Files
llgo/internal/abi/type.go
2024-10-11 09:14:36 +08:00

603 lines
15 KiB
Go

/*
* Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package abi
import (
"unsafe"
)
// IsExported reports whether name starts with an upper-case letter.
func IsExported(name string) bool {
if len(name) > 0 {
c := name[0]
return 'A' <= c && c <= 'Z'
}
return false
}
// -----------------------------------------------------------------------------
// Type is the runtime representation of a Go type.
//
// Type is also referenced implicitly
// (in the form of expressions involving constants and arch.PtrSize)
// in cmd/compile/internal/reflectdata/reflect.go
// and cmd/link/internal/ld/decodesym.go
// (e.g. data[2*arch.PtrSize+4] references the TFlag field)
// unsafe.OffsetOf(Type{}.TFlag) cannot be used directly in those
// places because it varies with cross compilation and experiments.
type Type struct {
Size_ uintptr
PtrBytes uintptr // number of (prefix) bytes in the type that can contain pointers
Hash uint32 // hash of type; avoids computation in hash tables
TFlag TFlag // extra type information flags
Align_ uint8 // alignment of variable with this type
FieldAlign_ uint8 // alignment of struct field with this type
Kind_ uint8 // enumeration for C
// function for comparing objects of this type
// (ptr to object A, ptr to object B) -> ==?
Equal func(unsafe.Pointer, unsafe.Pointer) bool
// GCData stores the GC type data for the garbage collector.
// If the KindGCProg bit is set in kind, GCData is a GC program.
// Otherwise it is a ptrmask bitmap. See mbitmap.go for details.
GCData *byte
Str_ string // string form
PtrToThis_ *Type // type for pointer to this type, may be nil
}
// A Kind represents the specific kind of type that a Type represents.
// The zero Kind is not a valid kind.
type Kind uint
const (
Invalid Kind = iota
Bool
Int
Int8
Int16
Int32
Int64
Uint
Uint8
Uint16
Uint32
Uint64
Uintptr
Float32
Float64
Complex64
Complex128
Array
Chan
Func
Interface
Map
Pointer
Slice
String
Struct
UnsafePointer
)
const (
// TODO (khr, drchase) why aren't these in TFlag? Investigate, fix if possible.
KindDirectIface = 1 << 5
KindGCProg = 1 << 6 // Type.gc points to GC program
KindMask = (1 << 5) - 1
)
// String returns the name of k.
func (k Kind) String() string {
if int(k) < len(kindNames) {
return kindNames[k]
}
return kindNames[0]
}
var kindNames = []string{
Invalid: "invalid",
Bool: "bool",
Int: "int",
Int8: "int8",
Int16: "int16",
Int32: "int32",
Int64: "int64",
Uint: "uint",
Uint8: "uint8",
Uint16: "uint16",
Uint32: "uint32",
Uint64: "uint64",
Uintptr: "uintptr",
Float32: "float32",
Float64: "float64",
Complex64: "complex64",
Complex128: "complex128",
Array: "array",
Chan: "chan",
Func: "func",
Interface: "interface",
Map: "map",
Pointer: "ptr",
Slice: "slice",
String: "string",
Struct: "struct",
UnsafePointer: "unsafe.Pointer",
}
// TFlag is used by a Type to signal what extra type information is
// available in the memory directly following the Type value.
type TFlag uint8
const (
// TFlagUncommon means that there is a data with a type, UncommonType,
// just beyond the shared-per-type common data. That is, the data
// for struct types will store their UncommonType at one offset, the
// data for interface types will store their UncommonType at a different
// offset. UncommonType is always accessed via a pointer that is computed
// using trust-us-we-are-the-implementors pointer arithmetic.
