Files
llgo/ssa/expr.go
2024-05-24 10:39:28 +08:00

1093 lines
29 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
/*
* Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package ssa
import (
"bytes"
"fmt"
"go/constant"
"go/token"
"go/types"
"log"
"github.com/goplus/llvm"
)
// -----------------------------------------------------------------------------
type Expr struct {
impl llvm.Value
Type
}
var Nil Expr // Zero value is a nil Expr
// IsNil checks if the expression is nil or not.
func (v Expr) IsNil() bool {
return v.Type == nil
}
// Do evaluates the delay expression and returns the result.
func (v Expr) Do(b Builder) Expr { // TODO(xsw): can we remove this method?
switch vt := v.Type; vt.kind {
case vkPhisExpr:
e := vt.raw.Type.(*phisExprTy)
return b.aggregateValue(e.Type, e.phis...)
}
return v
}
// -----------------------------------------------------------------------------
type pyVarTy struct {
mod Expr
name string
}
func (p pyVarTy) Underlying() types.Type {
panic("don't call")
}
func (p pyVarTy) String() string {
return "pyVar"
}
func pyVarExpr(mod Expr, name string) Expr {
tvar := &aType{raw: rawType{&pyVarTy{mod, name}}, kind: vkPyVarRef}
return Expr{Type: tvar}
}
// -----------------------------------------------------------------------------
type phisExprTy struct {
phis []llvm.Value
Type
}
func (p phisExprTy) Underlying() types.Type {
panic("don't call")
}
func (p phisExprTy) String() string {
return "phisExpr"
}
func phisExpr(t Type, phis []llvm.Value) Expr {
tphi := &aType{raw: rawType{&phisExprTy{phis, t}}, kind: vkPhisExpr}
return Expr{Type: tphi}
}
// -----------------------------------------------------------------------------
func (p Program) Zero(t Type) Expr {
var ret llvm.Value
switch u := t.raw.Type.Underlying().(type) {
case *types.Basic:
kind := u.Kind()
switch {
case kind >= types.Bool && kind <= types.Uintptr:
ret = llvm.ConstInt(p.rawType(u).ll, 0, false)
case kind == types.String:
ret = p.Zero(p.rtType("String")).impl
case kind == types.UnsafePointer:
ret = llvm.ConstPointerNull(p.tyVoidPtr())
case kind <= types.Float64:
ret = llvm.ConstFloat(p.Float64().ll, 0)
case kind == types.Float32:
ret = llvm.ConstFloat(p.Float32().ll, 0)
default:
panic("todo")
}
case *types.Pointer:
return Expr{llvm.ConstNull(t.ll), t}
case *types.Struct:
n := u.NumFields()
flds := make([]llvm.Value, n)
for i := 0; i < n; i++ {
flds[i] = p.Zero(p.rawType(u.Field(i).Type())).impl
}
ret = llvm.ConstStruct(flds, false)
default:
log.Panicln("todo:", u)
}
return Expr{ret, t}
}
// Null returns a null constant expression.
func (p Program) Null(t Type) Expr {
return Expr{llvm.ConstNull(t.ll), t}
}
// PyNull returns a null *PyObject constant expression.
func (p Program) PyNull() Expr {
return p.Null(p.PyObjectPtr())
}
// BoolVal returns a boolean constant expression.
func (p Program) BoolVal(v bool) Expr {
t := p.Bool()
var bv uint64
if v {
bv = 1
}
ret := llvm.ConstInt(t.ll, bv, v)
return Expr{ret, t}
}
// IntVal returns an integer constant expression.
func (p Program) IntVal(v uint64, t Type) Expr {
ret := llvm.ConstInt(t.ll, v, false)
return Expr{ret, t}
}
func (p Program) FloatVal(v float64, t Type) Expr {
ret := llvm.ConstFloat(t.ll, v)
return Expr{ret, t}
}
// Val returns a constant expression.
func (p Program) Val(v interface{}) Expr {
switch v := v.(type) {
case int:
return p.IntVal(uint64(v), p.Int())
case uintptr:
return p.IntVal(uint64(v), p.Uintptr())
case bool:
return p.BoolVal(v)
case float64:
t := p.Float64()
ret := llvm.ConstFloat(t.ll, v)
return Expr{ret, t}
}
panic("todo")
}
// Const returns a constant expression.
