支持32位

This commit is contained in:
Huoji's
2024-08-03 19:27:17 +08:00
parent 0848cf2be7
commit bc07b20950
3 changed files with 278 additions and 138 deletions

View File

@@ -28,8 +28,8 @@ pe64::pe64(std::string binary_path) {
PIMAGE_NT_HEADERS nt = PIMAGE_NT_HEADERS nt =
reinterpret_cast<PIMAGE_NT_HEADERS>(temp_buffer.data() + dos->e_lfanew); reinterpret_cast<PIMAGE_NT_HEADERS>(temp_buffer.data() + dos->e_lfanew);
if (nt->FileHeader.Machine != IMAGE_FILE_MACHINE_AMD64) //if (nt->FileHeader.Machine != IMAGE_FILE_MACHINE_AMD64)
throw std::runtime_error("huoji doesn't support 32bit binaries!"); // throw std::runtime_error("huoji doesn't support 32bit binaries!");
this->buffer.resize(nt->OptionalHeader.SizeOfImage); this->buffer.resize(nt->OptionalHeader.SizeOfImage);
@@ -47,6 +47,10 @@ pe64::pe64(std::string binary_path) {
} }
this->buffer_not_relocated = temp_buffer; this->buffer_not_relocated = temp_buffer;
} }
bool pe64::is_32_pe() {
return get_nt()->FileHeader.Machine != IMAGE_FILE_MACHINE_AMD64;
}
bool pe64::delete_section(std::string section_name) { bool pe64::delete_section(std::string section_name) {
PIMAGE_SECTION_HEADER section = get_section(section_name); PIMAGE_SECTION_HEADER section = get_section(section_name);
PIMAGE_NT_HEADERS nt_headers = get_nt(); PIMAGE_NT_HEADERS nt_headers = get_nt();

View File

@@ -14,6 +14,8 @@ public:
pe64(std::string binary_path); pe64(std::string binary_path);
bool is_32_pe();
bool delete_section(std::string section_name); bool delete_section(std::string section_name);
uint32_t align(uint32_t address, uint32_t alignment); uint32_t align(uint32_t address, uint32_t alignment);

View File

@@ -16,7 +16,6 @@ struct _functionDetail {
uint64_t end_address; uint64_t end_address;
size_t size; size_t size;
}; };
csh capstone_handle;
auto calculateEntropy(void* data, size_t size) -> double { auto calculateEntropy(void* data, size_t size) -> double {
if (data == nullptr || size == 0) { if (data == nullptr || size == 0) {
return 0.0; return 0.0;
@@ -38,35 +37,29 @@ auto calculateEntropy(void* data, size_t size) -> double {
return entropy; return entropy;
} }
auto Init() -> bool { auto buildFunctionMaps(pe64* pe)
bool status = false; -> std::vector<std::shared_ptr<_functionDetail>> {
std::vector<std::shared_ptr<_functionDetail>> functionList;
cs_insn* insn = nullptr;
size_t disasmCount = 0;
csh capstone_handle;
do { do {
// 打开句柄 if (cs_open(CS_ARCH_X86, pe->is_32_pe() ? CS_MODE_32 : CS_MODE_64,
if (cs_open(CS_ARCH_X86, CS_MODE_64, &capstone_handle) != CS_ERR_OK) { &capstone_handle) != CS_ERR_OK) {
break; break;
} }
cs_option(capstone_handle, CS_OPT_DETAIL, CS_OPT_ON); cs_option(capstone_handle, CS_OPT_DETAIL, CS_OPT_ON);
cs_option(capstone_handle, CS_OPT_SKIPDATA, CS_OPT_ON); cs_option(capstone_handle, CS_OPT_SKIPDATA, CS_OPT_ON);
status = true;
} while (false);
return status;
}
auto buildFunctionMaps(pe64* pe) -> std::vector<std::shared_ptr<_functionDetail>> {
std::vector<std::shared_ptr<_functionDetail>> functionList;
cs_insn* insn = nullptr;
size_t disasmCount = 0;
do {
auto textSection = pe->get_section(".text"); auto textSection = pe->get_section(".text");
const auto codeAddressInMemory = reinterpret_cast<uint64_t>( const auto codeAddressInMemory = reinterpret_cast<uint64_t>(
