1394 lines
38 KiB
Go
1394 lines
38 KiB
Go
/*
|
||
* Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved.
|
||
*
|
||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
* you may not use this file except in compliance with the License.
|
||
* You may obtain a copy of the License at
|
||
*
|
||
* http://www.apache.org/licenses/LICENSE-2.0
|
||
*
|
||
* Unless required by applicable law or agreed to in writing, software
|
||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
* See the License for the specific language governing permissions and
|
||
* limitations under the License.
|
||
*/
|
||
|
||
package ssa
|
||
|
||
import (
|
||
"bytes"
|
||
"fmt"
|
||
"go/constant"
|
||
"go/token"
|
||
"go/types"
|
||
"log"
|
||
|
||
"github.com/goplus/llgo/internal/abi"
|
||
"github.com/goplus/llvm"
|
||
)
|
||
|
||
// -----------------------------------------------------------------------------
|
||
|
||
type Expr struct {
|
||
impl llvm.Value
|
||
Type
|
||
}
|
||
|
||
var Nil Expr // Zero value is a nil Expr
|
||
|
||
// IsNil checks if the expression is nil or not.
|
||
func (v Expr) IsNil() bool {
|
||
return v.Type == nil
|
||
}
|
||
|
||
// Do evaluates the delay expression and returns the result.
|
||
func (v Expr) Do(b Builder) Expr {
|
||
switch vt := v.Type; vt.kind {
|
||
case vkPhisExpr:
|
||
e := vt.raw.Type.(*phisExprTy)
|
||
return b.aggregateValue(e.Type, e.phis...)
|
||
}
|
||
return v
|
||
}
|
||
|
||
// -----------------------------------------------------------------------------
|
||
|
||
type pyVarTy struct {
|
||
mod Expr
|
||
name string
|
||
}
|
||
|
||
func (p pyVarTy) Underlying() types.Type {
|
||
panic("don't call")
|
||
}
|
||
|
||
func (p pyVarTy) String() string {
|
||
return "pyVar"
|
||
}
|
||
|
||
func pyVarExpr(mod Expr, name string) Expr {
|
||
tvar := &aType{raw: rawType{&pyVarTy{mod, name}}, kind: vkPyVarRef}
|
||
return Expr{Type: tvar}
|
||
}
|
||
|
||
// -----------------------------------------------------------------------------
|
||
|
||
type phisExprTy struct {
|
||
phis []llvm.Value
|
||
Type
|
||
}
|
||
|
||
func (p phisExprTy) Underlying() types.Type {
|
||
panic("don't call")
|
||
}
|
||
|
||
func (p phisExprTy) String() string {
|
||
return "phisExpr"
|
||
}
|
||
|
||
func phisExpr(t Type, phis []llvm.Value) Expr {
|
||
tphi := &aType{raw: rawType{&phisExprTy{phis, t}}, kind: vkPhisExpr}
|
||
return Expr{Type: tphi}
|
||
}
|
||
|
||
// -----------------------------------------------------------------------------
|
||
|
||
// Null returns a null constant expression.
|
||
func (p Program) Null(t Type) Expr {
|
||
return Expr{llvm.ConstNull(t.ll), t}
|
||
}
|
||
|
||
// PyNull returns a null *PyObject constant expression.
|
||
func (p Program) PyNull() Expr {
|
||
return p.Null(p.PyObjectPtr())
|
||
}
|
||
|
||
// BoolVal returns a boolean constant expression.
|
||
func (p Program) BoolVal(v bool) Expr {
|
||
t := p.Bool()
|
||
var bv uint64
|
||
if v {
|
||
bv = 1
|
||
}
|
||
ret := llvm.ConstInt(t.ll, bv, v)
|
||
return Expr{ret, t}
|
||
}
|
||
|
||
// IntVal returns an integer constant expression.
|
||
func (p Program) IntVal(v uint64, t Type) Expr {
|
||
ret := llvm.ConstInt(t.ll, v, false)
|
||
return Expr{ret, t}
|
||
}
|
||
|
||
func (p Program) FloatVal(v float64, t Type) Expr {
|
||
ret := llvm.ConstFloat(t.ll, v)
|
||
return Expr{ret, t}
|
||
}
|
||
|
||
// Val returns a constant expression.
|
||
func (p Program) Val(v interface{}) Expr {
|
||
switch v := v.(type) {
|
||
case int:
|
||
return p.IntVal(uint64(v), p.Int())
|
||
case uintptr:
|
||
return p.IntVal(uint64(v), p.Uintptr())
|
||
case bool:
|
||
return p.BoolVal(v)
|
||
case float64:
|
||
t := p.Float64()
|
||
ret := llvm.ConstFloat(t.ll, v)
|
||
return Expr{ret, t}
|
||
}
|
||
panic("todo")
|
||
}
|
||
|
||
// Const returns a constant expression.
|
||
func (b Builder) Const(v constant.Value, typ Type) Expr {
|
||
prog := b.Prog
|
||
if v == nil {
|
||
return prog.Null(typ)
|
||
}
|
||
raw := typ.raw.Type
|
||
switch t := raw.(type) {
|
||
case *types.Basic:
|
||
kind := t.Kind()
|
||
switch {
|
||
case kind == types.Bool:
|
||
return prog.BoolVal(constant.BoolVal(v))
|
||
case kind >= types.Int && kind <= types.Int64:
|
||
if v, exact := constant.Int64Val(v); exact {
|
||
return prog.IntVal(uint64(v), typ)
|
||
}
|
||
case kind >= types.Uint && kind <= types.Uintptr:
|
||
if v, exact := constant.Uint64Val(v); exact {
|
||
return prog.IntVal(v, typ)
|
||
}
|
||
case kind == types.Float32 || kind == types.Float64:
|
||
if v, exact := constant.Float64Val(v); exact {
|
||
return prog.FloatVal(v, typ)
|
||
}
|
||
case kind == types.String:
|
||
return b.Str(constant.StringVal(v))
|
||
}
|
||
}
|
||
panic(fmt.Sprintf("unsupported Const: %v, %v", v, raw))
|
||
}
|
||
|
||
// SizeOf returns the size of a type.
|
||
func (b Builder) SizeOf(t Type, n ...int64) Expr {
|
||
prog := b.Prog
|
||
size := prog.SizeOf(t, n...)
|
||
return prog.IntVal(size, prog.Uintptr())
|
||
}
|
||
|
||
// CStr returns a c-style string constant expression.
|
||
func (b Builder) CStr(v string) Expr {
|
||
return Expr{llvm.CreateGlobalStringPtr(b.impl, v), b.Prog.CStr()}
|
||
}
|
||
|
||
// Str returns a Go string constant expression.
