Files
llgo/runtime/internal/lib/reflect/makefunc.go
2025-06-12 15:50:56 +08:00

294 lines
9.4 KiB
Go

/*
* Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// MakeFunc implementation.
package reflect
import (
"unsafe"
"github.com/goplus/llgo/runtime/abi"
c "github.com/goplus/llgo/runtime/internal/clite"
"github.com/goplus/llgo/runtime/internal/ffi"
"github.com/goplus/llgo/runtime/internal/runtime"
)
type funcData struct {
ftyp *funcType
fn func(args []Value) (results []Value)
nin int
}
func MakeFunc(typ Type, fn func(args []Value) (results []Value)) Value {
if typ.Kind() != Func {
panic("reflect: call of MakeFunc with non-Func type")
}
t := typ.common()
ftyp := (*funcType)(unsafe.Pointer(t))
sig, err := toFFISig(append([]*abi.Type{unsafePointerType}, ftyp.In...), ftyp.Out)
if err != nil {
panic(err)
}
closure := ffi.NewClosure()
switch len(ftyp.Out) {
case 0:
err = closure.Bind(sig, func(cif *ffi.Signature, ret unsafe.Pointer, args *unsafe.Pointer, userdata unsafe.Pointer) {
fd := (*funcData)(userdata)
ins := make([]Value, fd.nin)
for i := 0; i < fd.nin; i++ {
ins[i] = ffiToValue(ffi.Index(args, uintptr(i+1)), fd.ftyp.In[i])
}
fd.fn(ins)
}, unsafe.Pointer(&funcData{ftyp: ftyp, fn: fn, nin: len(ftyp.In)}))
case 1:
err = closure.Bind(sig, func(cif *ffi.Signature, ret unsafe.Pointer, args *unsafe.Pointer, userdata unsafe.Pointer) {
fd := (*funcData)(userdata)
ins := make([]Value, fd.nin)
for i := 0; i < fd.nin; i++ {
ins[i] = ffiToValue(ffi.Index(args, uintptr(i+1)), fd.ftyp.In[i])
}
out := fd.fn(ins)
if fd.ftyp.Out[0].IfaceIndir() {
c.Memmove(ret, out[0].ptr, fd.ftyp.Out[0].Size_)
} else {
*(*unsafe.Pointer)(ret) = unsafe.Pointer(out[0].ptr)
}
}, unsafe.Pointer(&funcData{ftyp: ftyp, fn: fn, nin: len(ftyp.In)}))
default:
err = closure.Bind(sig, func(cif *ffi.Signature, ret unsafe.Pointer, args *unsafe.Pointer, userdata unsafe.Pointer) {
fd := (*funcData)(userdata)
ins := make([]Value, fd.nin)
for i := 0; i < fd.nin; i++ {
ins[i] = ffiToValue(ffi.Index(args, uintptr(i+1)), fd.ftyp.In[i])
}
outs := fd.fn(ins)
var offset uintptr = 0
for i, out := range outs {
if fd.ftyp.Out[i].IfaceIndir() {
c.Memmove(add(ret, offset, ""), out.ptr, fd.ftyp.Out[i].Size_)
} else {
*(*unsafe.Pointer)(add(ret, offset, "")) = unsafe.Pointer(out.ptr)
}
offset += fd.ftyp.Out[i].Size_
}
}, unsafe.Pointer(&funcData{ftyp: ftyp, fn: fn, nin: len(ftyp.In)}))
}
if err != nil {
panic("libffi error: " + err.Error())
}
styp := runtime.Struct("", 2*unsafe.Sizeof(0), abi.StructField{
Name_: "$f",
Typ: &ftyp.Type,
}, abi.StructField{
Name_: "$data",
Typ: unsafePointerType,
})
fv := &struct {
fn unsafe.Pointer
env unsafe.Pointer
}{closure.Fn, unsafe.Pointer(&fn)}
return Value{styp, unsafe.Pointer(fv), flagIndir | flag(Func)}
}
func ffiToValue(ptr unsafe.Pointer, typ *abi.Type) (v Value) {
kind := typ.Kind()
v.typ_ = typ
v.flag = flag(kind)
if typ.IfaceIndir() {
v.flag |= flagIndir
v.ptr = ptr
} else {
v.ptr = *(*unsafe.Pointer)(ptr)
}
return
}
/*
import (
"unsafe"
)
// makeFuncImpl is the closure value implementing the function
// returned by MakeFunc.
// The first three words of this type must be kept in sync with
// methodValue and runtime.reflectMethodValue.
// Any changes should be reflected in all three.
type makeFuncImpl struct {
makeFuncCtxt
ftyp *funcType
fn func([]Value) []Value
}
// MakeFunc returns a new function of the given Type
// that wraps the function fn. When called, that new function
// does the following:
//
// - converts its arguments to a slice of Values.
// - runs results := fn(args).
// - returns the results as a slice of Values, one per formal result.
//
// The implementation fn can assume that the argument Value slice
// has the number and type of arguments given by typ.
// If typ describes a variadic function, the final Value is itself
// a slice representing the variadic arguments, as in the
// body of a variadic function. The result Value slice returned by fn
// must have the number and type of results given by typ.
