Files
llgo/ssa/expr.go
2024-04-19 00:05:57 +08:00

212 lines
5.7 KiB
Go

/*
* Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package ssa
import (
"go/token"
"go/types"
"github.com/goplus/llvm"
)
// -----------------------------------------------------------------------------
type Expr struct {
impl llvm.Value
Type
}
// -----------------------------------------------------------------------------
func llvmValues(vals []Expr) []llvm.Value {
ret := make([]llvm.Value, len(vals))
for i, v := range vals {
ret[i] = v.impl
}
return ret
}
// -----------------------------------------------------------------------------
func (p Program) Val(v interface{}) Expr {
switch v := v.(type) {
case int:
t := p.Int()
ret := llvm.ConstInt(t.ll, uint64(v), false)
return Expr{ret, t}
case float64:
t := p.Float64()
ret := llvm.ConstFloat(t.ll, v)
return Expr{ret, t}
}
panic("todo")
}
// -----------------------------------------------------------------------------
const (
mathOpBase = token.ADD
mathOpLast = token.REM
)
var mathOpToLLVM = []llvm.Opcode{
int(token.ADD-mathOpBase)<<2 | vkSigned: llvm.Add,
int(token.ADD-mathOpBase)<<2 | vkUnsigned: llvm.Add,
int(token.ADD-mathOpBase)<<2 | vkFloat: llvm.FAdd,
int(token.SUB-mathOpBase)<<2 | vkSigned: llvm.Sub,
int(token.SUB-mathOpBase)<<2 | vkUnsigned: llvm.Sub,
int(token.SUB-mathOpBase)<<2 | vkFloat: llvm.FSub,
int(token.MUL-mathOpBase)<<2 | vkSigned: llvm.Mul,
int(token.MUL-mathOpBase)<<2 | vkUnsigned: llvm.Mul,
int(token.MUL-mathOpBase)<<2 | vkFloat: llvm.FMul,
int(token.QUO-mathOpBase)<<2 | vkSigned: llvm.SDiv,
int(token.QUO-mathOpBase)<<2 | vkUnsigned: llvm.UDiv,
int(token.QUO-mathOpBase)<<2 | vkFloat: llvm.FDiv,
int(token.REM-mathOpBase)<<2 | vkSigned: llvm.SRem,
int(token.REM-mathOpBase)<<2 | vkUnsigned: llvm.URem,
int(token.REM-mathOpBase)<<2 | vkFloat: llvm.FRem,
}
func mathOpIdx(op token.Token, x valueKind) int {
return int(op-mathOpBase)<<2 | x
}
// ADD SUB MUL QUO REM + - * / %
func isMathOp(op token.Token) bool {
return op >= mathOpBase && op <= mathOpLast
}
const (
logicOpBase = token.AND
logicOpLast = token.AND_NOT
)
var logicOpToLLVM = []llvm.Opcode{
token.AND - logicOpBase: llvm.And,
token.OR - logicOpBase: llvm.Or,
token.XOR - logicOpBase: llvm.Xor,
token.SHL - logicOpBase: llvm.Shl,
token.SHR - logicOpBase: llvm.LShr,
}
// AND OR XOR SHL SHR AND_NOT & | ^ << >> &^
func isLogicOp(op token.Token) bool {
return op >= logicOpBase && op <= logicOpLast
}
const (
predOpBase = token.EQL
predOpLast = token.GEQ
)
var intPredOpToLLVM = []llvm.IntPredicate{
token.EQL - predOpBase: llvm.IntEQ,
token.NEQ - predOpBase: llvm.IntNE,
token.LSS - predOpBase: llvm.IntSLT,
token.LEQ - predOpBase: llvm.IntSLE,
token.GTR - predOpBase: llvm.IntSGT,
token.GEQ - predOpBase: llvm.IntSGE,
}
var uintPredOpToLLVM = []llvm.IntPredicate{
token.EQL - predOpBase: llvm.IntEQ,
token.NEQ - predOpBase: llvm.IntNE,
token.LSS - predOpBase: llvm.IntULT,
token.LEQ - predOpBase: llvm.IntULE,
token.GTR - predOpBase: llvm.IntUGT,
token.GEQ - predOpBase: llvm.IntUGE,
}
var floatPredOpToLLVM = []llvm.FloatPredicate{
token.EQL - predOpBase: llvm.FloatOEQ,
token.NEQ - predOpBase: llvm.FloatONE,
token.LSS - predOpBase: llvm.FloatOLT,
token.LEQ - predOpBase: llvm.FloatOLE,
token.GTR - predOpBase: llvm.FloatOGT,
token.GEQ - predOpBase: llvm.FloatOGE,
}
// EQL NEQ LSS LEQ GTR GEQ == != < <= < >=
func isPredOp(op token.Token) bool {
return op >= predOpBase && op <= predOpLast
}
// op:
// ADD SUB MUL QUO REM + - * / %
// AND OR XOR SHL SHR AND_NOT & | ^ << >> &^
// EQL NEQ LSS LEQ GTR GEQ == != < <= < >=
func (b Builder) BinOp(op token.Token, x, y Expr) Expr {
switch {
case isMathOp(op): // op: + - * / %
kind := x.kind
switch kind {
case vkString, vkComplex:
panic("todo")
}
idx := mathOpIdx(op, kind)
if llop := mathOpToLLVM[idx]; llop != 0 {
return Expr{llvm.CreateBinOp(b.impl, llop, x.impl, y.impl), x.Type}
}
case isLogicOp(op): // op: & | ^ << >> &^
if op == token.AND_NOT {
panic("todo")
}
kind := x.kind
llop := logicOpToLLVM[op-logicOpBase]
if op == token.SHR && kind == vkUnsigned {
llop = llvm.AShr
}
return Expr{llvm.CreateBinOp(b.impl, llop, x.impl, y.impl), x.Type}
case isPredOp(op): // op: == != < <= < >=
tret := b.prog.Bool()
kind := x.kind
switch kind {
case vkSigned:
pred := intPredOpToLLVM[op-predOpBase]
return Expr{llvm.CreateICmp(b.impl, pred, x.impl, y.impl), tret}
case vkUnsigned:
pred := uintPredOpToLLVM[op-predOpBase]
return Expr{llvm.CreateICmp(b.impl, pred, x.impl, y.impl), tret}
case vkFloat:
pred := floatPredOpToLLVM[op-predOpBase]
return Expr{llvm.ConstFCmp(pred, x.impl, y.impl), tret}
case vkString, vkComplex, vkBool:
panic("todo")
}
}
panic("todo")
}
// -----------------------------------------------------------------------------
func (b Builder) Call(fn Expr, args ...Expr) (ret Expr) {
switch t := fn.t.(type) {
case *types.Signature:
ret.Type = b.prog.retType(t)
default:
panic("todo")
}
ret.impl = llvm.CreateCall(b.impl, fn.ll, fn.impl, llvmValues(args))
return
}
// -----------------------------------------------------------------------------