|
||
func (b Builder) Str(v string) (ret Expr) {
|
||
prog := b.Prog
|
||
cstr := b.CStr(v)
|
||
ret = b.InlineCall(b.Func.Pkg.rtFunc("NewString"), cstr, prog.Val(len(v)))
|
||
ret.Type = prog.String()
|
||
return
|
||
}
|
||
|
||
// -----------------------------------------------------------------------------
|
||
|
||
const (
|
||
mathOpBase = token.ADD
|
||
mathOpLast = token.REM
|
||
)
|
||
|
||
var mathOpToLLVM = []llvm.Opcode{
|
||
int(token.ADD-mathOpBase)<<2 | vkSigned: llvm.Add,
|
||
int(token.ADD-mathOpBase)<<2 | vkUnsigned: llvm.Add,
|
||
int(token.ADD-mathOpBase)<<2 | vkFloat: llvm.FAdd,
|
||
|
||
int(token.SUB-mathOpBase)<<2 | vkSigned: llvm.Sub,
|
||
int(token.SUB-mathOpBase)<<2 | vkUnsigned: llvm.Sub,
|
||
int(token.SUB-mathOpBase)<<2 | vkFloat: llvm.FSub,
|
||
|
||
int(token.MUL-mathOpBase)<<2 | vkSigned: llvm.Mul,
|
||
int(token.MUL-mathOpBase)<<2 | vkUnsigned: llvm.Mul,
|
||
int(token.MUL-mathOpBase)<<2 | vkFloat: llvm.FMul,
|
||
|
||
int(token.QUO-mathOpBase)<<2 | vkSigned: llvm.SDiv,
|
||
int(token.QUO-mathOpBase)<<2 | vkUnsigned: llvm.UDiv,
|
||
int(token.QUO-mathOpBase)<<2 | vkFloat: llvm.FDiv,
|
||
|
||
int(token.REM-mathOpBase)<<2 | vkSigned: llvm.SRem,
|
||
int(token.REM-mathOpBase)<<2 | vkUnsigned: llvm.URem,
|
||
int(token.REM-mathOpBase)<<2 | vkFloat: llvm.FRem,
|
||
}
|
||
|
||
func mathOpIdx(op token.Token, x valueKind) int {
|
||
return int(op-mathOpBase)<<2 | x
|
||
}
|
||
|
||
// ADD SUB MUL QUO REM + - * / %
|
||
func isMathOp(op token.Token) bool {
|
||
return op >= mathOpBase && op <= mathOpLast
|
||
}
|
||
|
||
const (
|
||
logicOpBase = token.AND
|
||
logicOpLast = token.AND_NOT
|
||
)
|
||
|
||
var logicOpToLLVM = []llvm.Opcode{
|
||
token.AND - logicOpBase: llvm.And,
|
||
token.OR - logicOpBase: llvm.Or,
|
||
token.XOR - logicOpBase: llvm.Xor,
|
||
token.SHL - logicOpBase: llvm.Shl,
|
||
token.SHR - logicOpBase: llvm.AShr, // Arithmetic Shift Right
|
||
}
|
||
|
||
// AND OR XOR SHL SHR AND_NOT & | ^ << >> &^
|
||
func isLogicOp(op token.Token) bool {
|
||
return op >= logicOpBase && op <= logicOpLast
|
||
}
|
||
|
||
const (
|
||
predOpBase = token.EQL
|
||
predOpLast = token.GEQ
|
||
)
|
||
|
||
var intPredOpToLLVM = []llvm.IntPredicate{
|
||
token.EQL - predOpBase: llvm.IntEQ,
|
||
token.NEQ - predOpBase: llvm.IntNE,
|
||
token.LSS - predOpBase: llvm.IntSLT,
|
||
token.LEQ - predOpBase: llvm.IntSLE,
|
||
token.GTR - predOpBase: llvm.IntSGT,
|
||
token.GEQ - predOpBase: llvm.IntSGE,
|
||
}
|
||
|
||
var uintPredOpToLLVM = []llvm.IntPredicate{
|
||
token.EQL - predOpBase: llvm.IntEQ,
|
||
token.NEQ - predOpBase: llvm.IntNE,
|
||
token.LSS - predOpBase: llvm.IntULT,
|
||
token.LEQ - predOpBase: llvm.IntULE,
|
||
token.GTR - predOpBase: llvm.IntUGT,
|
||
token.GEQ - predOpBase: llvm.IntUGE,
|
||
}
|
||
|
||
var floatPredOpToLLVM = []llvm.FloatPredicate{
|
||
token.EQL - predOpBase: llvm.FloatOEQ,
|
||
token.NEQ - predOpBase: llvm.FloatONE,
|
||
token.LSS - predOpBase: llvm.FloatOLT,
|
||
token.LEQ - predOpBase: llvm.FloatOLE,
|
||
token.GTR - predOpBase: llvm.FloatOGT,
|
||
token.GEQ - predOpBase: llvm.FloatOGE,
|
||
}
|
||
|
||
var boolPredOpToLLVM = []llvm.IntPredicate{
|
||
token.EQL - predOpBase: llvm.IntEQ,
|
||
token.NEQ - predOpBase: llvm.IntNE,
|
||
}
|
||
|
||
// EQL NEQ LSS LEQ GTR GEQ == != < <= < >=
|
||
func isPredOp(op token.Token) bool {
|
||
return op >= predOpBase && op <= predOpLast
|
||
}
|
||
|
||
// The BinOp instruction yields the result of binary operation (x op y).
|
||
// op can be:
|
||
// ADD SUB MUL QUO REM + - * / %
|
||
// AND OR XOR SHL SHR AND_NOT & | ^ << >> &^
|
||
// EQL NEQ LSS LEQ GTR GEQ == != < <= < >=
|
||
func (b Builder) BinOp(op token.Token, x, y Expr) Expr {
|
||
if debugInstr {
|
||
log.Printf("BinOp %d, %v, %v\n", op, x.impl, y.impl)
|
||
}
|
||
switch {
|
||
case isMathOp(op): // op: + - * / %
|
||
kind := x.kind
|
||
switch kind {
|
||
case vkString:
|
||
if op == token.ADD {
|
||
pkg := b.Func.Pkg
|
||
return Expr{b.InlineCall(pkg.rtFunc("StringCat"), x, y).impl, x.Type}
|
||
}
|
||
case vkComplex:
|
||
default:
|
||
idx := mathOpIdx(op, kind)
|
||
if llop := mathOpToLLVM[idx]; llop != 0 {
|
||
return Expr{llvm.CreateBinOp(b.impl, llop, x.impl, y.impl), x.Type}
|
||
}
|
||
}
|
||
case isLogicOp(op): // op: & | ^ << >> &^
|
||
if op == token.AND_NOT {
|
||
return Expr{b.impl.CreateAnd(x.impl, b.impl.CreateNot(y.impl, ""), ""), x.Type}
|
||
}
|
||
kind := x.kind
|
||
llop := logicOpToLLVM[op-logicOpBase]
|
||
if op == token.SHR && kind == vkUnsigned {
|
||
llop = llvm.LShr // Logical Shift Right
|
||
}
|
||
return Expr{llvm.CreateBinOp(b.impl, llop, x.impl, y.impl), x.Type}
|
||
case isPredOp(op): // op: == != < <= < >=
|
||
tret := b.Prog.Bool()
|
||
kind := x.kind
|
||
switch kind {
|
||
case vkSigned:
|
||
pred := intPredOpToLLVM[op-predOpBase]
|
||
return Expr{llvm.CreateICmp(b.impl, pred, x.impl, y.impl), tret}
|
||
case vkUnsigned, vkPtr:
|
||
pred := uintPredOpToLLVM[op-predOpBase]
|
||
return Expr{llvm.CreateICmp(b.impl, pred, x.impl, y.impl), tret}
|
||
case vkFloat:
|
||
pred := floatPredOpToLLVM[op-predOpBase]
|
||
return Expr{llvm.CreateFCmp(b.impl, pred, x.impl, y.impl), tret}
|
||
case vkBool:
|
||
pred := boolPredOpToLLVM[op-predOpBase]
|
||
return Expr{llvm.CreateICmp(b.impl, pred, x.impl, y.impl), tret}
|
||
case vkString, vkComplex:
|
||
panic("todo")
|
||
}
|
||
}
|
||
panic("todo")
|
||
}
|
||
|
||
// The UnOp instruction yields the result of (op x).