pe->get_buffer()->data() + textSection->VirtualAddress); pe->get_buffer()->data() + textSection->VirtualAddress);
disasmCount = disasmCount =
cs_disasm(capstone_handle, cs_disasm(capstone_handle,
reinterpret_cast<const uint8_t*>(codeAddressInMemory), reinterpret_cast<const uint8_t*>(codeAddressInMemory),
textSection->Misc.VirtualSize, 0, 0, &insn); textSection->Misc.VirtualSize, 0, 0, &insn);
if (disasmCount == 0) { if (disasmCount == 0) {
break; break;
} }
@@ -87,32 +80,36 @@ auto buildFunctionMaps(pe64* pe) -> std::vector<std::shared_ptr<_functionDetail>
backTrackCodeList.push_back(codeMnemonic); backTrackCodeList.push_back(codeMnemonic);
if ((codeMnemonic != "int3" && codeMnemonic != "nop") && if ((codeMnemonic != "int3" && codeMnemonic != "nop") &&
((backTrackCodeList.size() > 2) && ((backTrackCodeList.size() > 2) &&
(backTrackCodeList[0] == "int3" || (backTrackCodeList[0] == "int3" ||
backTrackCodeList[0] == "nop") && backTrackCodeList[0] == "nop") &&
(backTrackCodeList[1] == "int3" || (backTrackCodeList[1] == "int3" ||
backTrackCodeList[1] == "nop") && backTrackCodeList[1] == "nop") &&
(backTrackCodeList[2] == "int3" || (backTrackCodeList[2] == "int3" ||
backTrackCodeList[2] == "nop")) && backTrackCodeList[2] == "nop")) &&
isEnterFunction == false) { isEnterFunction == false) {
// printf("进入函数 开始地址: %llx\n", codeAddressInMemory + offset); // printf("进入函数 开始地址: %llx\n", codeAddressInMemory +
// printf("address: 0x%llx | size: %d code: %s %s \n", // offset); printf("address: 0x%llx | size: %d code: %s %s \n",
// code.address, code.size, code.mnemonic, code.op_str); // code.address, code.size, code.mnemonic, code.op_str);
currentFuncAddress = codeAddressInMemory + offset; currentFuncAddress = codeAddressInMemory + offset;
isEnterFunction = true; isEnterFunction = true;
backTrackCodeList.clear(); backTrackCodeList.clear();
} } else if ((codeMnemonic == "int3" || codeMnemonic == "nop") &&
else if ((codeMnemonic == "int3" || codeMnemonic == "nop") && ((backTrackCodeList.size() > 2) &&
((backTrackCodeList.size() > 2) && (backTrackCodeList[0] != "int3" &&
(backTrackCodeList[0] != "int3" && backTrackCodeList[0] != "nop")) &&
backTrackCodeList[0] != "nop")) && isEnterFunction) {
isEnterFunction) { // printf("退出函数 结束地址: %llx 当前大小: %d \n",
//printf("退出函数 结束地址: %llx 当前大小: %d \n", codeAddressInMemory + code.address, currentFuncAddress - codeAddressInMemory); // codeAddressInMemory + code.address, currentFuncAddress -
// codeAddressInMemory);
auto func = _functionDetail{ .start_address = currentFuncAddress, auto func = _functionDetail{
.end_address = codeAddressInMemory + code.address, .start_address = currentFuncAddress,
.size = (codeAddressInMemory + code.address) - currentFuncAddress }; .end_address = codeAddressInMemory + code.address,
.size = (codeAddressInMemory + code.address) -
currentFuncAddress};
functionList.push_back(std::make_shared<_functionDetail>(func)); functionList.push_back(std::make_shared<_functionDetail>(func));
//printf("退出函数 结束地址: %llx 当前大小: %d \n", func.end_address, func.size); // printf("退出函数 结束地址: %llx 当前大小: %d \n",
// func.end_address, func.size);
isFirst = false; isFirst = false;
isEnterFunction = false; isEnterFunction = false;
@@ -128,48 +125,56 @@ auto buildFunctionMaps(pe64* pe) -> std::vector<std::shared_ptr<_functionDetail>