func (b Builder) Const(v constant.Value, typ Type) Expr {
prog := b.Prog
if v == nil {
return prog.Null(typ)
}
raw := typ.raw.Type
switch t := raw.Underlying().(type) {
case *types.Basic:
kind := t.Kind()
switch {
case kind == types.Bool:
return Expr{prog.BoolVal(constant.BoolVal(v)).impl, typ}
case kind >= types.Int && kind <= types.Int64:
if v, exact := constant.Int64Val(v); exact {
return prog.IntVal(uint64(v), typ)
}
case kind >= types.Uint && kind <= types.Uintptr:
if v, exact := constant.Uint64Val(v); exact {
return prog.IntVal(v, typ)
}
case kind == types.Float32 || kind == types.Float64:
if v, exact := constant.Float64Val(v); exact {
return prog.FloatVal(v, typ)
}
case kind == types.String:
return Expr{b.Str(constant.StringVal(v)).impl, typ}
}
}
panic(fmt.Sprintf("unsupported Const: %v, %v", v, raw))
}
// CStr returns a c-style string constant expression.
func (b Builder) CStr(v string) Expr {
return Expr{llvm.CreateGlobalStringPtr(b.impl, v), b.Prog.CStr()}
}
// Str returns a Go string constant expression.
func (b Builder) Str(v string) (ret Expr) {
prog := b.Prog
data := llvm.CreateGlobalStringPtr(b.impl, v)
size := llvm.ConstInt(prog.tyInt(), uint64(len(v)), false)
return Expr{aggregateValue(b.impl, prog.rtString(), data, size), prog.String()}
}
// unsafeString(data *byte, size int) string
func (b Builder) unsafeString(data, size llvm.Value) Expr {
prog := b.Prog
return Expr{aggregateValue(b.impl, prog.rtString(), data, size), prog.String()}
}
// unsafeSlice(data *T, size, cap int) []T
func (b Builder) unsafeSlice(data Expr, size, cap llvm.Value) Expr {
prog := b.Prog
tslice := prog.Slice(prog.Elem(data.Type))
return Expr{aggregateValue(b.impl, prog.rtSlice(), data.impl, size, cap), tslice}
}
// -----------------------------------------------------------------------------
const (
mathOpBase = token.ADD
mathOpLast = token.REM
)
var mathOpToLLVM = []llvm.Opcode{
int(token.ADD-mathOpBase)<<2 | vkSigned: llvm.Add,
int(token.ADD-mathOpBase)<<2 | vkUnsigned: llvm.Add,
int(token.ADD-mathOpBase)<<2 | vkFloat: llvm.FAdd,
int(token.SUB-mathOpBase)<<2 | vkSigned: llvm.Sub,
int(token.SUB-mathOpBase)<<2 | vkUnsigned: llvm.Sub,
int(token.SUB-mathOpBase)<<2 | vkFloat: llvm.FSub,
int(token.MUL-mathOpBase)<<2 | vkSigned: llvm.Mul,
int(token.MUL-mathOpBase)<<2 | vkUnsigned: llvm.Mul,
int(token.MUL-mathOpBase)<<2 | vkFloat: llvm.FMul,
int(token.QUO-mathOpBase)<<2 | vkSigned: llvm.SDiv,
int(token.QUO-mathOpBase)<<2 | vkUnsigned: llvm.UDiv,
int(token.QUO-mathOpBase)<<2 | vkFloat: llvm.FDiv,
int(token.REM-mathOpBase)<<2 | vkSigned: llvm.SRem,
int(token.REM-mathOpBase)<<2 | vkUnsigned: llvm.URem,
int(token.REM-mathOpBase)<<2 | vkFloat: llvm.FRem,
}
func mathOpIdx(op token.Token, x valueKind) int {
return int(op-mathOpBase)<<2 | x
}
// ADD SUB MUL QUO REM + - * / %
func isMathOp(op token.Token) bool {
return op >= mathOpBase && op <= mathOpLast
}
const (
logicOpBase = token.AND
logicOpLast = token.AND_NOT
)
var logicOpToLLVM = []llvm.Opcode{
token.AND - logicOpBase: llvm.And,
token.OR - logicOpBase: llvm.Or,
token.XOR - logicOpBase: llvm.Xor,
token.SHL - logicOpBase: llvm.Shl,
token.SHR - logicOpBase: llvm.AShr, // Arithmetic Shift Right
}
// AND OR XOR SHL SHR AND_NOT & | ^ << >> &^
func isLogicOp(op token.Token) bool {
return op >= logicOpBase && op <= logicOpLast
}
const (
predOpBase = token.EQL
predOpLast = token.GEQ
)
var intPredOpToLLVM = []llvm.IntPredicate{
token.EQL - predOpBase: llvm.IntEQ,
token.NEQ - predOpBase: llvm.IntNE,