|
||
// ARROW is channel receive.
|
||
// MUL is pointer indirection (load).
|
||
// XOR is bitwise complement.
|
||
// SUB is negation.
|
||
// NOT is logical negation.
|
||
func (b Builder) UnOp(op token.Token, x Expr) (ret Expr) {
|
||
if debugInstr {
|
||
log.Printf("UnOp %v, %v\n", op, x.impl)
|
||
}
|
||
switch op {
|
||
case token.MUL:
|
||
return b.Load(x)
|
||
case token.SUB:
|
||
switch t := x.Type.raw.Underlying().(type) {
|
||
case *types.Basic:
|
||
ret.Type = x.Type
|
||
if t.Info()&types.IsInteger != 0 {
|
||
ret.impl = b.impl.CreateNeg(x.impl, "")
|
||
} else if t.Info()&types.IsFloat != 0 {
|
||
ret.impl = b.impl.CreateFNeg(x.impl, "")
|
||
} else {
|
||
panic("todo")
|
||
}
|
||
default:
|
||
panic("unreachable")
|
||
}
|
||
case token.NOT:
|
||
ret.Type = x.Type
|
||
ret.impl = b.impl.CreateNot(x.impl, "")
|
||
case token.XOR:
|
||
ret.Type = x.Type
|
||
ret.impl = b.impl.CreateXor(x.impl, llvm.ConstInt(x.Type.ll, ^uint64(0), false), "")
|
||
case token.ARROW:
|
||
panic("todo")
|
||
}
|
||
return
|
||
}
|
||
|
||
// -----------------------------------------------------------------------------
|
||
|
||
func checkExpr(v Expr, t types.Type, b Builder) Expr {
|
||
if t, ok := t.(*types.Struct); ok && isClosure(t) {
|
||
if v.kind != vkClosure {
|
||
return b.Func.Pkg.closureStub(b, t, v)
|
||
}
|
||
}
|
||
return v
|
||
}
|
||
|
||
func llvmParamsEx(data Expr, vals []Expr, params *types.Tuple, b Builder) (ret []llvm.Value) {
|
||
if data.IsNil() {
|
||
return llvmParams(0, vals, params, b)
|
||
}
|
||
ret = llvmParams(1, vals, params, b)
|
||
ret[0] = data.impl
|
||
return
|
||
}
|
||
|
||
func llvmParams(base int, vals []Expr, params *types.Tuple, b Builder) (ret []llvm.Value) {
|
||
n := params.Len()
|
||
if n > 0 {
|
||
ret = make([]llvm.Value, len(vals)+base)
|
||
for idx, v := range vals {
|
||
i := base + idx
|
||
if i < n {
|
||
v = checkExpr(v, params.At(i).Type(), b)
|
||
}
|
||
ret[i] = v.impl
|
||
}
|
||
}
|
||
return
|
||
}
|
||
|
||
func llvmFields(vals []Expr, t *types.Struct, b Builder) (ret []llvm.Value) {
|
||
n := t.NumFields()
|
||
if n > 0 {
|
||
ret = make([]llvm.Value, len(vals))
|
||
for i, v := range vals {
|
||
if i < n {
|
||
v = checkExpr(v, t.Field(i).Type(), b)
|
||
}
|
||
ret[i] = v.impl
|
||
}
|
||
}
|
||
return
|
||
}
|
||
|
||
func llvmDelayValues(f func(i int) Expr, n int) []llvm.Value {
|
||
ret := make([]llvm.Value, n)
|
||
for i := 0; i < n; i++ {
|
||
ret[i] = f(i).impl
|
||
}
|
||
return ret
|
||
}
|
||
|
||
func llvmBlocks(bblks []BasicBlock) []llvm.BasicBlock {
|
||
ret := make([]llvm.BasicBlock, len(bblks))
|
||
for i, v := range bblks {
|
||
ret[i] = v.impl
|
||
}
|
||
return ret
|
||
}
|
||
|
||
// Phi represents a phi node.
|
||
type Phi struct {
|
||
Expr
|
||
}
|
||
|
||
// AddIncoming adds incoming values to a phi node.
|
||
func (p Phi) AddIncoming(b Builder, bblks []BasicBlock, f func(i int) Expr) {
|
||
bs := llvmBlocks(bblks)
|
||
if p.kind != vkPhisExpr { // normal phi node
|
||
vs := llvmDelayValues(f, len(bblks))
|
||
p.impl.AddIncoming(vs, bs)
|
||
return
|
||
}
|
||
e := p.raw.Type.(*phisExprTy)
|
||
phis := e.phis
|
||
vals := make([][]llvm.Value, len(phis))
|
||
for iblk, blk := range bblks {
|
||
last := blk.impl.LastInstruction()
|
||
b.impl.SetInsertPointBefore(last)
|
||
impl := b.impl
|
||
val := f(iblk).impl
|
||
for i := range phis {
|
||
if iblk == 0 {
|
||
vals[i] = make([]llvm.Value, len(bblks))
|
||
}
|
||
vals[i][iblk] = llvm.CreateExtractValue(impl, val, i)
|
||
}
|
||
}
|
||
for i, phi := range phis {
|
||
phi.AddIncoming(vals[i], bs)
|
||
}
|
||
}
|
||
|
||
// Phi returns a phi node.
|
||
func (b Builder) Phi(t Type) Phi {
|
||
impl := b.impl
|
||
switch tund := t.raw.Type.Underlying().(type) {
|
||
case *types.Basic:
|
||
kind := tund.Kind()
|
||
switch kind {
|
||
case types.String:
|
||
prog := b.Prog
|
||
phis := make([]llvm.Value, 2)
|
||
phis[0] = llvm.CreatePHI(impl, prog.tyVoidPtr())
|
||
phis[1] = llvm.CreatePHI(impl, prog.tyInt())
|
||
return Phi{phisExpr(t, phis)}
|
||
}
|
||
case *types.Struct:
|
||
panic("todo")
|
||
}
|
||
phi := llvm.CreatePHI(impl, t.ll)
|
||
return Phi{Expr{phi, t}}
|
||
}
|
||
|
||
// -----------------------------------------------------------------------------
|
||
|
||
// Advance returns the pointer ptr advanced by offset.
|
||
func (b Builder) Advance(ptr Expr, offset Expr) Expr {
|
||
if debugInstr {
|
||
log.Printf("Advance %v, %v\n", ptr.impl, offset.impl)
|
||
}
|
||
var elem llvm.Type
|
||
var prog = b.Prog
|
||
switch t := ptr.raw.Type.(type) {
|
||
case *types.Basic: // void
|
||
elem = prog.tyInt8()
|
||
default:
|
||
elem = prog.rawType(t.(*types.Pointer).Elem()).ll
|
||
}
|
||
ret := llvm.CreateGEP(b.impl, elem, ptr.impl, []llvm.Value{offset.impl})
|
||
return Expr{ret, ptr.Type}
|
||
}
|
||
|
||
// Load returns the value at the pointer ptr.
|
||
func (b Builder) Load(ptr Expr) Expr {
|
||
if debugInstr {
|
||
log.Printf("Load %v\n", ptr.impl)
|
||
}
|
||
if ptr.kind == vkPyVarRef {
|
||
return b.pyLoad(ptr)
|
||
}
|
||
telem := b.Prog.Elem(ptr.Type)
|
||
return Expr{llvm.CreateLoad(b.impl, telem.ll, ptr.impl), telem}
|
||
}
|
||
|
||
// Store stores val at the pointer ptr.