//
// For example, if t.Kind() == Struct and t.tflag&TFlagUncommon != 0,
// then t has UncommonType data and it can be accessed as:
//
// type structTypeUncommon struct {
// structType
// u UncommonType
// }
// u := &(*structTypeUncommon)(unsafe.Pointer(t)).u
TFlagUncommon TFlag = 1 << 0
// TFlagExtraStar means the name in the str field has an
// extraneous '*' prefix. This is because for most types T in
// a program, the type *T also exists and reusing the str data
// saves binary size.
TFlagExtraStar TFlag = 1 << 1
// TFlagNamed means the type has a name.
TFlagNamed TFlag = 1 << 2
// TFlagRegularMemory means that equal and hash functions can treat
// this type as a single region of t.size bytes.
TFlagRegularMemory TFlag = 1 << 3
// TFlagVariadic means a funcType with variadic parameters
TFlagVariadic TFlag = 1 << 4
// TFlagUninited means this type is not fully initialized.
TFlagUninited TFlag = 1 << 7
)
// -----------------------------------------------------------------------------
// ArrayType represents a fixed array type.
type ArrayType struct {
Type
Elem *Type // array element type
Slice *Type // slice type
Len uintptr
}
type SliceType struct {
Type
Elem *Type // slice element type
}
type MapType struct {
Type
Key *Type
Elem *Type
Bucket *Type // internal type representing a hash bucket
// function for hashing keys (ptr to key, seed) -> hash
Hasher func(unsafe.Pointer, uintptr) uintptr
KeySize uint8 // size of key slot
ValueSize uint8 // size of elem slot
BucketSize uint16 // size of bucket
Flags uint32
}
// Note: flag values must match those used in the TMAP case
// in ../cmd/compile/internal/reflectdata/reflect.go:writeType.
func (mt *MapType) IndirectKey() bool { // store ptr to key instead of key itself
return mt.Flags&1 != 0
}
func (mt *MapType) IndirectElem() bool { // store ptr to elem instead of elem itself
return mt.Flags&2 != 0
}
func (mt *MapType) ReflexiveKey() bool { // true if k==k for all keys
return mt.Flags&4 != 0
}
func (mt *MapType) NeedKeyUpdate() bool { // true if we need to update key on an overwrite
return mt.Flags&8 != 0
}
func (mt *MapType) HashMightPanic() bool { // true if hash function might panic
return mt.Flags&16 != 0
}
func (t *Type) Key() *Type {
if t.Kind() == Map {
return (*MapType)(unsafe.Pointer(t)).Key
}
return nil
}
type PtrType struct {
Type
Elem *Type // pointer element (pointed at) type
}
type ChanDir int
const (
RecvDir ChanDir = 1 << iota // <-chan
SendDir // chan<-
BothDir = RecvDir | SendDir // chan
InvalidDir ChanDir = 0
)
// ChanType represents a channel type
type ChanType struct {
Type
Elem *Type
Dir ChanDir
}
// funcType represents a function type.
type FuncType struct {
Type
In []*Type
Out []*Type
}
// Variadic reports whether the function type is variadic.
func (p *FuncType) Variadic() bool {
return p.TFlag&TFlagVariadic != 0
}
type StructField struct {
Name_ string // name is always non-empty
Typ *Type // type of field
Offset uintptr // byte offset of field
Tag_ string
Embedded_ bool
}
// Embedded reports whether the field is embedded.
func (f *StructField) Embedded() bool {
return f.Embedded_
}
// Exported reports whether the field is exported.
func (f *StructField) Exported() bool {
return IsExported(f.Name_)
}
type StructType struct {
Type
PkgPath_ string
Fields []StructField
}
type InterfaceType struct {
Type
PkgPath_ string // import path
Methods []Imethod // sorted by hash
}
type Text = unsafe.Pointer // TODO(xsw): to be confirmed
// Method on non-interface type
type Method struct {
Name_ string // name of method
Mtyp_ *FuncType // method type (without receiver)
Ifn_ Text // fn used in interface call (one-word receiver)
Tfn_ Text // fn used for normal method call
}
// Exported reports whether the method is exported.
func (p *Method) Exported() bool {
return lastDot(p.Name_) == -1
}
// Name returns the tag string for method.
func (p *Method) Name() string {
_, name := splitName(p.Name_)
return name
}
// PkgPath returns the pkgpath string for method, or empty if there is none.
func (p *Method) PkgPath() string {
pkg, _ := splitName(p.Name_)
return pkg
}
// UncommonType is present only for defined types or types with methods
// (if T is a defined type, the uncommonTypes for T and *T have methods).