token.LSS - predOpBase: llvm.IntSLT,
token.LEQ - predOpBase: llvm.IntSLE,
token.GTR - predOpBase: llvm.IntSGT,
token.GEQ - predOpBase: llvm.IntSGE,
}
var uintPredOpToLLVM = []llvm.IntPredicate{
token.EQL - predOpBase: llvm.IntEQ,
token.NEQ - predOpBase: llvm.IntNE,
token.LSS - predOpBase: llvm.IntULT,
token.LEQ - predOpBase: llvm.IntULE,
token.GTR - predOpBase: llvm.IntUGT,
token.GEQ - predOpBase: llvm.IntUGE,
}
var floatPredOpToLLVM = []llvm.FloatPredicate{
token.EQL - predOpBase: llvm.FloatOEQ,
token.NEQ - predOpBase: llvm.FloatONE,
token.LSS - predOpBase: llvm.FloatOLT,
token.LEQ - predOpBase: llvm.FloatOLE,
token.GTR - predOpBase: llvm.FloatOGT,
token.GEQ - predOpBase: llvm.FloatOGE,
}
var boolPredOpToLLVM = []llvm.IntPredicate{
token.EQL - predOpBase: llvm.IntEQ,
token.NEQ - predOpBase: llvm.IntNE,
}
// EQL NEQ LSS LEQ GTR GEQ == != < <= < >=
func isPredOp(op token.Token) bool {
return op >= predOpBase && op <= predOpLast
}
// The BinOp instruction yields the result of binary operation (x op y).
// op can be:
// ADD SUB MUL QUO REM + - * / %
// AND OR XOR SHL SHR AND_NOT & | ^ << >> &^
// EQL NEQ LSS LEQ GTR GEQ == != < <= < >=
func (b Builder) BinOp(op token.Token, x, y Expr) Expr {
if debugInstr {
log.Printf("BinOp %d, %v, %v\n", op, x.impl, y.impl)
}
switch {
case isMathOp(op): // op: + - * / %
kind := x.kind
switch kind {
case vkString:
if op == token.ADD {
return Expr{b.InlineCall(b.Pkg.rtFunc("StringCat"), x, y).impl, x.Type}
}
case vkComplex:
default:
idx := mathOpIdx(op, kind)
if llop := mathOpToLLVM[idx]; llop != 0 {
return Expr{llvm.CreateBinOp(b.impl, llop, x.impl, y.impl), x.Type}
}
}
case isLogicOp(op): // op: & | ^ << >> &^
switch op {
case token.AND_NOT:
return Expr{llvm.CreateAnd(b.impl, x.impl, llvm.CreateNot(b.impl, y.impl)), x.Type}
case token.SHL, token.SHR:
if needsNegativeCheck(y) {
zero := llvm.ConstInt(y.ll, 0, false)
check := Expr{llvm.CreateICmp(b.impl, llvm.IntSLT, y.impl, zero), b.Prog.Bool()}
b.InlineCall(b.Pkg.rtFunc("AssertNegativeShift"), check)
}
xsize, ysize := b.Prog.SizeOf(x.Type), b.Prog.SizeOf(y.Type)
if xsize != ysize {
y = b.Convert(x.Type, y)
}
overflows := llvm.CreateICmp(b.impl, llvm.IntUGE, y.impl, llvm.ConstInt(y.ll, xsize*8, false))
xzero := llvm.ConstInt(x.ll, 0, false)
if op == token.SHL {
rhs := llvm.CreateShl(b.impl, x.impl, y.impl)
return Expr{llvm.CreateSelect(b.impl, overflows, xzero, rhs), x.Type}
} else {
if x.kind == vkSigned {
rhs := llvm.CreateSelect(b.impl, overflows, llvm.ConstInt(y.ll, 8*xsize-1, false), y.impl)
return Expr{llvm.CreateAShr(b.impl, x.impl, rhs), x.Type}
} else {
rsh := llvm.CreateLShr(b.impl, x.impl, y.impl)
return Expr{llvm.CreateSelect(b.impl, overflows, xzero, rsh), x.Type}
}
}
default:
llop := logicOpToLLVM[op-logicOpBase]
return Expr{llvm.CreateBinOp(b.impl, llop, x.impl, y.impl), x.Type}
}
case isPredOp(op): // op: == != < <= < >=
tret := b.Prog.Bool()
kind := x.kind
switch kind {
case vkSigned:
pred := intPredOpToLLVM[op-predOpBase]
return Expr{llvm.CreateICmp(b.impl, pred, x.impl, y.impl), tret}
case vkUnsigned, vkPtr:
pred := uintPredOpToLLVM[op-predOpBase]
return Expr{llvm.CreateICmp(b.impl, pred, x.impl, y.impl), tret}
case vkFloat:
pred := floatPredOpToLLVM[op-predOpBase]
return Expr{llvm.CreateFCmp(b.impl, pred, x.impl, y.impl), tret}
case vkBool:
pred := boolPredOpToLLVM[op-predOpBase]
return Expr{llvm.CreateICmp(b.impl, pred, x.impl, y.impl), tret}
case vkString, vkComplex:
panic("todo")
}
}
panic("todo")
}
// The UnOp instruction yields the result of (op x).
