Files
llgo/ssa/expr.go
2024-04-29 13:59:06 +08:00

681 lines
19 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
/*
* Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package ssa
import (
"bytes"
"fmt"
"go/constant"
"go/token"
"go/types"
"log"
"unsafe"
"github.com/goplus/llvm"
)
// -----------------------------------------------------------------------------
type Expr struct {
impl llvm.Value
Type
}
/*
// TypeOf returns the type of the expression.
func (v Expr) TypeOf() types.Type {
return v.t
}
*/
// Do evaluates the delay expression and returns the result.
func (v Expr) Do() Expr {
if vt := v.Type; vt.kind == vkDelayExpr {
return vt.t.(delayExprTy)()
}
return v
}
// DelayExpr returns a delay expression.
func DelayExpr(f func() Expr) Expr {
return Expr{Type: &aType{t: delayExprTy(f), kind: vkDelayExpr}}
}
type delayExprTy func() Expr
func (p delayExprTy) Underlying() types.Type {
panic("don't call")
}
func (p delayExprTy) String() string {
return "delayExpr"
}
// -----------------------------------------------------------------------------
func llvmValues(vals []Expr) []llvm.Value {
ret := make([]llvm.Value, len(vals))
for i, v := range vals {
ret[i] = v.impl
}
return ret
}
// -----------------------------------------------------------------------------
// Null returns a null constant expression.
func (p Program) Null(t Type) Expr {
return Expr{llvm.ConstNull(t.ll), t}
}
// CStringVal returns a c-style string constant expression.
func (p Program) CStringVal(v string) Expr {
t := p.CString()
return Expr{llvm.ConstString(v, true), t}
}
// StringVal returns string constant expression.
func (p Program) StringVal(v string) Expr {
t := p.String()
cstr := llvm.ConstString(v, true)
// TODO(xsw): cstr => gostring
return Expr{cstr, t}
}
// BoolVal returns a boolean constant expression.
func (p Program) BoolVal(v bool) Expr {
t := p.Bool()
var bv uint64
if v {
bv = 1
}
ret := llvm.ConstInt(t.ll, bv, v)
return Expr{ret, t}
}
// IntVal returns an integer constant expression.
func (p Program) IntVal(v uint64, t Type) Expr {
ret := llvm.ConstInt(t.ll, v, false)
return Expr{ret, t}
}
// Val returns a constant expression.
func (p Program) Val(v interface{}) Expr {
switch v := v.(type) {
case int:
return p.IntVal(uint64(v), p.Int())
case uintptr:
return p.IntVal(uint64(v), p.Uintptr())
case bool:
return p.BoolVal(v)
case float64:
t := p.Float64()
ret := llvm.ConstFloat(t.ll, v)
return Expr{ret, t}
}
panic("todo")
}
// Const returns a constant expression.
func (b Builder) Const(v constant.Value, typ Type) Expr {
prog := b.Prog
if v == nil {
return prog.Null(typ)
}
switch t := typ.t.(type) {
case *types.Basic:
kind := t.Kind()
switch {
case kind == types.Bool:
return prog.BoolVal(constant.BoolVal(v))
case kind >= types.Int && kind <= types.Uintptr:
if v, exact := constant.Uint64Val(v); exact {
return prog.IntVal(v, typ)
}
case kind == types.String:
return prog.StringVal(constant.StringVal(v))
}
}
panic("todo")
}
// -----------------------------------------------------------------------------
const (
mathOpBase = token.ADD
mathOpLast = token.REM
)
var mathOpToLLVM = []llvm.Opcode{
int(token.ADD-mathOpBase)<<2 | vkSigned: llvm.Add,
int(token.ADD-mathOpBase)<<2 | vkUnsigned: llvm.Add,
int(token.ADD-mathOpBase)<<2 | vkFloat: llvm.FAdd,
int(token.SUB-mathOpBase)<<2 | vkSigned: llvm.Sub,
int(token.SUB-mathOpBase)<<2 | vkUnsigned: llvm.Sub,
int(token.SUB-mathOpBase)<<2 | vkFloat: llvm.FSub,
int(token.MUL-mathOpBase)<<2 | vkSigned: llvm.Mul,