|
||
func (b Builder) Store(ptr, val Expr) Builder {
|
||
raw := ptr.raw.Type
|
||
if debugInstr {
|
||
log.Printf("Store %v, %v, %v\n", raw, ptr.impl, val.impl)
|
||
}
|
||
val = checkExpr(val, raw.(*types.Pointer).Elem(), b)
|
||
b.impl.CreateStore(val.impl, ptr.impl)
|
||
return b
|
||
}
|
||
|
||
func (b Builder) aggregateAlloc(t Type, flds ...llvm.Value) llvm.Value {
|
||
prog := b.Prog
|
||
pkg := b.Func.Pkg
|
||
size := prog.SizeOf(t)
|
||
ptr := b.InlineCall(pkg.rtFunc("AllocU"), prog.IntVal(size, prog.Uintptr())).impl
|
||
tll := t.ll
|
||
impl := b.impl
|
||
for i, fld := range flds {
|
||
impl.CreateStore(fld, llvm.CreateStructGEP(impl, tll, ptr, i))
|
||
}
|
||
return ptr
|
||
}
|
||
|
||
// aggregateValue yields the value of the aggregate X with the fields
|
||
func (b Builder) aggregateValue(t Type, flds ...llvm.Value) Expr {
|
||
tll := t.ll
|
||
impl := b.impl
|
||
ptr := llvm.CreateAlloca(impl, tll)
|
||
for i, fld := range flds {
|
||
impl.CreateStore(fld, llvm.CreateStructGEP(impl, tll, ptr, i))
|
||
}
|
||
return Expr{llvm.CreateLoad(b.impl, tll, ptr), t}
|
||
}
|
||
|
||
// The MakeClosure instruction yields a closure value whose code is
|
||
// Fn and whose free variables' values are supplied by Bindings.
|
||
//
|
||
// Type() returns a (possibly named) *types.Signature.
|
||
//
|
||
// Example printed form:
|
||
//
|
||
// t0 = make closure anon@1.2 [x y z]
|
||
// t1 = make closure bound$(main.I).add [i]
|
||
func (b Builder) MakeClosure(fn Expr, bindings []Expr) Expr {
|
||
if debugInstr {
|
||
log.Printf("MakeClosure %v, %v\n", fn, bindings)
|
||
}
|
||
prog := b.Prog
|
||
tfn := fn.Type
|
||
sig := tfn.raw.Type.(*types.Signature)
|
||
tctx := sig.Params().At(0).Type().Underlying().(*types.Pointer).Elem().(*types.Struct)
|
||
flds := llvmFields(bindings, tctx, b)
|
||
data := b.aggregateAlloc(prog.rawType(tctx), flds...)
|
||
return b.aggregateValue(prog.Closure(tfn), fn.impl, data)
|
||
}
|
||
|
||
// The FieldAddr instruction yields the address of Field of *struct X.
|
||
//
|
||
// The field is identified by its index within the field list of the
|
||
// struct type of X.
|
||
//
|
||
// Dynamically, this instruction panics if X evaluates to a nil
|
||
// pointer.
|
||
//
|
||
// Type() returns a (possibly named) *types.Pointer.
|
||
//
|
||
// Example printed form:
|
||
//
|
||
// t1 = &t0.name [#1]
|
||
func (b Builder) FieldAddr(x Expr, idx int) Expr {
|
||
if debugInstr {
|
||
log.Printf("FieldAddr %v, %d\n", x.impl, idx)
|
||
}
|
||
prog := b.Prog
|
||
tstruc := prog.Elem(x.Type)
|
||
telem := prog.Field(tstruc, idx)
|
||
pt := prog.Pointer(telem)
|
||
return Expr{llvm.CreateStructGEP(b.impl, tstruc.ll, x.impl, idx), pt}
|
||
}
|
||
|
||
// The Field instruction yields the value of Field of struct X.
|
||
func (b Builder) Field(x Expr, idx int) Expr {
|
||
if debugInstr {
|
||
log.Printf("Field %v, %d\n", x.impl, idx)
|
||
}
|
||
return b.getField(x, idx)
|
||
}
|
||
|
||
func (b Builder) getField(x Expr, idx int) Expr {
|
||
tfld := b.Prog.Field(x.Type, idx)
|
||
fld := llvm.CreateExtractValue(b.impl, x.impl, idx)
|
||
return Expr{fld, tfld}
|
||
}
|
||
|
||
// StringData returns the data pointer of a string.
|
||
func (b Builder) StringData(x Expr) Expr {
|
||
if debugInstr {
|
||
log.Printf("StringData %v\n", x.impl)
|
||
}
|
||
prog := b.Prog
|
||
ptr := llvm.CreateExtractValue(b.impl, x.impl, 0)
|
||
return Expr{ptr, prog.CStr()}
|
||
}
|
||
|
||
// StringLen returns the length of a string.
|
||
func (b Builder) StringLen(x Expr) Expr {
|
||
if debugInstr {
|
||
log.Printf("StringLen %v\n", x.impl)
|
||
}
|
||
prog := b.Prog
|
||
ptr := llvm.CreateExtractValue(b.impl, x.impl, 1)
|
||
return Expr{ptr, prog.Int()}
|
||
}
|
||
|
||
// SliceData returns the data pointer of a slice.
|
||
func (b Builder) SliceData(x Expr) Expr {
|
||
if debugInstr {
|
||
log.Printf("SliceData %v\n", x.impl)
|
||
}
|
||
prog := b.Prog
|
||
ptr := llvm.CreateExtractValue(b.impl, x.impl, 0)
|
||
return Expr{ptr, prog.CStr()}
|
||
}
|
||
|
||
// SliceLen returns the length of a slice.
|
||
func (b Builder) SliceLen(x Expr) Expr {
|
||
if debugInstr {
|
||
log.Printf("SliceLen %v\n", x.impl)
|
||
}
|
||
prog := b.Prog
|
||
ptr := llvm.CreateExtractValue(b.impl, x.impl, 1)
|
||
return Expr{ptr, prog.Int()}
|
||
}
|
||
|
||
// SliceCap returns the length of a slice cap.
|
||
func (b Builder) SliceCap(x Expr) Expr {
|
||
if debugInstr {
|
||
log.Printf("SliceCap %v\n", x.impl)
|
||
}
|
||
prog := b.Prog
|
||
ptr := llvm.CreateExtractValue(b.impl, x.impl, 2)
|
||
return Expr{ptr, prog.Int()}
|
||
}
|
||
|
||
// The IndexAddr instruction yields the address of the element at
|
||
// index `idx` of collection `x`. `idx` is an integer expression.
|
||
//
|
||
// The elements of maps and strings are not addressable; use Lookup (map),
|
||
// Index (string), or MapUpdate instead.
|
||
//
|
||
// Dynamically, this instruction panics if `x` evaluates to a nil *array
|
||
// pointer.
|
||
//
|
||
// Example printed form:
|
||
//
|
||
// t2 = &t0[t1]
|
||
func (b Builder) IndexAddr(x, idx Expr) Expr {
|
||
if debugInstr {
|
||
log.Printf("IndexAddr %v, %v\n", x.impl, idx.impl)
|
||
}
|
||
prog := b.Prog
|
||
telem := prog.Index(x.Type)
|
||
pt := prog.Pointer(telem)
|
||
switch x.raw.Type.Underlying().(type) {
|
||
case *types.Slice:
|
||
ptr := b.SliceData(x)
|
||
indices := []llvm.Value{idx.impl}
|
||
return Expr{llvm.CreateInBoundsGEP(b.impl, telem.ll, ptr.impl, indices), pt}
|
||
}
|
||
// case *types.Pointer:
|
||
indices := []llvm.Value{idx.impl}
|
||
return Expr{llvm.CreateInBoundsGEP(b.impl, telem.ll, x.impl, indices), pt}
|
||
}
|
||
|
||
// The Index instruction yields element Index of collection X, an array,
|
||
// string or type parameter containing an array, a string, a pointer to an,
|
||
// array or a slice.