// ARROW is channel receive.
// MUL is pointer indirection (load).
// XOR is bitwise complement.
// SUB is negation.
// NOT is logical negation.
func (b Builder) UnOp(op token.Token, x Expr) (ret Expr) {
if debugInstr {
log.Printf("UnOp %v, %v\n", op, x.impl)
}
switch op {
case token.MUL:
return b.Load(x)
case token.SUB:
switch t := x.raw.Type.Underlying().(type) {
case *types.Basic:
ret.Type = x.Type
if t.Info()&types.IsInteger != 0 {
ret.impl = llvm.CreateNeg(b.impl, x.impl)
} else if t.Info()&types.IsFloat != 0 {
ret.impl = llvm.CreateFNeg(b.impl, x.impl)
} else {
panic("todo")
}
default:
panic("unreachable")
}
case token.NOT:
ret.Type = x.Type
ret.impl = llvm.CreateNot(b.impl, x.impl)
case token.XOR:
ret.Type = x.Type
ret.impl = llvm.CreateXor(b.impl, x.impl, llvm.ConstInt(x.Type.ll, ^uint64(0), false))
case token.ARROW:
panic("todo")
}
return
}
// -----------------------------------------------------------------------------
func checkExpr(v Expr, t types.Type, b Builder) Expr {
if t, ok := t.(*types.Struct); ok && isClosure(t) {
if v.kind != vkClosure {
return b.Pkg.closureStub(b, t, v)
}
}
return v
}
func needsNegativeCheck(x Expr) bool {
if x.kind == vkSigned {
if rv := x.impl.IsAConstantInt(); !rv.IsNil() && rv.SExtValue() >= 0 {
return false
}
return true
}
return false
}
func llvmParamsEx(data Expr, vals []Expr, params *types.Tuple, b Builder) (ret []llvm.Value) {
if data.IsNil() {
return llvmParams(0, vals, params, b)
}
ret = llvmParams(1, vals, params, b)
ret[0] = data.impl
return
}
func llvmParams(base int, vals []Expr, params *types.Tuple, b Builder) (ret []llvm.Value) {
n := params.Len()
if n > 0 {
ret = make([]llvm.Value, len(vals)+base)
for idx, v := range vals {
i := base + idx
if i < n {
v = checkExpr(v, params.At(i).Type(), b)
}
ret[i] = v.impl
}
}
return
}
func llvmFields(vals []Expr, t *types.Struct, b Builder) (ret []llvm.Value) {
n := t.NumFields()
if n > 0 {
ret = make([]llvm.Value, len(vals))
for i, v := range vals {
if i < n {
v = checkExpr(v, t.Field(i).Type(), b)
}
ret[i] = v.impl
}
}
return
}
func llvmDelayValues(f func(i int) Expr, n int) []llvm.Value {
ret := make([]llvm.Value, n)
for i := 0; i < n; i++ {
ret[i] = f(i).impl
}
return ret
}
func llvmPredBlocks(preds []BasicBlock) []llvm.BasicBlock {
ret := make([]llvm.BasicBlock, len(preds))
for i, v := range preds {
ret[i] = v.last
}
return ret
}
// Phi represents a phi node.
type Phi struct {
Expr
}
// AddIncoming adds incoming values to a phi node.
func (p Phi) AddIncoming(b Builder, preds []BasicBlock, f func(i int) Expr) {
bs := llvmPredBlocks(preds)
if p.kind != vkPhisExpr { // normal phi node
vs := llvmDelayValues(f, len(preds))
p.impl.AddIncoming(vs, bs)
return
}
e := p.raw.Type.(*phisExprTy)
phis := e.phis
vals := make([][]llvm.Value, len(phis))
for iblk, blk := range preds {
last := blk.last.LastInstruction()
b.impl.SetInsertPointBefore(last)
impl := b.impl
val := f(iblk).impl
for i := range phis {
if iblk == 0 {
vals[i] = make([]llvm.Value, len(preds))
}
vals[i][iblk] = llvm.CreateExtractValue(impl, val, i)
}
}
for i, phi := range phis {
phi.AddIncoming(vals[i], bs)
}
}
// Phi returns a phi node.