.start_address = static_cast<uint64_t>(codeAddressInMemory), .start_address = static_cast<uint64_t>(codeAddressInMemory),
.end_address = static_cast<uint64_t>( .end_address = static_cast<uint64_t>(
codeAddressInMemory + textSection->Misc.VirtualSize), codeAddressInMemory + textSection->Misc.VirtualSize),
.size = textSection->Misc.VirtualSize })); .size = textSection->Misc.VirtualSize}));
} }
} while (false); } while (false);
cs_free(insn, disasmCount); cs_free(insn, disasmCount);
if (capstone_handle) {
cs_close(&capstone_handle);
}
return functionList; return functionList;
} }
class super_huoji_tracker class super_huoji_tracker {
{ public:
public:
auto print_asm(const cs_insn* code) -> void; auto print_asm(const cs_insn* code) -> void;
super_huoji_tracker(uint64_t startAddr, size_t sizeOfCode, uint64_t current_function_rva); super_huoji_tracker(uint64_t startAddr, size_t sizeOfCode,
uint64_t current_function_rva, bool is_32_pe);
~super_huoji_tracker(); ~super_huoji_tracker();
auto track_gs_access_64_i() -> void;
auto track_gs_access_32_i() -> void;
auto track_gs_access() -> void; auto track_gs_access() -> void;
private: private:
bool is_x32 = false;
std::vector<std::shared_ptr<cs_insn>> ins_list; std::vector<std::shared_ptr<cs_insn>> ins_list;
cs_insn* insn = nullptr; cs_insn* insn = nullptr;
size_t disasmCount = 0; size_t disasmCount = 0;
csh capstone_handle_i; csh capstone_handle_i;
uint64_t ins_ip, ins_ip_address, current_function_rva; uint64_t ins_ip, ins_ip_address, current_function_rva;
auto get_next_ins()->std::shared_ptr<cs_insn>; auto get_next_ins() -> std::shared_ptr<cs_insn>;
template<typename T, typename B> template <typename T, typename B>
auto match_code(T match_fn, B process_fn, std::optional<uint32_t> num_operands, std::vector<std::optional<x86_op_type>> operand_types) -> bool; auto match_code(
T match_fn, B process_fn, std::optional<uint32_t> num_operands,
std::vector<std::optional<x86_op_type>> operand_types) -> bool;
}; };
auto super_huoji_tracker::print_asm(const cs_insn* code) -> void { auto super_huoji_tracker::print_asm(const cs_insn* code) -> void {
printf("0x%08X :\t\t%s\t%s\t\n", code->address, code->mnemonic, printf("0x%08X :\t\t%s\t%s\t\n", code->address, code->mnemonic,
code->op_str); code->op_str);
} }
super_huoji_tracker::super_huoji_tracker(uint64_t startAddr, size_t sizeOfCode, uint64_t current_function_rva) super_huoji_tracker::super_huoji_tracker(uint64_t startAddr, size_t sizeOfCode,
{ uint64_t current_function_rva,
if (cs_open(CS_ARCH_X86, CS_MODE_64, &capstone_handle_i) != CS_ERR_OK) { bool is_32_pe) {
if (cs_open(CS_ARCH_X86, is_32_pe ? CS_MODE_32 : CS_MODE_64,
&capstone_handle_i) != CS_ERR_OK) {
__debugbreak(); __debugbreak();
} }
cs_option(capstone_handle_i, CS_OPT_DETAIL, CS_OPT_ON); cs_option(capstone_handle_i, CS_OPT_DETAIL, CS_OPT_ON);
cs_option(capstone_handle_i, CS_OPT_SKIPDATA, CS_OPT_ON); cs_option(capstone_handle_i, CS_OPT_SKIPDATA, CS_OPT_ON);
is_x32 = is_32_pe;
do do {
{ disasmCount = cs_disasm(capstone_handle_i,
disasmCount = reinterpret_cast<const uint8_t*>(startAddr),
cs_disasm(capstone_handle_i, sizeOfCode, 0, 0, &insn);
reinterpret_cast<const uint8_t*>(startAddr),
sizeOfCode, 0, 0, &insn);
if (disasmCount == 0) { if (disasmCount == 0) {