// Using a pointer to this struct reduces the overall size required
// to describe a non-defined type with no methods.
type UncommonType struct {
PkgPath_ string // import path; empty for built-in types like int, string
Mcount uint16 // number of methods
Xcount uint16 // number of exported methods
Moff uint32 // offset from this uncommontype to [mcount]Method
}
func (t *UncommonType) Methods() []Method {
if t.Mcount == 0 {
return nil
}
return (*[1 << 16]Method)(addChecked(unsafe.Pointer(t), uintptr(t.Moff), "t.mcount > 0"))[:t.Mcount:t.Mcount]
}
func (t *UncommonType) ExportedMethods() []Method {
if t.Xcount == 0 {
return nil
}
return (*[1 << 16]Method)(addChecked(unsafe.Pointer(t), uintptr(t.Moff), "t.xcount > 0"))[:t.Xcount:t.Xcount]
}
// Imethod represents a method on an interface type
type Imethod struct {
Name_ string // name of method
Typ_ *FuncType // .(*FuncType) underneath
}
// Exported reports whether the imethod is exported.
func (p *Imethod) Exported() bool {
return lastDot(p.Name_) == -1
}
// Name returns the tag string for imethod.
func (p *Imethod) Name() string {
_, name := splitName(p.Name_)
return name
}
// PkgPath returns the pkgpath string for imethod, or empty if there is none.
func (p *Imethod) PkgPath() string {
pkg, _ := splitName(p.Name_)
return pkg
}
func (t *Type) Kind() Kind { return Kind(t.Kind_ & KindMask) }
func (t *Type) HasName() bool {
return t.TFlag&TFlagNamed != 0
}
func (t *Type) Pointers() bool { return t.PtrBytes != 0 }
// IfaceIndir reports whether t is stored indirectly in an interface value.
func (t *Type) IfaceIndir() bool {
return t.Kind_&KindDirectIface == 0
}
// isDirectIface reports whether t is stored directly in an interface value.
func (t *Type) IsDirectIface() bool {
return t.Kind_&KindDirectIface != 0
}
// Size returns the size of data with type t.
func (t *Type) Size() uintptr { return t.Size_ }
// Align returns the alignment of data with type t.
func (t *Type) Align() int { return int(t.Align_) }
func (t *Type) FieldAlign() int { return int(t.FieldAlign_) }
// String returns string form of type t.
func (t *Type) String() string {
if t.TFlag&TFlagExtraStar != 0 {
return "*" + t.Str_ // TODO(xsw): misunderstand
}
return t.Str_
}
func (t *Type) Common() *Type {
return t
}
type structTypeUncommon struct {
StructType
u UncommonType
}
// ChanDir returns the direction of t if t is a channel type, otherwise InvalidDir (0).