func (b Builder) Phi(t Type) Phi {
impl := b.impl
switch tund := t.raw.Type.Underlying().(type) {
case *types.Basic:
kind := tund.Kind()
switch kind {
case types.String:
prog := b.Prog
phis := make([]llvm.Value, 2)
phis[0] = llvm.CreatePHI(impl, prog.tyVoidPtr())
phis[1] = llvm.CreatePHI(impl, prog.tyInt())
return Phi{phisExpr(t, phis)}
}
case *types.Struct:
panic("todo")
}
phi := llvm.CreatePHI(impl, t.ll)
return Phi{Expr{phi, t}}
}
// -----------------------------------------------------------------------------
// Advance returns the pointer ptr advanced by offset.
func (b Builder) Advance(ptr Expr, offset Expr) Expr {
if debugInstr {
log.Printf("Advance %v, %v\n", ptr.impl, offset.impl)
}
var elem llvm.Type
var prog = b.Prog
switch t := ptr.raw.Type.(type) {
case *types.Basic: // void
elem = prog.tyInt8()
default:
elem = prog.rawType(t.(*types.Pointer).Elem()).ll
}
ret := llvm.CreateGEP(b.impl, elem, ptr.impl, []llvm.Value{offset.impl})
return Expr{ret, ptr.Type}
}
// Load returns the value at the pointer ptr.
func (b Builder) Load(ptr Expr) Expr {
if debugInstr {
log.Printf("Load %v\n", ptr.impl)
}
if ptr.kind == vkPyVarRef {
return b.pyLoad(ptr)
}
telem := b.Prog.Elem(ptr.Type)
return Expr{llvm.CreateLoad(b.impl, telem.ll, ptr.impl), telem}
}
// Store stores val at the pointer ptr.
func (b Builder) Store(ptr, val Expr) Builder {
raw := ptr.raw.Type
if debugInstr {
log.Printf("Store %v, %v, %v\n", raw, ptr.impl, val.impl)
}
val = checkExpr(val, raw.(*types.Pointer).Elem(), b)
b.impl.CreateStore(val.impl, ptr.impl)
return b
}
func (b Builder) aggregateAlloc(t Type, flds ...llvm.Value) llvm.Value {
prog := b.Prog
size := prog.SizeOf(t)
ptr := b.InlineCall(b.Pkg.rtFunc("AllocU"), prog.IntVal(size, prog.Uintptr())).impl
tll := t.ll
impl := b.impl
for i, fld := range flds {
impl.CreateStore(fld, llvm.CreateStructGEP(impl, tll, ptr, i))
}
return ptr
}
// aggregateValue yields the value of the aggregate X with the fields
func (b Builder) aggregateValue(t Type, flds ...llvm.Value) Expr {
return Expr{aggregateValue(b.impl, t.ll, flds...), t}
}
func aggregateValue(b llvm.Builder, tll llvm.Type, flds ...llvm.Value) llvm.Value {
ptr := llvm.CreateAlloca(b, tll)
for i, fld := range flds {
b.CreateStore(fld, llvm.CreateStructGEP(b, tll, ptr, i))
}
return llvm.CreateLoad(b, tll, ptr)
}
// The MakeClosure instruction yields a closure value whose code is
// Fn and whose free variables' values are supplied by Bindings.
//
// Type() returns a (possibly named) *types.Signature.
//
// Example printed form:
//
// t0 = make closure anon@1.2 [x y z]
// t1 = make closure bound$(main.I).add [i]
func (b Builder) MakeClosure(fn Expr, bindings []Expr) Expr {
if debugInstr {
log.Printf("MakeClosure %v, %v\n", fn, bindings)
}
prog := b.Prog
tfn := fn.Type
sig := tfn.raw.Type.(*types.Signature)
tctx := sig.Params().At(0).Type().Underlying().(*types.Pointer).Elem().(*types.Struct)
flds := llvmFields(bindings, tctx, b)
data := b.aggregateAlloc(prog.rawType(tctx), flds...)
return b.aggregateValue(prog.Closure(tfn), fn.impl, data)
}
// -----------------------------------------------------------------------------
// The Alloc instruction reserves space for a variable of the given type,
// zero-initializes it, and yields its address.
//
// If heap is false, Alloc zero-initializes the same local variable in
// the call frame and returns its address; in this case the Alloc must
// be present in Function.Locals. We call this a "local" alloc.