//
// The Value.Call method allows the caller to invoke a typed function
// in terms of Values; in contrast, MakeFunc allows the caller to implement
// a typed function in terms of Values.
//
// The Examples section of the documentation includes an illustration
// of how to use MakeFunc to build a swap function for different types.
func MakeFunc(typ Type, fn func(args []Value) (results []Value)) Value {
if typ.Kind() != Func {
panic("reflect: call of MakeFunc with non-Func type")
}
t := typ.common()
ftyp := (*funcType)(unsafe.Pointer(t))
code := abi.FuncPCABI0(makeFuncStub)
// makeFuncImpl contains a stack map for use by the runtime
_, _, abid := funcLayout(ftyp, nil)
impl := &makeFuncImpl{
makeFuncCtxt: makeFuncCtxt{
fn: code,
stack: abid.stackPtrs,
argLen: abid.stackCallArgsSize,
regPtrs: abid.inRegPtrs,
},
ftyp: ftyp,
fn: fn,
}
return Value{t, unsafe.Pointer(impl), flag(Func)}
}
// makeFuncStub is an assembly function that is the code half of
// the function returned from MakeFunc. It expects a *callReflectFunc
// as its context register, and its job is to invoke callReflect(ctxt, frame)
// where ctxt is the context register and frame is a pointer to the first
// word in the passed-in argument frame.
func makeFuncStub()
// The first 3 words of this type must be kept in sync with
// makeFuncImpl and runtime.reflectMethodValue.
// Any changes should be reflected in all three.
type methodValue struct {
makeFuncCtxt
method int
rcvr Value
}
*/
// makeMethodValue converts v from the rcvr+method index representation
// of a method value to an actual method func value, which is
// basically the receiver value with a special bit set, into a true
// func value - a value holding an actual func. The output is
// semantically equivalent to the input as far as the user of package
// reflect can tell, but the true func representation can be handled
// by code like Convert and Interface and Assign.
func makeMethodValue(op string, v Value) Value {
if v.flag&flagMethod == 0 {
panic("reflect: internal error: invalid use of makeMethodValue")
}
// Ignoring the flagMethod bit, v describes the receiver, not the method type.
fl := v.flag & (flagRO | flagAddr | flagIndir)
fl |= flag(v.typ().Kind())
rcvr := Value{v.typ(), v.ptr, fl}
// v.Type returns the actual type of the method value.
ftyp := (*funcType)(unsafe.Pointer(v.Type().(*rtype)))
typ := runtime.Struct("", 2*unsafe.Sizeof(0), abi.StructField{
Name_: "$f",
Typ: &ftyp.Type,
}, abi.StructField{
Name_: "$data",
Typ: unsafePointerType,
})
typ.TFlag |= abi.TFlagClosure
_, _, fn := methodReceiver(op, rcvr, int(v.flag)>>flagMethodShift)
fv := &struct {
fn unsafe.Pointer
env unsafe.Pointer
}{fn, v.ptr}
// Cause panic if method is not appropriate.
// The panic would still happen during the call if we omit this,
// but we want Interface() and other operations to fail early.
return Value{typ, unsafe.Pointer(fv), v.flag&flagRO | flagIndir | flag(Func)}
}
var unsafePointerType = rtypeOf(unsafe.Pointer(nil))
/*
func methodValueCallCodePtr() uintptr {
return abi.FuncPCABI0(methodValueCall)
}
// methodValueCall is an assembly function that is the code half of
// the function returned from makeMethodValue. It expects a *methodValue
// as its context register, and its job is to invoke callMethod(ctxt, frame)
// where ctxt is the context register and frame is a pointer to the first
// word in the passed-in argument frame.
func methodValueCall()
// This structure must be kept in sync with runtime.reflectMethodValue.
// Any changes should be reflected in all both.
type makeFuncCtxt struct {
fn uintptr
stack *bitVector // ptrmap for both stack args and results
argLen uintptr // just args
regPtrs abi.IntArgRegBitmap
}
// moveMakeFuncArgPtrs uses ctxt.regPtrs to copy integer pointer arguments
// in args.Ints to args.Ptrs where the GC can see them.
//
// This is similar to what reflectcallmove does in the runtime, except
// that happens on the return path, whereas this happens on the call path.
//
// nosplit because pointers are being held in uintptr slots in args, so
// having our stack scanned now could lead to accidentally freeing
// memory.
//
//go:nosplit
func moveMakeFuncArgPtrs(ctxt *makeFuncCtxt, args *abi.RegArgs) {
for i, arg := range args.Ints {
// Avoid write barriers! Because our write barrier enqueues what
// was there before, we might enqueue garbage.
if ctxt.regPtrs.Get(i) {
*(*uintptr)(unsafe.Pointer(&args.Ptrs[i])) = arg
} else {
// We *must* zero this space ourselves because it's defined in
// assembly code and the GC will scan these pointers. Otherwise,
// there will be garbage here.
*(*uintptr)(unsafe.Pointer(&args.Ptrs[i])) = 0
}
}
}
*/