int(token.MUL-mathOpBase)<<2 | vkUnsigned: llvm.Mul,
int(token.MUL-mathOpBase)<<2 | vkFloat: llvm.FMul,
int(token.QUO-mathOpBase)<<2 | vkSigned: llvm.SDiv,
int(token.QUO-mathOpBase)<<2 | vkUnsigned: llvm.UDiv,
int(token.QUO-mathOpBase)<<2 | vkFloat: llvm.FDiv,
int(token.REM-mathOpBase)<<2 | vkSigned: llvm.SRem,
int(token.REM-mathOpBase)<<2 | vkUnsigned: llvm.URem,
int(token.REM-mathOpBase)<<2 | vkFloat: llvm.FRem,
}
func mathOpIdx(op token.Token, x valueKind) int {
return int(op-mathOpBase)<<2 | x
}
// ADD SUB MUL QUO REM + - * / %
func isMathOp(op token.Token) bool {
return op >= mathOpBase && op <= mathOpLast
}
const (
logicOpBase = token.AND
logicOpLast = token.AND_NOT
)
var logicOpToLLVM = []llvm.Opcode{
token.AND - logicOpBase: llvm.And,
token.OR - logicOpBase: llvm.Or,
token.XOR - logicOpBase: llvm.Xor,
token.SHL - logicOpBase: llvm.Shl,
token.SHR - logicOpBase: llvm.AShr, // Arithmetic Shift Right
}
// AND OR XOR SHL SHR AND_NOT & | ^ << >> &^
func isLogicOp(op token.Token) bool {
return op >= logicOpBase && op <= logicOpLast
}
const (
predOpBase = token.EQL
predOpLast = token.GEQ
)
var intPredOpToLLVM = []llvm.IntPredicate{
token.EQL - predOpBase: llvm.IntEQ,
token.NEQ - predOpBase: llvm.IntNE,
token.LSS - predOpBase: llvm.IntSLT,
token.LEQ - predOpBase: llvm.IntSLE,
token.GTR - predOpBase: llvm.IntSGT,
token.GEQ - predOpBase: llvm.IntSGE,
}
var uintPredOpToLLVM = []llvm.IntPredicate{
token.EQL - predOpBase: llvm.IntEQ,
token.NEQ - predOpBase: llvm.IntNE,
token.LSS - predOpBase: llvm.IntULT,
token.LEQ - predOpBase: llvm.IntULE,
token.GTR - predOpBase: llvm.IntUGT,
token.GEQ - predOpBase: llvm.IntUGE,
}
var floatPredOpToLLVM = []llvm.FloatPredicate{
token.EQL - predOpBase: llvm.FloatOEQ,
token.NEQ - predOpBase: llvm.FloatONE,
token.LSS - predOpBase: llvm.FloatOLT,
token.LEQ - predOpBase: llvm.FloatOLE,
token.GTR - predOpBase: llvm.FloatOGT,
token.GEQ - predOpBase: llvm.FloatOGE,
}
// EQL NEQ LSS LEQ GTR GEQ == != < <= < >=
func isPredOp(op token.Token) bool {
return op >= predOpBase && op <= predOpLast
}
// The BinOp instruction yields the result of binary operation (x op y).
// op can be:
// ADD SUB MUL QUO REM + - * / %
// AND OR XOR SHL SHR AND_NOT & | ^ << >> &^
// EQL NEQ LSS LEQ GTR GEQ == != < <= < >=
func (b Builder) BinOp(op token.Token, x, y Expr) Expr {
if debugInstr {
log.Printf("BinOp %d, %v, %v\n", op, x.impl, y.impl)
}
switch {
case isMathOp(op): // op: + - * / %
kind := x.kind
switch kind {
case vkString, vkComplex:
panic("todo")
}
idx := mathOpIdx(op, kind)
if llop := mathOpToLLVM[idx]; llop != 0 {
return Expr{llvm.CreateBinOp(b.impl, llop, x.impl, y.impl), x.Type}
}
case isLogicOp(op): // op: & | ^ << >> &^
if op == token.AND_NOT {
panic("todo")
}
kind := x.kind
llop := logicOpToLLVM[op-logicOpBase]
if op == token.SHR && kind == vkUnsigned {
llop = llvm.LShr // Logical Shift Right
}
return Expr{llvm.CreateBinOp(b.impl, llop, x.impl, y.impl), x.Type}
case isPredOp(op): // op: == != < <= < >=
tret := b.Prog.Bool()
kind := x.kind
switch kind {
case vkSigned:
pred := intPredOpToLLVM[op-predOpBase]
return Expr{llvm.CreateICmp(b.impl, pred, x.impl, y.impl), tret}
case vkUnsigned, vkPtr:
pred := uintPredOpToLLVM[op-predOpBase]
return Expr{llvm.CreateICmp(b.impl, pred, x.impl, y.impl), tret}
case vkFloat:
pred := floatPredOpToLLVM[op-predOpBase]
return Expr{llvm.CreateFCmp(b.impl, pred, x.impl, y.impl), tret}
case vkString, vkComplex, vkBool:
panic("todo")
}
}
panic("todo")
}
// The UnOp instruction yields the result of (op x).