//
// If heap is true, Alloc allocates a new zero-initialized variable
// each time the instruction is executed. We call this a "new" alloc.
//
// When Alloc is applied to a channel, map or slice type, it returns
// the address of an uninitialized (nil) reference of that kind; store
// the result of MakeSlice, MakeMap or MakeChan in that location to
// instantiate these types.
//
// Example printed form:
//
// t0 = local int
// t1 = new int
func (b Builder) Alloc(elem Type, heap bool) (ret Expr) {
if debugInstr {
log.Printf("Alloc %v, %v\n", elem.RawType(), heap)
}
prog := b.Prog
pkg := b.Pkg
size := SizeOf(prog, elem)
if heap {
ret = b.InlineCall(pkg.rtFunc("AllocZ"), size)
} else {
ret = Expr{llvm.CreateAlloca(b.impl, elem.ll), prog.VoidPtr()}
ret.impl = b.InlineCall(pkg.rtFunc("Zeroinit"), ret, size).impl
}
ret.Type = prog.Pointer(elem)
return
}
// AllocU allocates uninitialized space for n*sizeof(elem) bytes.
func (b Builder) AllocU(elem Type, n ...int64) (ret Expr) {
if debugInstr {
log.Printf("AllocU %v, %v\n", elem.raw.Type, n)
}
prog := b.Prog
size := SizeOf(prog, elem, n...)
ret = b.InlineCall(b.Pkg.rtFunc("AllocU"), size)
ret.Type = prog.Pointer(elem)
return
}
// Alloca allocates uninitialized space for n bytes.
func (b Builder) Alloca(n Expr) (ret Expr) {
if debugInstr {
log.Printf("Alloca %v\n", n.impl)
}
prog := b.Prog
telem := prog.tyInt8()
ret.impl = llvm.CreateArrayAlloca(b.impl, telem, n.impl)
ret.Type = prog.VoidPtr()
return
}
/*
// ArrayAlloca reserves space for an array of n elements of type telem.
func (b Builder) ArrayAlloca(telem Type, n Expr) (ret Expr) {
if debugInstr {
log.Printf("ArrayAlloca %v, %v\n", telem.t, n.impl)
}
ret.impl = llvm.CreateArrayAlloca(b.impl, telem.ll, n.impl)
ret.Type = b.Prog.Pointer(telem)
return
}
*/
// AllocaCStr allocates space for copy it from a Go string.
func (b Builder) AllocaCStr(gostr Expr) (ret Expr) {
if debugInstr {
log.Printf("AllocaCStr %v\n", gostr.impl)
}
n := b.StringLen(gostr)
n1 := b.BinOp(token.ADD, n, b.Prog.Val(1))
cstr := b.Alloca(n1)
return b.InlineCall(b.Pkg.rtFunc("CStrCopy"), cstr, gostr)
}
// -----------------------------------------------------------------------------
// The ChangeType instruction applies to X a value-preserving type
// change to Type().
//
// Type changes are permitted:
// - between a named type and its underlying type.
// - between two named types of the same underlying type.
// - between (possibly named) pointers to identical base types.
// - from a bidirectional channel to a read- or write-channel,
// optionally adding/removing a name.
// - between a type (t) and an instance of the type (tσ), i.e.
// Type() == σ(X.Type()) (or X.Type()== σ(Type())) where
// σ is the type substitution of Parent().TypeParams by
// Parent().TypeArgs.
//
// This operation cannot fail dynamically.
//
// Type changes may to be to or from a type parameter (or both). All
// types in the type set of X.Type() have a value-preserving type
// change to all types in the type set of Type().
//
// Example printed form:
//
// t1 = changetype *int <- IntPtr (t0)
func (b Builder) ChangeType(t Type, x Expr) (ret Expr) {
if debugInstr {
log.Printf("ChangeType %v, %v\n", t.RawType(), x.impl)
}
typ := t.raw.Type
switch typ.(type) {
default:
// TODO(xsw): remove instr name
ret.impl = llvm.CreateBitCast(b.impl, x.impl, t.ll)
ret.Type = b.Prog.rawType(typ)
return
}
}
// The Convert instruction yields the conversion of value X to type
// Type(). One or both of those types is basic (but possibly named).
//
// A conversion may change the value and representation of its operand.
// Conversions are permitted:
// - between real numeric types.
// - between complex numeric types.
// - between string and []byte or []rune.
// - between pointers and unsafe.Pointer.
// - between unsafe.Pointer and uintptr.
// - from (Unicode) integer to (UTF-8) string.