|
||
//
|
||
// Example printed form:
|
||
//
|
||
// t2 = t0[t1]
|
||
func (b Builder) Index(x, idx Expr, addr func(Expr) Expr) Expr {
|
||
if debugInstr {
|
||
log.Printf("Index %v, %v\n", x.impl, idx.impl)
|
||
}
|
||
prog := b.Prog
|
||
var telem Type
|
||
var ptr Expr
|
||
switch t := x.raw.Type.Underlying().(type) {
|
||
case *types.Basic:
|
||
if t.Kind() != types.String {
|
||
panic(fmt.Errorf("invalid operation: cannot index %v", t))
|
||
}
|
||
telem = prog.rawType(types.Typ[types.Byte])
|
||
ptr = b.StringData(x)
|
||
case *types.Array:
|
||
telem = prog.Index(x.Type)
|
||
if addr != nil {
|
||
ptr = addr(x)
|
||
} else {
|
||
size := b.SizeOf(telem, t.Len())
|
||
ptr = b.Alloca(size)
|
||
b.Store(ptr, x)
|
||
}
|
||
}
|
||
pt := prog.Pointer(telem)
|
||
indices := []llvm.Value{idx.impl}
|
||
buf := Expr{llvm.CreateInBoundsGEP(b.impl, telem.ll, ptr.impl, indices), pt}
|
||
return b.Load(buf)
|
||
}
|
||
|
||
// The Lookup instruction yields element Index of collection map X.
|
||
// Index is the appropriate key type.
|
||
//
|
||
// If CommaOk, the result is a 2-tuple of the value above and a
|
||
// boolean indicating the result of a map membership test for the key.
|
||
// The components of the tuple are accessed using Extract.
|
||
//
|
||
// Example printed form:
|
||
//
|
||
// t2 = t0[t1]
|
||
// t5 = t3[t4],ok
|
||
func (b Builder) Lookup(x, key Expr, commaOk bool) (ret Expr) {
|
||
if debugInstr {
|
||
log.Printf("Lookup %v, %v, %v\n", x.impl, key.impl, commaOk)
|
||
}
|
||
// TODO(xsw)
|
||
// panic("todo")
|
||
return
|
||
}
|
||
|
||
// The Slice instruction yields a slice of an existing string, slice
|
||
// or *array X between optional integer bounds Low and High.
|
||
//
|
||
// Dynamically, this instruction panics if X evaluates to a nil *array
|
||
// pointer.
|
||
//
|
||
// Type() returns string if the type of X was string, otherwise a
|
||
// *types.Slice with the same element type as X.
|
||
//
|
||
// Example printed form:
|
||
//
|
||
// t1 = slice t0[1:]
|
||
func (b Builder) Slice(x, low, high, max Expr) (ret Expr) {
|
||
if debugInstr {
|
||
log.Printf("Slice %v, %v, %v\n", x.impl, low.impl, high.impl)
|
||
}
|
||
prog := b.Prog
|
||
pkg := b.Func.Pkg
|
||
var nCap Expr
|
||
var nEltSize Expr
|
||
var base Expr
|
||
if low.IsNil() {
|
||
low = prog.IntVal(0, prog.Int())
|
||
}
|
||
switch t := x.raw.Type.Underlying().(type) {
|
||
case *types.Basic:
|
||
if t.Kind() != types.String {
|
||
panic(fmt.Errorf("invalid operation: cannot slice %v", t))
|
||
}
|
||
if high.IsNil() {
|
||
high = b.StringLen(x)
|
||
}
|
||
ret.Type = x.Type
|
||
ret.impl = b.InlineCall(pkg.rtFunc("NewStringSlice"), x, low, high).impl
|
||
return
|
||
case *types.Slice:
|
||
nEltSize = b.SizeOf(prog.Index(x.Type))
|
||
nCap = b.SliceCap(x)
|
||
if high.IsNil() {
|
||
high = b.SliceCap(x)
|
||
}
|
||
ret.Type = x.Type
|
||
base = b.SliceData(x)
|
||
case *types.Pointer:
|
||
telem := t.Elem()
|
||
switch te := telem.Underlying().(type) {
|
||
case *types.Array:
|
||
elem := prog.rawType(te.Elem())
|
||
ret.Type = prog.Slice(elem)
|
||
nEltSize = b.SizeOf(elem)
|
||
nCap = prog.IntVal(uint64(te.Len()), prog.Int())
|
||
if high.IsNil() {
|
||
high = nCap
|
||
}
|
||
base = x
|
||
}
|
||
}
|
||
if max.IsNil() {
|
||
max = nCap
|
||
}
|
||
ret.impl = b.InlineCall(pkg.rtFunc("NewSlice3"), base, nEltSize, nCap, low, high, max).impl
|
||
return
|
||
}
|
||
|
||
// -----------------------------------------------------------------------------
|
||
|
||
// The MakeMap instruction creates a new hash-table-based map object
|
||
// and yields a value of kind map.
|
||
//
|
||
// t is a (possibly named) *types.Map.
|
||
//
|
||
// Example printed form:
|
||
//
|
||
// t1 = make map[string]int t0
|
||
// t1 = make StringIntMap t0
|
||
func (b Builder) MakeMap(t Type, nReserve Expr) (ret Expr) {
|
||
if debugInstr {
|
||
log.Printf("MakeMap %v, %v\n", t.RawType(), nReserve.impl)
|
||
}
|
||
pkg := b.Func.Pkg
|
||
ret.Type = t
|
||
ret.impl = b.InlineCall(pkg.rtFunc("MakeSmallMap")).impl
|
||
// TODO(xsw): nReserve
|
||
return
|
||
}
|
||
|
||
// The MakeSlice instruction yields a slice of length Len backed by a
|
||
// newly allocated array of length Cap.
|
||
//
|
||
// Both Len and Cap must be non-nil Values of integer type.
|
||
//
|
||
// (Alloc(types.Array) followed by Slice will not suffice because
|
||
// Alloc can only create arrays of constant length.)
|
||
//
|
||
// Type() returns a (possibly named) *types.Slice.
|
||
//
|
||
// Example printed form:
|
||
//
|
||
// t1 = make []string 1:int t0
|
||
// t1 = make StringSlice 1:int t0
|
||
func (b Builder) MakeSlice(t Type, len, cap Expr) (ret Expr) {
|
||
if debugInstr {
|
||
log.Printf("MakeSlice %v, %v, %v\n", t.RawType(), len.impl, cap.impl)
|
||
}
|
||
pkg := b.Func.Pkg
|
||
if cap.IsNil() {
|
||
cap = len
|
||
}
|
||
elemSize := b.SizeOf(b.Prog.Index(t))
|
||
size := b.BinOp(token.MUL, cap, elemSize)
|
||
ptr := b.InlineCall(pkg.rtFunc("AllocZ"), size)
|
||
ret.impl = b.InlineCall(pkg.rtFunc("NewSlice"), ptr, len, cap).impl
|
||
ret.Type = t
|
||
return
|
||
}
|
||
|
||
// -----------------------------------------------------------------------------
|
||
|
||
// The Alloc instruction reserves space for a variable of the given type,
|
||
// zero-initializes it, and yields its address.