// ARROW is channel receive.
// MUL is pointer indirection (load).
// XOR is bitwise complement.
// SUB is negation.
// NOT is logical negation.
func (b Builder) UnOp(op token.Token, x Expr) Expr {
switch op {
case token.MUL:
return b.Load(x)
}
if debugInstr {
log.Printf("UnOp %v, %v\n", op, x.impl)
}
panic("todo")
}
// Load returns the value at the pointer ptr.
func (b Builder) Load(ptr Expr) Expr {
if debugInstr {
log.Printf("Load %v\n", ptr.impl)
}
telem := b.Prog.Elem(ptr.Type)
return Expr{llvm.CreateLoad(b.impl, telem.ll, ptr.impl), telem}
}
// Store stores val at the pointer ptr.
func (b Builder) Store(ptr, val Expr) Builder {
if debugInstr {
log.Printf("Store %v, %v\n", ptr.impl, val.impl)
}
b.impl.CreateStore(val.impl, ptr.impl)
return b
}
// The FieldAddr instruction yields the address of Field of *struct X.
//
// The field is identified by its index within the field list of the
// struct type of X.
//
// Dynamically, this instruction panics if X evaluates to a nil
// pointer.
//
// Type() returns a (possibly named) *types.Pointer.
//
// Pos() returns the position of the ast.SelectorExpr.Sel for the
// field, if explicit in the source. For implicit selections, returns
// the position of the inducing explicit selection. If produced for a
// struct literal S{f: e}, it returns the position of the colon; for
// S{e} it returns the start of expression e.
//
// Example printed form:
//
// t1 = &t0.name [#1]
func (b Builder) FieldAddr(x Expr, idx int) Expr {
if debugInstr {
log.Printf("FieldAddr %v, %d\n", x.impl, idx)
}
prog := b.Prog
tstruc := prog.Elem(x.Type)
telem := prog.Field(tstruc, idx)
pt := prog.Pointer(telem)
return Expr{llvm.CreateStructGEP(b.impl, tstruc.ll, x.impl, idx), pt}
}
// The IndexAddr instruction yields the address of the element at
// index `idx` of collection `x`. `idx` is an integer expression.
//
// The elements of maps and strings are not addressable; use Lookup (map),
// Index (string), or MapUpdate instead.
//
// Dynamically, this instruction panics if `x` evaluates to a nil *array
// pointer.
//
// Example printed form:
//
// t2 = &t0[t1]
func (b Builder) IndexAddr(x, idx Expr) Expr {
if debugInstr {
log.Printf("IndexAddr %v, %v\n", x.impl, idx.impl)
}
prog := b.Prog
telem := prog.Index(x.Type)
pt := prog.Pointer(telem)
indices := []llvm.Value{idx.impl}
return Expr{llvm.CreateInBoundsGEP(b.impl, telem.ll, x.impl, indices), pt}
}
// The Alloc instruction reserves space for a variable of the given type,
// zero-initializes it, and yields its address.
//
// If heap is false, Alloc zero-initializes the same local variable in
// the call frame and returns its address; in this case the Alloc must
// be present in Function.Locals. We call this a "local" alloc.
//
// If heap is true, Alloc allocates a new zero-initialized variable
// each time the instruction is executed. We call this a "new" alloc.
//
// When Alloc is applied to a channel, map or slice type, it returns
// the address of an uninitialized (nil) reference of that kind; store
// the result of MakeSlice, MakeMap or MakeChan in that location to
// instantiate these types.
//
// Example printed form:
//
// t0 = local int
// t1 = new int
func (b Builder) Alloc(t *types.Pointer, heap bool) (ret Expr) {
if debugInstr {
log.Printf("Alloc %v, %v\n", t, heap)
}
prog := b.Prog
telem := t.Elem()
if heap {
pkg := b.fn.pkg
size := unsafe.Sizeof(telem)
ret = b.Call(pkg.rtFunc("Alloc"), prog.Val(size))
} else {
ret.impl = llvm.CreateAlloca(b.impl, prog.Type(telem).ll)
}
// TODO(xsw): zero-initialize
ret.Type = prog.Type(t)
return
}
// The ChangeType instruction applies to X a value-preserving type
// change to Type().
