, prog.BoolVal(false).impl) b.Jump(blks[2]) return Expr{valFalse, t} }) b.SetBlockEx(blks[2], AtEnd, false) b.blk.last = blks[2].last return phi.Expr } blks := b.Func.MakeBlocks(2) b.If(eq, blks[0], blks[1]) b.SetBlockEx(blks[1], AtEnd, false) b.Panic(b.MakeInterface(b.Prog.Any(), b.Str("type assertion failed"))) b.SetBlockEx(blks[0], AtEnd, false) b.blk.last = blks[0].last return val() } // ChangeInterface constructs a value of one interface type from a // value of another interface type known to be assignable to it. // This operation cannot fail. // // Pos() returns the ast.CallExpr.Lparen if the instruction arose from // an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the // instruction arose from an explicit e.(T) operation; or token.NoPos // otherwise. // // Example printed form: // // t1 = change interface interface{} <- I (t0) func (b Builder) ChangeInterface(typ Type, x Expr) (ret Expr) { rawIntf := typ.raw.Type.Underlying().(*types.Interface) tabi := b.faceAbiType(x) data := b.faceData(x.impl) return Expr{b.unsafeInterface(rawIntf, tabi, data), typ} } // ----------------------------------------------------------------------------- /* // InterfaceData returns the data pointer of an interface. func (b Builder) InterfaceData(x Expr) Expr { if debugInstr { log.Printf("InterfaceData %v\n", x.impl) } return Expr{b.faceData(x.impl), b.Prog.VoidPtr()} } */ func (b Builder) faceData(x llvm.Value) llvm.Value { return llvm.CreateExtractValue(b.impl, x, 1) } func (b Builder) faceItab(x llvm.Value) llvm.Value { return llvm.CreateExtractValue(b.impl, x, 0) } func (b Builder) faceAbiType(x Expr) Expr { if x.kind == vkIface { return b.InlineCall(b.Pkg.rtFunc("IfaceType"), x) } typ := llvm.CreateExtractValue(b.impl, x.impl, 0) return Expr{typ, b.Prog.AbiTypePtr()} } // -----------------------------------------------------------------------------