|
||
//
|
||
// If heap is false, Alloc zero-initializes the same local variable in
|
||
// the call frame and returns its address; in this case the Alloc must
|
||
// be present in Function.Locals. We call this a "local" alloc.
|
||
//
|
||
// If heap is true, Alloc allocates a new zero-initialized variable
|
||
// each time the instruction is executed. We call this a "new" alloc.
|
||
//
|
||
// When Alloc is applied to a channel, map or slice type, it returns
|
||
// the address of an uninitialized (nil) reference of that kind; store
|
||
// the result of MakeSlice, MakeMap or MakeChan in that location to
|
||
// instantiate these types.
|
||
//
|
||
// Example printed form:
|
||
//
|
||
// t0 = local int
|
||
// t1 = new int
|
||
func (b Builder) Alloc(elem Type, heap bool) (ret Expr) {
|
||
if debugInstr {
|
||
log.Printf("Alloc %v, %v\n", elem.RawType(), heap)
|
||
}
|
||
prog := b.Prog
|
||
pkg := b.Func.Pkg
|
||
size := b.SizeOf(elem)
|
||
if heap {
|
||
ret = b.InlineCall(pkg.rtFunc("AllocZ"), size)
|
||
} else {
|
||
ret = Expr{llvm.CreateAlloca(b.impl, elem.ll), prog.VoidPtr()}
|
||
ret.impl = b.InlineCall(pkg.rtFunc("Zeroinit"), ret, size).impl
|
||
}
|
||
ret.Type = prog.Pointer(elem)
|
||
return
|
||
}
|
||
|
||
// Alloca allocates space for n bytes.
|
||
func (b Builder) Alloca(n Expr) (ret Expr) {
|
||
if debugInstr {
|
||
log.Printf("Alloca %v\n", n.impl)
|
||
}
|
||
prog := b.Prog
|
||
telem := prog.tyInt8()
|
||
ret.impl = llvm.CreateArrayAlloca(b.impl, telem, n.impl)
|
||
ret.Type = prog.VoidPtr()
|
||
return
|
||
}
|
||
|
||
/*
|
||
// ArrayAlloca reserves space for an array of n elements of type telem.
|
||
func (b Builder) ArrayAlloca(telem Type, n Expr) (ret Expr) {
|
||
if debugInstr {
|
||
log.Printf("ArrayAlloca %v, %v\n", telem.t, n.impl)
|
||
}
|
||
ret.impl = llvm.CreateArrayAlloca(b.impl, telem.ll, n.impl)
|
||
ret.Type = b.Prog.Pointer(telem)
|
||
return
|
||
}
|
||
*/
|
||
|
||
// AllocaCStr allocates space for copy it from a Go string.
|
||
func (b Builder) AllocaCStr(gostr Expr) (ret Expr) {
|
||
if debugInstr {
|
||
log.Printf("AllocaCStr %v\n", gostr.impl)
|
||
}
|
||
pkg := b.Func.Pkg
|
||
n := b.StringLen(gostr)
|
||
n1 := b.BinOp(token.ADD, n, b.Prog.Val(1))
|
||
cstr := b.Alloca(n1)
|
||
return b.InlineCall(pkg.rtFunc("CStrCopy"), cstr, gostr)
|
||
}
|
||
|
||
// -----------------------------------------------------------------------------
|
||
|
||
// The ChangeType instruction applies to X a value-preserving type
|
||
// change to Type().
|
||
//
|
||
// Type changes are permitted:
|
||
// - between a named type and its underlying type.
|
||
// - between two named types of the same underlying type.
|
||
// - between (possibly named) pointers to identical base types.
|
||
// - from a bidirectional channel to a read- or write-channel,
|
||
// optionally adding/removing a name.
|
||
// - between a type (t) and an instance of the type (tσ), i.e.
|
||
// Type() == σ(X.Type()) (or X.Type()== σ(Type())) where
|
||
// σ is the type substitution of Parent().TypeParams by
|
||
// Parent().TypeArgs.
|
||
//
|
||
// This operation cannot fail dynamically.
|
||
//
|
||
// Type changes may to be to or from a type parameter (or both). All
|
||
// types in the type set of X.Type() have a value-preserving type
|
||
// change to all types in the type set of Type().
|
||
//
|
||
// Example printed form:
|
||
//
|
||
// t1 = changetype *int <- IntPtr (t0)
|
||
func (b Builder) ChangeType(t Type, x Expr) (ret Expr) {
|
||
if debugInstr {
|
||
log.Printf("ChangeType %v, %v\n", t.RawType(), x.impl)
|
||
}
|
||
typ := t.raw.Type
|
||
switch typ.(type) {
|
||
default:
|
||
// TODO(xsw): remove instr name
|
||
ret.impl = b.impl.CreateBitCast(x.impl, t.ll, "bitCast")
|
||
ret.Type = b.Prog.rawType(typ)
|
||
return
|
||
}
|
||
}
|
||
|
||
// The Convert instruction yields the conversion of value X to type
|
||
// Type(). One or both of those types is basic (but possibly named).
|
||
//
|
||
// A conversion may change the value and representation of its operand.
|
||
// Conversions are permitted:
|
||
// - between real numeric types.
|
||
// - between complex numeric types.
|
||
// - between string and []byte or []rune.
|
||
// - between pointers and unsafe.Pointer.
|
||
// - between unsafe.Pointer and uintptr.
|
||
// - from (Unicode) integer to (UTF-8) string.
|
||
//
|
||
// A conversion may imply a type name change also.
|
||
//
|
||
// Conversions may to be to or from a type parameter. All types in
|
||
// the type set of X.Type() can be converted to all types in the type
|
||
// set of Type().
|
||
//
|
||
// This operation cannot fail dynamically.
|
||
//
|
||
// Conversions of untyped string/number/bool constants to a specific
|
||
// representation are eliminated during SSA construction.