//
// Type changes are permitted:
// - between a named type and its underlying type.
// - between two named types of the same underlying type.
// - between (possibly named) pointers to identical base types.
// - from a bidirectional channel to a read- or write-channel,
// optionally adding/removing a name.
// - between a type (t) and an instance of the type (tσ), i.e.
// Type() == σ(X.Type()) (or X.Type()== σ(Type())) where
// σ is the type substitution of Parent().TypeParams by
// Parent().TypeArgs.
//
// This operation cannot fail dynamically.
//
// Type changes may to be to or from a type parameter (or both). All
// types in the type set of X.Type() have a value-preserving type
// change to all types in the type set of Type().
//
// Example printed form:
//
// t1 = changetype *int <- IntPtr (t0)
func (b Builder) ChangeType(t Type, x Expr) (ret Expr) {
if debugInstr {
log.Printf("ChangeType %v, %v\n", t.t, x.impl)
}
typ := t.t
switch typ.(type) {
default:
ret.impl = b.impl.CreateBitCast(x.impl, t.ll, "bitCast")
ret.Type = b.Prog.Type(typ)
return
}
}
// The Convert instruction yields the conversion of value X to type
// Type(). One or both of those types is basic (but possibly named).
//
// A conversion may change the value and representation of its operand.
// Conversions are permitted:
// - between real numeric types.
// - between complex numeric types.
// - between string and []byte or []rune.
// - between pointers and unsafe.Pointer.
// - between unsafe.Pointer and uintptr.
// - from (Unicode) integer to (UTF-8) string.
//
// A conversion may imply a type name change also.
//
// Conversions may to be to or from a type parameter. All types in
// the type set of X.Type() can be converted to all types in the type
// set of Type().
//
// This operation cannot fail dynamically.
//
// Conversions of untyped string/number/bool constants to a specific
// representation are eliminated during SSA construction.
//
// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
// from an explicit conversion in the source.
//
// Example printed form:
//
// t1 = convert []byte <- string (t0)
func (b Builder) Convert(t Type, x Expr) (ret Expr) {
typ := t.t
ret.Type = b.Prog.Type(typ)
switch und := typ.Underlying().(type) {
case *types.Basic:
kind := und.Kind()
switch {
case kind >= types.Int && kind <= types.Uintptr:
ret.impl = castInt(b.impl, x.impl, t.ll)
return
case kind == types.UnsafePointer:
ret.impl = castPtr(b.impl, x.impl, t.ll)
return
}
case *types.Pointer:
ret.impl = castPtr(b.impl, x.impl, t.ll)
return
}
panic("todo")
}
func castInt(b llvm.Builder, x llvm.Value, t llvm.Type) llvm.Value {
xt := x.Type()
if xt.TypeKind() == llvm.PointerTypeKind {
return llvm.CreatePtrToInt(b, x, t)
}
if xt.IntTypeWidth() <= t.IntTypeWidth() {
return llvm.CreateIntCast(b, x, t)
}
return llvm.CreateTrunc(b, x, t)
}
func castPtr(b llvm.Builder, x llvm.Value, t llvm.Type) llvm.Value {
if x.Type().TypeKind() == llvm.PointerTypeKind {
return llvm.CreatePointerCast(b, x, t)
}
return llvm.CreateIntToPtr(b, x, t)
}
// MakeInterface constructs an instance of an interface type from a
// value of a concrete type.
//
// Use Program.MethodSets.MethodSet(X.Type()) to find the method-set
// of X, and Program.MethodValue(m) to find the implementation of a method.
//
// To construct the zero value of an interface type T, use:
//
// NewConst(constant.MakeNil(), T, pos)
//
// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
// from an explicit conversion in the source.