break; break;
} }
@@ -181,8 +186,7 @@ super_huoji_tracker::super_huoji_tracker(uint64_t startAddr, size_t sizeOfCode,
this->current_function_rva = current_function_rva; this->current_function_rva = current_function_rva;
} }
super_huoji_tracker::~super_huoji_tracker() super_huoji_tracker::~super_huoji_tracker() {
{
if (insn) { if (insn) {
cs_free(insn, disasmCount); cs_free(insn, disasmCount);
} }
@@ -198,8 +202,7 @@ auto super_huoji_tracker::get_next_ins() -> std::shared_ptr<cs_insn> {
} }
template <typename T, typename B> template <typename T, typename B>
auto super_huoji_tracker::match_code( auto super_huoji_tracker::match_code(
T match_fn, B process_fn, T match_fn, B process_fn, std::optional<uint32_t> num_operands,
std::optional<uint32_t> num_operands,
std::vector<std::optional<x86_op_type>> operand_types) -> bool { std::vector<std::optional<x86_op_type>> operand_types) -> bool {
while (auto instruction = get_next_ins()) { while (auto instruction = get_next_ins()) {
if (&process_fn != nullptr) { if (&process_fn != nullptr) {
@@ -222,31 +225,35 @@ auto super_huoji_tracker::match_code(
} }
return false; return false;
} }
auto super_huoji_tracker::track_gs_access_64_i() -> void {
// const auto matched_gs_access = match_code([&](cs_insn* instruction) {},
// [&](cs_insn* instruction) {}, {}, {});
const auto isGsRegAccess = match_code(
[&](cs_insn* instruction) {
//@todo: other access gs reg code...
if (instruction->id != X86_INS_MOV &&
instruction->id != X86_INS_MOVZX) {
return false;
}
auto super_huoji_tracker::track_gs_access() -> void if (instruction->detail->x86.operands[1].mem.segment !=
{ X86_REG_GS) {
//const auto matched_gs_access = match_code([&](cs_insn* instruction) {}, [&](cs_insn* instruction) {}, {}, {}); return false;
const auto isGsRegAccess = match_code([&](cs_insn* instruction) { }
//@todo: other access gs reg code... /*
if (instruction->id != X86_INS_MOV && instruction->id != X86_INS_MOVZX) { gs:[0x30] TEB
return false; gs:[0x40] Pid
} gs:[0x48] Tid
gs:[0x60] PEB
if (instruction->detail->x86.operands[1].mem.segment != X86_REG_GS) { gs:[0x68] LastError
return false; */
} if (instruction->detail->x86.operands[1].mem.disp != 0x30 &&
/* instruction->detail->x86.operands[1].mem.disp != 0x60) {
gs:[0x30] TEB return false;
gs:[0x40] Pid }
gs:[0x48] Tid return true;
gs:[0x60] PEB },
gs:[0x68] LastError [&](cs_insn* instruction) {}, {}, {});
*/
if (instruction->detail->x86.operands[1].mem.disp != 0x30 && instruction->detail->x86.operands[1].mem.disp != 0x60) {
return false;
}
return true;
}, [&](cs_insn* instruction) {}, {}, {});
if (isGsRegAccess == false) { if (isGsRegAccess == false) {
return; return;
} }
@@ -255,86 +262,213 @@ auto super_huoji_tracker::track_gs_access() -> void
x86_reg ldrAccessReg; x86_reg ldrAccessReg;
bool isPebAccess = false; bool isPebAccess = false;
if (currentIns->detail->x86.operands[1].mem.disp == 0x30) { if (currentIns->detail->x86.operands[1].mem.disp == 0x30) {
//从TEB访问的PEB->ldr // 从TEB访问的PEB->ldr
isPebAccess = match_code([&](cs_insn* instruction) { isPebAccess = match_code(
//@todo: other access gs reg code... [&](cs_insn* instruction) {
if (instruction->id != X86_INS_MOV && instruction->id != X86_INS_MOVZX) { //@todo: other access gs reg code...