|
||
//
|
||
// Example printed form:
|
||
//
|
||
// t1 = convert []byte <- string (t0)
|
||
func (b Builder) Convert(t Type, x Expr) (ret Expr) {
|
||
if debugInstr {
|
||
log.Printf("Convert %v <- %v\n", t.RawType(), x.RawType())
|
||
}
|
||
typ := t.raw.Type
|
||
ret.Type = b.Prog.rawType(typ)
|
||
switch typ := typ.Underlying().(type) {
|
||
case *types.Basic:
|
||
switch typ.Kind() {
|
||
case types.Uintptr:
|
||
ret.impl = castInt(b.impl, x.impl, t.ll)
|
||
return
|
||
case types.UnsafePointer:
|
||
ret.impl = castPtr(b.impl, x.impl, t.ll)
|
||
return
|
||
}
|
||
switch xtyp := x.RawType().Underlying().(type) {
|
||
case *types.Basic:
|
||
size := b.Prog.SizeOf(t)
|
||
xsize := b.Prog.SizeOf(x.Type)
|
||
if typ.Info()&types.IsInteger != 0 {
|
||
// int <- int/float
|
||
if xtyp.Info()&types.IsInteger != 0 {
|
||
// if xsize > size {
|
||
// ret.impl = b.impl.CreateTrunc(x.impl, t.ll, "")
|
||
// } else if typ.Info()&types.IsUnsigned != 0 {
|
||
// ret.impl = b.impl.CreateZExt(x.impl, t.ll, "")
|
||
// } else {
|
||
// ret.impl = b.impl.CreateSExt(x.impl, t.ll, "")
|
||
// }
|
||
ret.impl = castInt(b.impl, x.impl, t.ll)
|
||
return
|
||
} else if xtyp.Info()&types.IsFloat != 0 {
|
||
if typ.Info()&types.IsUnsigned != 0 {
|
||
ret.impl = b.impl.CreateFPToUI(x.impl, t.ll, "")
|
||
} else {
|
||
ret.impl = b.impl.CreateFPToSI(x.impl, t.ll, "")
|
||
}
|
||
return
|
||
}
|
||
} else if typ.Info()&types.IsFloat != 0 {
|
||
// float <- int/float
|
||
if xtyp.Info()&types.IsInteger != 0 {
|
||
if xtyp.Info()&types.IsUnsigned != 0 {
|
||
ret.impl = b.impl.CreateUIToFP(x.impl, t.ll, "")
|
||
} else {
|
||
ret.impl = b.impl.CreateSIToFP(x.impl, t.ll, "")
|
||
}
|
||
return
|
||
} else if xtyp.Info()&types.IsFloat != 0 {
|
||
if xsize > size {
|
||
ret.impl = b.impl.CreateFPTrunc(x.impl, t.ll, "")
|
||
} else {
|
||
ret.impl = b.impl.CreateFPExt(x.impl, t.ll, "")
|
||
}
|
||
return
|
||
}
|
||
}
|
||
}
|
||
case *types.Pointer:
|
||
ret.impl = castPtr(b.impl, x.impl, t.ll)
|
||
return
|
||
}
|
||
panic("todo")
|
||
}
|
||
|
||
func castInt(b llvm.Builder, x llvm.Value, t llvm.Type) llvm.Value {
|
||
xt := x.Type()
|
||
if xt.TypeKind() == llvm.PointerTypeKind {
|
||
return llvm.CreatePtrToInt(b, x, t)
|
||
}
|
||
if xt.IntTypeWidth() <= t.IntTypeWidth() {
|
||
return llvm.CreateIntCast(b, x, t)
|
||
}
|
||
return llvm.CreateTrunc(b, x, t)
|
||
}
|
||
|
||
func castPtr(b llvm.Builder, x llvm.Value, t llvm.Type) llvm.Value {
|
||
if x.Type().TypeKind() == llvm.PointerTypeKind {
|
||
return llvm.CreatePointerCast(b, x, t)
|
||
}
|
||
return llvm.CreateIntToPtr(b, x, t)
|
||
}
|
||
|
||
// MakeInterface constructs an instance of an interface type from a
|
||
// value of a concrete type.
|
||
//
|
||
// Use Program.MethodSets.MethodSet(X.Type()) to find the method-set
|
||
// of X, and Program.MethodValue(m) to find the implementation of a method.
|
||
//
|
||
// To construct the zero value of an interface type T, use:
|
||
//
|
||
// NewConst(constant.MakeNil(), T, pos)
|
||
//
|
||
// Example printed form:
|
||
//
|
||
// t1 = make interface{} <- int (42:int)
|
||
// t2 = make Stringer <- t0
|
||
func (b Builder) MakeInterface(tinter Type, x Expr) (ret Expr) {
|
||
raw := tinter.raw.Type
|
||
if debugInstr {
|
||
log.Printf("MakeInterface %v, %v\n", raw, x.impl)
|
||
}
|
||
prog := b.Prog
|
||
pkg := b.Func.Pkg
|
||
switch tx := x.raw.Type.Underlying().(type) {
|
||
case *types.Basic:
|
||
kind := tx.Kind()
|
||
switch {
|
||
case kind >= types.Bool && kind <= types.Uintptr:
|
||
t := b.InlineCall(pkg.rtFunc("Basic"), prog.Val(int(kind)))
|
||
tptr := prog.Uintptr()
|
||
vptr := Expr{llvm.CreateIntCast(b.impl, x.impl, tptr.ll), tptr}
|
||
return Expr{b.InlineCall(pkg.rtFunc("MakeAnyInt"), t, vptr).impl, tinter}
|
||
case kind == types.Float32:
|
||
t := b.InlineCall(pkg.rtFunc("Basic"), prog.Val(int(kind)))
|
||
tptr := prog.Uintptr()
|
||
i32 := b.impl.CreateBitCast(x.impl, prog.tyInt32(), "")
|
||
vptr := Expr{llvm.CreateIntCast(b.impl, i32, tptr.ll), tptr}
|
||
return Expr{b.InlineCall(pkg.rtFunc("MakeAnyInt"), t, vptr).impl, tinter}
|
||
case kind == types.Float64:
|
||
t := b.InlineCall(pkg.rtFunc("Basic"), prog.Val(int(kind)))
|
||
tptr := prog.Uintptr()
|
||
vptr := Expr{b.impl.CreateBitCast(x.impl, tptr.ll, ""), tptr}
|
||
return Expr{b.InlineCall(pkg.rtFunc("MakeAnyInt"), t, vptr).impl, tinter}
|
||
case kind == types.String:
|
||
return Expr{b.InlineCall(pkg.rtFunc("MakeAnyString"), x).impl, tinter}
|
||
}
|
||
}
|
||
panic("todo")
|
||
}
|
||
|
||
// The TypeAssert instruction tests whether interface value X has type
|
||
// AssertedType.
|
||
//
|
||
// If !CommaOk, on success it returns v, the result of the conversion
|
||
// (defined below); on failure it panics.
|
||
//
|
||
// If CommaOk: on success it returns a pair (v, true) where v is the
|
||
// result of the conversion; on failure it returns (z, false) where z
|
||
// is AssertedType's zero value. The components of the pair must be
|
||
// accessed using the Extract instruction.
|
||
//
|
||
// If Underlying: tests whether interface value X has the underlying
|
||
// type AssertedType.
|
||
//
|
||
// If AssertedType is a concrete type, TypeAssert checks whether the
|
||
// dynamic type in interface X is equal to it, and if so, the result
|
||
// of the conversion is a copy of the value in the interface.
|
||
//
|
||
// If AssertedType is an interface, TypeAssert checks whether the
|
||
// dynamic type of the interface is assignable to it, and if so, the
|
||
// result of the conversion is a copy of the interface value X.
|
||
// If AssertedType is a superinterface of X.Type(), the operation will
|
||
// fail iff the operand is nil. (Contrast with ChangeInterface, which
|
||
// performs no nil-check.)
|
||
//
|
||
// Type() reflects the actual type of the result, possibly a
|
||
// 2-types.Tuple; AssertedType is the asserted type.
|
||
//
|
||
// Depending on the TypeAssert's purpose, Pos may return:
|
||
// - the ast.CallExpr.Lparen of an explicit T(e) conversion;
|
||
// - the ast.TypeAssertExpr.Lparen of an explicit e.(T) operation;
|
||
// - the ast.CaseClause.Case of a case of a type-switch statement;
|
||
// - the Ident(m).NamePos of an interface method value i.m
|
||
// (for which TypeAssert may be used to effect the nil check).