//
// A conversion may imply a type name change also.
//
// Conversions may to be to or from a type parameter. All types in
// the type set of X.Type() can be converted to all types in the type
// set of Type().
//
// This operation cannot fail dynamically.
//
// Conversions of untyped string/number/bool constants to a specific
// representation are eliminated during SSA construction.
//
// Example printed form:
//
// t1 = convert []byte <- string (t0)
func (b Builder) Convert(t Type, x Expr) (ret Expr) {
if debugInstr {
log.Printf("Convert %v <- %v\n", t.RawType(), x.RawType())
}
typ := t.raw.Type
ret.Type = b.Prog.rawType(typ)
switch typ := typ.Underlying().(type) {
case *types.Basic:
switch typ.Kind() {
case types.Uintptr:
ret.impl = castUintptr(b, x.impl, t)
return
case types.UnsafePointer:
ret.impl = castPtr(b.impl, x.impl, t.ll)
return
}
switch xtyp := x.RawType().Underlying().(type) {
case *types.Basic:
if typ.Info()&types.IsInteger != 0 {
// int <- int/float
if xtyp.Info()&types.IsInteger != 0 {
ret.impl = castInt(b, x.impl, t)
return
} else if xtyp.Info()&types.IsFloat != 0 {
if typ.Info()&types.IsUnsigned != 0 {
ret.impl = llvm.CreateFPToUI(b.impl, x.impl, t.ll)
} else {
ret.impl = llvm.CreateFPToSI(b.impl, x.impl, t.ll)
}
return
}
} else if typ.Info()&types.IsFloat != 0 {
// float <- int/float
if xtyp.Info()&types.IsInteger != 0 {
if xtyp.Info()&types.IsUnsigned != 0 {
ret.impl = llvm.CreateUIToFP(b.impl, x.impl, t.ll)
} else {
ret.impl = llvm.CreateSIToFP(b.impl, x.impl, t.ll)
}
return
} else if xtyp.Info()&types.IsFloat != 0 {
ret.impl = castFloat(b, x.impl, t)
return
}
}
}
case *types.Pointer:
ret.impl = castPtr(b.impl, x.impl, t.ll)
return
}
panic("todo")
}
func castUintptr(b Builder, x llvm.Value, typ Type) llvm.Value {
if x.Type().TypeKind() == llvm.PointerTypeKind {
return llvm.CreatePtrToInt(b.impl, x, typ.ll)
}
return castInt(b, x, typ)
}
func castInt(b Builder, x llvm.Value, typ Type) llvm.Value {
xsize := b.Prog.td.TypeAllocSize(x.Type())
size := b.Prog.td.TypeAllocSize(typ.ll)
if xsize > size {
return llvm.CreateTrunc(b.impl, x, typ.ll)
} else if typ.kind == vkUnsigned {
return llvm.CreateZExt(b.impl, x, typ.ll)
} else {
return llvm.CreateSExt(b.impl, x, typ.ll)
}
}
func castFloat(b Builder, x llvm.Value, typ Type) llvm.Value {
xsize := b.Prog.td.TypeAllocSize(x.Type())
size := b.Prog.td.TypeAllocSize(typ.ll)
if xsize > size {
return llvm.CreateFPTrunc(b.impl, x, typ.ll)
} else {
return llvm.CreateFPExt(b.impl, x, typ.ll)
}
}
func castPtr(b llvm.Builder, x llvm.Value, t llvm.Type) llvm.Value {
if x.Type().TypeKind() == llvm.PointerTypeKind {
return llvm.CreatePointerCast(b, x, t)
}
return llvm.CreateIntToPtr(b, x, t)
}
// -----------------------------------------------------------------------------
// TODO(xsw): make inline call
func (b Builder) InlineCall(fn Expr, args ...Expr) (ret Expr) {
return b.Call(fn, args...)
}
// The Call instruction represents a function or method call.
//
// The Call instruction yields the function result if there is exactly
// one. Otherwise it returns a tuple, the components of which are
// accessed via Extract.