return false; if (instruction->id != X86_INS_MOV &&
} instruction->id != X86_INS_MOVZX) {
return false;
}
if (instruction->detail->x86.operands[1].mem.base != gsAccessReg) { if (instruction->detail->x86.operands[1].mem.base !=
return false; gsAccessReg) {
} return false;
if (instruction->detail->x86.operands[1].mem.disp != 0x60) { }
return false; if (instruction->detail->x86.operands[1].mem.disp != 0x60) {
} return false;
ldrAccessReg = instruction->detail->x86.operands[0].reg; }
return true; ldrAccessReg = instruction->detail->x86.operands[0].reg;
}, [&](cs_insn* instruction) {}, {}, {}); return true;
} },
else { [&](cs_insn* instruction) {}, {}, {});
//直接访问的GS->peb } else {
// 直接访问的GS->peb
isPebAccess = true; isPebAccess = true;
ldrAccessReg = gsAccessReg; ldrAccessReg = gsAccessReg;
} }
if (isPebAccess == false){ if (isPebAccess == false) {
return; return;
} }
//访问了PEB的ldr // 访问了PEB的ldr
const auto isPebLdrAccess = match_code([&](cs_insn* instruction) { const auto isPebLdrAccess = match_code(
//@todo: other access gs reg code... [&](cs_insn* instruction) {
if (instruction->id != X86_INS_MOV && instruction->id != X86_INS_MOVZX) { //@todo: other access gs reg code...
return false; if (instruction->id != X86_INS_MOV &&
} instruction->id != X86_INS_MOVZX) {
if (instruction->detail->x86.operands[1].mem.base != ldrAccessReg) { return false;
return false; }
} if (instruction->detail->x86.operands[1].mem.base != ldrAccessReg) {
if (instruction->detail->x86.operands[1].mem.disp != 0x18) { return false;
return false; }
} if (instruction->detail->x86.operands[1].mem.disp != 0x18) {
return true; return false;
}, [&](cs_insn* instruction) {}, {}, {}); }
return true;
},
[&](cs_insn* instruction) {}, {}, {});
if (isPebLdrAccess == false) { if (isPebLdrAccess == false) {
return; return;
} }
printf("mawlare function detected at address: 0x%llx by gs access peb->ldr \n", this->current_function_rva); printf(
"malware function detected at address: 0x%llx by gs access peb->ldr \n",
this->current_function_rva);
this->print_asm(currentIns); this->print_asm(currentIns);
} }
auto functionAnalysis(std::vector<std::shared_ptr<_functionDetail>> functionlist, pe64* peFileObject) -> void { auto super_huoji_tracker::track_gs_access_32_i() -> void {
bool isMalwareDetect = false;
cs_insn* currentIns;
do {
const auto isFsRegAccess = match_code(
[&](cs_insn* instruction) {
if (instruction->id != X86_INS_MOV &&
instruction->id != X86_INS_MOVZX) {
return false;
}
if (instruction->detail->x86.operands[1].mem.segment !=
X86_REG_FS) {
return false;
}
// todo: SEH(FS:[00])
if (instruction->detail->x86.operands[1].mem.disp != 0x30 &&
instruction->detail->x86.operands[1].mem.disp != 0x18) {
return false;
}
return true;
},
[&](cs_insn* instruction) {}, {}, {});
if (isFsRegAccess == false) {
return;
}
currentIns = this->ins_list[this->ins_ip - 1].get();
const auto fsAccessReg = currentIns->detail->x86.operands[0].reg;
if (currentIns->detail->x86.operands[1].mem.disp == 0x18) {
/*
只是其中一个经典款,还有其他的款式,懒得做了
xor esi , esi
mov esi , fs :[ esi + 0x18 ] // TEB
mov eax , [ esi + 4 ] // 这个是需要的栈顶
mov eax , [ eax - 0x1c ] // 指向Kernel32.dll内部
find_kernel32_base :
dec eax // 开始地毯式搜索Kernel32空间
xor ax , ax
cmp word ptr [ eax ], 0x5a4d // "MZ"
jne find_kernel32_base // 循 环遍 历 ,找到 则 返回 eax
*/
const auto isTebAccess = match_code(
[&](cs_insn* instruction) {
if (instruction->id != X86_INS_MOV &&
instruction->id != X86_INS_MOVZX) {
return false;
}
if (instruction->detail->x86.operands[1].mem.base !=
fsAccessReg) {
return false;
}
if (instruction->detail->x86.operands[1].mem.disp != 0x4) {
return false;
}
return true;
},
[&](cs_insn* instruction) {}, {}, {});
if (isTebAccess) {
isMalwareDetect = true;
break;
} else {
// todo , teb获取PEB然后访问ldr...