func (t *Type) ChanDir() ChanDir {
if t.Kind() == Chan {
ch := (*ChanType)(unsafe.Pointer(t))
return ch.Dir
}
return InvalidDir
}
// Uncommon returns a pointer to T's "uncommon" data if there is any, otherwise nil
func (t *Type) Uncommon() *UncommonType {
if t.TFlag&TFlagUncommon == 0 {
return nil
}
switch t.Kind() {
case Struct:
return &(*structTypeUncommon)(unsafe.Pointer(t)).u
case Pointer:
type u struct {
PtrType
u UncommonType
}
return &(*u)(unsafe.Pointer(t)).u
case Func:
type u struct {
FuncType
u UncommonType
}
return &(*u)(unsafe.Pointer(t)).u
case Slice:
type u struct {
SliceType
u UncommonType
}
return &(*u)(unsafe.Pointer(t)).u
case Array:
type u struct {
ArrayType
u UncommonType
}
return &(*u)(unsafe.Pointer(t)).u
case Chan:
type u struct {
ChanType
u UncommonType
}
return &(*u)(unsafe.Pointer(t)).u
case Map:
type u struct {
MapType
u UncommonType
}
return &(*u)(unsafe.Pointer(t)).u
case Interface:
type u struct {
InterfaceType
u UncommonType
}
return &(*u)(unsafe.Pointer(t)).u
default:
type u struct {
Type
u UncommonType
}
return &(*u)(unsafe.Pointer(t)).u
}
}
// Len returns the length of t if t is an array type, otherwise 0
func (t *Type) Len() int {
if t.Kind() == Array {
return int((*ArrayType)(unsafe.Pointer(t)).Len)
}
return 0
}
// Elem returns the element type for t if t is an array, channel, map, pointer, or slice, otherwise nil.
func (t *Type) Elem() *Type {
switch t.Kind() {
case Pointer:
tt := (*PtrType)(unsafe.Pointer(t))
return tt.Elem
case Slice:
tt := (*SliceType)(unsafe.Pointer(t))
return tt.Elem
case Map:
tt := (*MapType)(unsafe.Pointer(t))
return tt.Elem
case Array:
tt := (*ArrayType)(unsafe.Pointer(t))
return tt.Elem
case Chan:
tt := (*ChanType)(unsafe.Pointer(t))
return tt.Elem
}
return nil
}
// StructType returns t cast to a *StructType, or nil if its tag does not match.
func (t *Type) StructType() *StructType {
if t.Kind() != Struct {
return nil
}
return (*StructType)(unsafe.Pointer(t))
}
// MapType returns t cast to a *MapType, or nil if its tag does not match.
func (t *Type) MapType() *MapType {
if t.Kind() != Map {
return nil
}
return (*MapType)(unsafe.Pointer(t))
}
// ArrayType returns t cast to a *ArrayType, or nil if its tag does not match.
func (t *Type) ArrayType() *ArrayType {
if t.Kind() != Array {
return nil
}
return (*ArrayType)(unsafe.Pointer(t))
}
// FuncType returns t cast to a *FuncType, or nil if its tag does not match.
func (t *Type) FuncType() *FuncType {
if t.Kind() != Func {
return nil
}
return (*FuncType)(unsafe.Pointer(t))
}
// InterfaceType returns t cast to a *InterfaceType, or nil if its tag does not match.
func (t *Type) InterfaceType() *InterfaceType {
if t.Kind() != Interface {
return nil
}
return (*InterfaceType)(unsafe.Pointer(t))
}
func (t *Type) ExportedMethods() []Method {
ut := t.Uncommon()
if ut == nil {
return nil
}
return ut.ExportedMethods()
}
func (t *Type) NumMethod() int {
if t.Kind() == Interface {
tt := (*InterfaceType)(unsafe.Pointer(t))
return tt.NumMethod()
}
return len(t.ExportedMethods())
}
// -----------------------------------------------------------------------------
// addChecked returns p+x.
//
// The whySafe string is ignored, so that the function still inlines
// as efficiently as p+x, but all call sites should use the string to
// record why the addition is safe, which is to say why the addition
// does not cause x to advance to the very end of p's allocation
// and therefore point incorrectly at the next block in memory.
func addChecked(p unsafe.Pointer, x uintptr, whySafe string) unsafe.Pointer {
_ = whySafe
return unsafe.Pointer(uintptr(p) + x)
}
func splitName(s string) (pkg string, name string) {
i := lastDot(s)
if i == -1 {
return "", s
}
return s[:i], s[i+1:]
}
func lastDot(s string) int {
i := len(s) - 1
for i >= 0 && s[i] != '.' {
i--
}
return i
}
// -----------------------------------------------------------------------------