//
// Example printed form:
//
// t2 = println(t0, t1)
// t4 = t3()
// t7 = invoke t5.Println(...t6)
func (b Builder) Call(fn Expr, args ...Expr) (ret Expr) {
if debugInstr {
var b bytes.Buffer
name := fn.impl.Name()
if name == "" {
name = "closure"
}
fmt.Fprint(&b, "Call ", fn.kind, " ", fn.raw.Type, " ", name)
sep := ": "
for _, arg := range args {
fmt.Fprint(&b, sep, arg.impl)
sep = ", "
}
log.Println(b.String())
}
var kind = fn.kind
if kind == vkPyFuncRef {
return b.pyCall(fn, args)
}
var ll llvm.Type
var data Expr
var sig *types.Signature
var prog = b.Prog
var raw = fn.raw.Type
switch kind {
case vkClosure:
data = b.Field(fn, 1)
fn = b.Field(fn, 0)
raw = fn.raw.Type
fallthrough
case vkFuncPtr:
sig = raw.(*types.Signature)
ll = prog.FuncDecl(sig, InC).ll
case vkFuncDecl:
sig = raw.(*types.Signature)
ll = fn.ll
default:
panic("unreachable")
}
ret.Type = prog.retType(sig)
ret.impl = llvm.CreateCall(b.impl, ll, fn.impl, llvmParamsEx(data, args, sig.Params(), b))
return
}
// A Builtin represents a specific use of a built-in function, e.g. len.
//
// Builtins are immutable values. Builtins do not have addresses.
//
// `fn` indicates the function: one of the built-in functions from the
// Go spec (excluding "make" and "new").
func (b Builder) BuiltinCall(fn string, args ...Expr) (ret Expr) {
switch fn {
case "len":
if len(args) == 1 {
arg := args[0]
switch arg.kind {
case vkSlice:
return b.SliceLen(arg)
case vkString:
return b.StringLen(arg)
}
}
case "cap":
if len(args) == 1 {
arg := args[0]
switch arg.kind {
case vkSlice:
return b.SliceCap(arg)
}
}
case "append":
if len(args) == 2 {
src := args[0]
if src.kind == vkSlice {
elem := args[1]
switch elem.kind {
case vkSlice:
etSize := b.Prog.SizeOf(b.Prog.Elem(elem.Type))
ret.Type = src.Type
ret.impl = b.InlineCall(b.Pkg.rtFunc("SliceAppend"),
src, b.SliceData(elem), b.SliceLen(elem), b.Prog.Val(int(etSize))).impl
return
case vkString:
etSize := b.Prog.SizeOf(b.Prog.Byte())
ret.Type = src.Type
ret.impl = b.InlineCall(b.Pkg.rtFunc("SliceAppend"),
src, b.StringData(elem), b.StringLen(elem), b.Prog.Val(int(etSize))).impl
return
}
}
}
case "print", "println":
ln := fn == "println"
prog := b.Prog
ret.Type = prog.Void()
for i, arg := range args {
if ln && i > 0 {
b.InlineCall(b.Pkg.rtFunc("PrintByte"), prog.IntVal(' ', prog.Byte()))
}
var fn string
typ := arg.Type
switch arg.kind {
case vkBool:
fn = "PrintBool"
case vkSigned:
fn = "PrintInt"
typ = prog.Int64()
case vkUnsigned:
fn = "PrintUint"
typ = prog.Uint64()
case vkFloat:
fn = "PrintFloat"
typ = prog.Float64()
case vkSlice:
fn = "PrintSlice"
case vkPtr, vkFuncPtr, vkFuncDecl:
fn = "PrintPointer"
typ = prog.VoidPtr()
case vkClosure:
arg = b.Field(arg, 0)
fn = "PrintPointer"
typ = prog.VoidPtr()
case vkString:
fn = "PrintString"
case vkEface:
fn = "PrintEface"
// case vkComplex:
// fn = "PrintComplex"
default:
panic(fmt.Errorf("illegal types for operand: print %v", arg.RawType()))
}
if typ != arg.Type {
arg = b.Convert(typ, arg)
}
b.InlineCall(b.Pkg.rtFunc(fn), arg)
}
if ln {
b.InlineCall(b.Pkg.rtFunc("PrintByte"), prog.IntVal('\n', prog.Byte()))
}
return
case "copy":
if len(args) == 2 {
dst := args[0]
if dst.kind == vkSlice {
src := args[1]
prog := b.Prog
etSize := prog.Val(int(prog.SizeOf(prog.Elem(dst.Type))))
switch src.kind {
case vkSlice:
return b.InlineCall(b.Pkg.rtFunc("SliceCopy"), dst, b.SliceData(src), b.SliceLen(src), etSize)
case vkString:
return b.InlineCall(b.Pkg.rtFunc("SliceCopy"), dst, b.StringData(src), b.StringLen(src), etSize)
}
}
}
case "String": // unsafe.String
return b.unsafeString(args[0].impl, args[1].impl)
case "Slice": // unsafe.Slice
size := args[1].impl
return b.unsafeSlice(args[0], size, size)
}
panic("todo: " + fn)
}
// -----------------------------------------------------------------------------