DebugBreak();
}
} else if (currentIns->detail->x86.operands[1].mem.disp == 0x30) {
/*
mov eax,fs:[30h] ;得到PEB结构地址
mov eax,[eax + 0ch] ;得到PEB_LDR_DATA结构地址
mov esi,[eax + 1ch]
lodsd ; 得到KERNEL32.DLL所在LDR_MODULE结构的
; InInitializationOrderModuleList地址
mov eax,[eax];win7要加
mov edx,[eax + 8h] ;得到BaseAddress既Kernel32.dll基址
*/
const auto isPebLdrAccess = match_code(
[&](cs_insn* instruction) {
if (instruction->id != X86_INS_MOV &&
instruction->id != X86_INS_MOVZX) {
return false;
}
if (instruction->detail->x86.operands[1].mem.base !=
fsAccessReg) {
return false;
}
if (instruction->detail->x86.operands[1].mem.disp != 0xc) {
return false;
}
return true;
},
[&](cs_insn* instruction) {}, {}, {});
isMalwareDetect = isPebLdrAccess;
break;
} else {
// todo: fs:00 SEH访问
//__debugbreak();
}
} while (false);
if (isMalwareDetect) {
printf(
"malware function detected at address: 0x%llx by gs access "
"peb->ldr \n",
this->current_function_rva);
this->print_asm(currentIns);
}
}
auto super_huoji_tracker::track_gs_access() -> void {
this->is_x32 ? this->track_gs_access_32_i() : this->track_gs_access_64_i();
}
auto functionAnalysis(
std::vector<std::shared_ptr<_functionDetail>> functionlist,
pe64* peFileObject) -> void {
double maxEntropy = -1.0; double maxEntropy = -1.0;
uint64_t maxEntropyAddress = 0; uint64_t maxEntropyAddress = 0;
for (auto& func : functionlist) { for (auto& func : functionlist) {
auto entropy =
auto entropy = calculateEntropy(reinterpret_cast<void*>(func.get()->start_address), func.get()->size); calculateEntropy(reinterpret_cast<void*>(func.get()->start_address),
func.get()->size);
if (entropy > maxEntropy) { if (entropy > maxEntropy) {
maxEntropy = entropy; maxEntropy = entropy;
maxEntropyAddress = func.get()->start_address - reinterpret_cast<uint64_t>(peFileObject->get_buffer()->data()); maxEntropyAddress =
func.get()->start_address -
reinterpret_cast<uint64_t>(peFileObject->get_buffer()->data());
} }
auto tracker = new super_huoji_tracker(func.get()->start_address, func.get()->size, func.get()->start_address - reinterpret_cast<uint64_t>(peFileObject->get_buffer()->data())); auto tracker = new super_huoji_tracker(
func.get()->start_address, func.get()->size,
func.get()->start_address -
reinterpret_cast<uint64_t>(peFileObject->get_buffer()->data()),
peFileObject->is_32_pe());
tracker->track_gs_access(); tracker->track_gs_access();
delete tracker; delete tracker;
} }
if (maxEntropy > 7.0f) { if (maxEntropy > 7.0f) {
printf("mawlare function detected at address: 0x%08x + 0x%llx = 0x%llx entropy %f \n", maxEntropyAddress, peFileObject->get_image_base(), (peFileObject->get_image_base() + maxEntropyAddress), maxEntropy); printf(
"malware function detected at address: 0x%08x + 0x%llx = 0x%llx "
"entropy %f \n",
maxEntropyAddress, peFileObject->get_image_base(),
(peFileObject->get_image_base() + maxEntropyAddress), maxEntropy);
} }
} }
int main() int main() {
{
const std::string filePath = "z:\\huoji.bin"; const std::string filePath = "z:\\huoji.bin";
pe64* peFileObject = NULL; pe64* peFileObject = NULL;
do do {
{
if (Init() == false) {
break;
}
try { try {
srand(time(NULL)); srand(time(NULL));
peFileObject = new pe64(filePath); peFileObject = new pe64(filePath);
} } catch (std::runtime_error e) {
catch (std::runtime_error e) {
std::cout << "Runtime error: " << e.what() << std::endl; std::cout << "Runtime error: " << e.what() << std::endl;
break; break;
} }
@@ -351,6 +485,6 @@ int main()
functionAnalysis(functionlist, peFileObject); functionAnalysis(functionlist, peFileObject);
} }
} while (false); } while (false);
return 0; return 0;
} }