//
// Example printed form:
//
// t1 = make interface{} <- int (42:int)
// t2 = make Stringer <- t0
func (b Builder) MakeInterface(inter types.Type, x Expr, mayDelay bool) (ret Expr) {
if debugInstr {
log.Printf("MakeInterface %v, %v\n", inter, x.impl)
}
t := inter.Underlying().(*types.Interface)
isAny := t.Empty()
fnDo := func() Expr {
pkg := b.fn.pkg
switch x.kind {
case vkSigned, vkUnsigned, vkFloat:
fn := pkg.rtFunc("MakeAnyInt")
return b.InlineCall(fn, x)
case vkString:
fn := pkg.rtFunc("MakeAnyString")
return b.InlineCall(fn, x)
}
panic("todo")
}
if mayDelay && isAny {
return DelayExpr(fnDo)
}
return fnDo()
}
// The TypeAssert instruction tests whether interface value X has type
// AssertedType.
//
// If !CommaOk, on success it returns v, the result of the conversion
// (defined below); on failure it panics.
//
// If CommaOk: on success it returns a pair (v, true) where v is the
// result of the conversion; on failure it returns (z, false) where z
// is AssertedType's zero value. The components of the pair must be
// accessed using the Extract instruction.
//
// If Underlying: tests whether interface value X has the underlying
// type AssertedType.
//
// If AssertedType is a concrete type, TypeAssert checks whether the
// dynamic type in interface X is equal to it, and if so, the result
// of the conversion is a copy of the value in the interface.
//
// If AssertedType is an interface, TypeAssert checks whether the
// dynamic type of the interface is assignable to it, and if so, the
// result of the conversion is a copy of the interface value X.
// If AssertedType is a superinterface of X.Type(), the operation will
// fail iff the operand is nil. (Contrast with ChangeInterface, which
// performs no nil-check.)
//
// Type() reflects the actual type of the result, possibly a
// 2-types.Tuple; AssertedType is the asserted type.
//
// Depending on the TypeAssert's purpose, Pos may return:
// - the ast.CallExpr.Lparen of an explicit T(e) conversion;
// - the ast.TypeAssertExpr.Lparen of an explicit e.(T) operation;
// - the ast.CaseClause.Case of a case of a type-switch statement;
// - the Ident(m).NamePos of an interface method value i.m
// (for which TypeAssert may be used to effect the nil check).
//
// Example printed form:
//
// t1 = typeassert t0.(int)
// t3 = typeassert,ok t2.(T)
func (b Builder) TypeAssert(x Expr, assertedTyp Type, commaOk bool) (ret Expr) {
if debugInstr {
log.Printf("TypeAssert %v, %v, %v\n", x.impl, assertedTyp.t, commaOk)
}
switch assertedTyp.kind {
case vkSigned, vkUnsigned, vkFloat:
pkg := b.fn.pkg
fnName := "I2Int"
if commaOk {
fnName = "CheckI2Int"
}
fn := pkg.rtFunc(fnName)
var kind types.BasicKind
switch t := assertedTyp.t.(type) {
case *types.Basic:
kind = t.Kind()
default:
panic("todo")
}
typ := b.InlineCall(pkg.rtFunc("Basic"), b.Prog.Val(int(kind)))
return b.InlineCall(fn, x, typ)
}
panic("todo")
}
// -----------------------------------------------------------------------------
// TODO(xsw): make inline call
func (b Builder) InlineCall(fn Expr, args ...Expr) (ret Expr) {
return b.Call(fn, args...)
}
// The Call instruction represents a function or method call.
//
// The Call instruction yields the function result if there is exactly
// one. Otherwise it returns a tuple, the components of which are
// accessed via Extract.
//
// Example printed form:
//
// t2 = println(t0, t1)
// t4 = t3()
// t7 = invoke t5.Println(...t6)
func (b Builder) Call(fn Expr, args ...Expr) (ret Expr) {
if debugInstr {
var b bytes.Buffer
fmt.Fprint(&b, "Call ", fn.impl.Name())
for _, arg := range args {
fmt.Fprint(&b, ", ", arg.impl)
}
log.Println(b.String())
}
switch t := fn.t.(type) {
case *types.Signature:
ret.Type = b.Prog.retType(t)
default:
panic("todo")
}
ret.impl = llvm.CreateCall(b.impl, fn.ll, fn.impl, llvmValues(args))
return
}
// A Builtin represents a specific use of a built-in function, e.g. len.
//
// Builtins are immutable values. Builtins do not have addresses.
//
// `fn` indicates the function: one of the built-in functions from the
// Go spec (excluding "make" and "new").
func (b Builder) BuiltinCall(fn string, args ...Expr) (ret Expr) {
panic("todo")
}
// -----------------------------------------------------------------------------