|
||
//
|
||
// Example printed form:
|
||
//
|
||
// t1 = typeassert t0.(int)
|
||
// t3 = typeassert,ok t2.(T)
|
||
func (b Builder) TypeAssert(x Expr, assertedTyp Type, commaOk bool) (ret Expr) {
|
||
if debugInstr {
|
||
log.Printf("TypeAssert %v, %v, %v\n", x.impl, assertedTyp.raw.Type, commaOk)
|
||
}
|
||
switch assertedTyp.kind {
|
||
case vkSigned, vkUnsigned, vkFloat, vkBool:
|
||
pkg := b.Func.Pkg
|
||
fnName := "I2Int"
|
||
if commaOk {
|
||
fnName = "CheckI2Int"
|
||
}
|
||
fn := pkg.rtFunc(fnName)
|
||
var kind types.BasicKind
|
||
switch t := assertedTyp.raw.Type.(type) {
|
||
case *types.Basic:
|
||
kind = t.Kind()
|
||
default:
|
||
panic("todo")
|
||
}
|
||
typ := b.InlineCall(pkg.rtFunc("Basic"), b.Prog.Val(int(kind)))
|
||
ret = b.InlineCall(fn, x, typ)
|
||
if kind != types.Uintptr {
|
||
conv := func(v llvm.Value) llvm.Value {
|
||
switch kind {
|
||
case types.Float32:
|
||
v = castInt(b.impl, v, b.Prog.tyInt32())
|
||
v = b.impl.CreateBitCast(v, assertedTyp.ll, "")
|
||
case types.Float64:
|
||
v = b.impl.CreateBitCast(v, assertedTyp.ll, "")
|
||
default:
|
||
v = castInt(b.impl, v, assertedTyp.ll)
|
||
}
|
||
return v
|
||
}
|
||
if !commaOk {
|
||
ret.Type = assertedTyp
|
||
ret.impl = conv(ret.impl)
|
||
} else {
|
||
ret.Type = b.Prog.toTuple(
|
||
types.NewTuple(
|
||
types.NewVar(token.NoPos, nil, "", assertedTyp.RawType()),
|
||
ret.Type.RawType().(*types.Tuple).At(1),
|
||
),
|
||
)
|
||
val0 := conv(b.impl.CreateExtractValue(ret.impl, 0, ""))
|
||
val1 := b.impl.CreateExtractValue(ret.impl, 1, "")
|
||
ret.impl = llvm.ConstStruct([]llvm.Value{val0, val1}, false)
|
||
}
|
||
}
|
||
return
|
||
case vkString:
|
||
pkg := b.Func.Pkg
|
||
fnName := "I2String"
|
||
if commaOk {
|
||
fnName = "CheckI2String"
|
||
}
|
||
fn := pkg.rtFunc(fnName)
|
||
typ := b.InlineCall(pkg.rtFunc("Basic"), b.Prog.Val(int(abi.String)))
|
||
return b.InlineCall(fn, x, typ)
|
||
}
|
||
panic("todo")
|
||
}
|
||
|
||
// -----------------------------------------------------------------------------
|
||
|
||
// TODO(xsw): make inline call
|
||
func (b Builder) InlineCall(fn Expr, args ...Expr) (ret Expr) {
|
||
return b.Call(fn, args...)
|
||
}
|
||
|
||
// The Call instruction represents a function or method call.
|
||
//
|
||
// The Call instruction yields the function result if there is exactly
|
||
// one. Otherwise it returns a tuple, the components of which are
|
||
// accessed via Extract.
|
||
//
|
||
// Example printed form:
|
||
//
|
||
// t2 = println(t0, t1)
|
||
// t4 = t3()
|
||
// t7 = invoke t5.Println(...t6)
|
||
func (b Builder) Call(fn Expr, args ...Expr) (ret Expr) {
|
||
if debugInstr {
|
||
var b bytes.Buffer
|
||
name := fn.impl.Name()
|
||
if name == "" {
|
||
name = "closure"
|
||
}
|
||
fmt.Fprint(&b, "Call ", fn.kind, " ", fn.raw.Type, " ", name)
|
||
sep := ": "
|
||
for _, arg := range args {
|
||
fmt.Fprint(&b, sep, arg.impl)
|
||
sep = ", "
|
||
}
|
||
log.Println(b.String())
|
||
}
|
||
var kind = fn.kind
|
||
if kind == vkPyFuncRef {
|
||
return b.pyCall(fn, args)
|
||
}
|
||
var ll llvm.Type
|
||
var data Expr
|
||
var sig *types.Signature
|
||
var prog = b.Prog
|
||
var raw = fn.raw.Type
|
||
switch kind {
|
||
case vkClosure:
|
||
data = b.Field(fn, 1)
|
||
fn = b.Field(fn, 0)
|
||
raw = fn.raw.Type
|
||
fallthrough
|
||
case vkFuncPtr:
|
||
sig = raw.(*types.Signature)
|
||
ll = prog.FuncDecl(sig, InC).ll
|
||
case vkFuncDecl:
|
||
sig = raw.(*types.Signature)
|
||
ll = fn.ll
|
||
default:
|
||
panic("unreachable")
|
||
}
|
||
ret.Type = prog.retType(sig)
|
||
ret.impl = llvm.CreateCall(b.impl, ll, fn.impl, llvmParamsEx(data, args, sig.Params(), b))
|
||
return
|
||
}
|
||
|
||
// The Extract instruction yields component Index of Tuple.
|
||
//
|
||
// This is used to access the results of instructions with multiple
|
||
// return values, such as Call, TypeAssert, Next, UnOp(ARROW) and
|
||
// IndexExpr(Map).
|
||
//
|
||
// Example printed form:
|
||
//
|
||
// t1 = extract t0 #1
|
||
func (b Builder) Extract(x Expr, index int) (ret Expr) {
|
||
ret.Type = b.Prog.toType(x.Type.raw.Type.(*types.Tuple).At(index).Type())
|
||
ret.impl = b.impl.CreateExtractValue(x.impl, index, "")
|
||
return
|
||
}
|
||
|
||
// A Builtin represents a specific use of a built-in function, e.g. len.
|
||
//
|
||
// Builtins are immutable values. Builtins do not have addresses.
|
||
//
|
||
// `fn` indicates the function: one of the built-in functions from the
|
||
// Go spec (excluding "make" and "new").
|
||
func (b Builder) BuiltinCall(fn string, args ...Expr) (ret Expr) {
|
||
switch fn {
|
||
case "len":
|
||
if len(args) == 1 {
|
||
arg := args[0]
|
||
switch arg.kind {
|
||
case vkSlice:
|
||
return b.SliceLen(arg)
|
||
case vkString:
|
||
return b.StringLen(arg)
|
||
}
|
||
}
|
||
case "cap":
|
||
if len(args) == 1 {
|
||
arg := args[0]
|
||
switch arg.kind {
|
||
case vkSlice:
|
||
return b.SliceCap(arg)
|
||
}
|
||
}
|
||
case "append":
|
||
if len(args) == 2 {
|
||
src := args[0]
|
||
if src.kind == vkSlice {
|
||
elem := args[1]
|
||
switch elem.kind {
|
||
case vkSlice:
|
||
etSize := b.Prog.SizeOf(b.Prog.Elem(elem.Type))
|
||
ret.Type = src.Type
|
||
ret.impl = b.InlineCall(b.Func.Pkg.rtFunc("SliceAppend"),
|
||
src, b.SliceData(elem), b.SliceLen(elem), b.Prog.Val(int(etSize))).impl
|
||
return
|
||
case vkString:
|
||
etSize := b.Prog.SizeOf(b.Prog.Type(types.Typ[types.Byte], InGo))
|
||
ret.Type = src.Type
|
||
ret.impl = b.InlineCall(b.Func.Pkg.rtFunc("SliceAppend"),
|
||
src, b.StringData(elem), b.StringLen(elem), b.Prog.Val(int(etSize))).impl
|
||
return
|
||
}
|
||
}
|
||
}
|
||
}
|
||
panic("todo")
|
||
}
|
||
|
||
// -----------------------------------------------------------------------------
|