Files
AI_Aimbot_Detecter/test.py
Huoji's e24baaf6f7 make to English version
make to English version
2020-10-11 19:43:24 +08:00

107 lines
3.3 KiB
Python

import os
import tensorflow as tf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import functools
import csv
test_file_path = [
r"I:\csgoserver\steamcmd\steamapps\common\Counter-Strike Global Offensive Beta - Dedicated Server\csgo\addons\sourcemod\test_data.csv"]
train_file_path = [
r"I:\csgoserver\steamcmd\steamapps\common\Counter-Strike Global Offensive Beta - Dedicated Server\csgo\addons\sourcemod\train_data.csv"]
csv_data = []
csv_data_x = []
csv_data_y = []
csv_data_all_num = []
csv_data_y_avg = {}
with open(train_file_path[0], 'r') as f:
reader = csv.reader(f)
for row in reader:
csv_data.append(row)
csv_data_x = csv_data[0]
for index in range(1, len(csv_data)):
for zeus in range(len(csv_data[index])):
if csv_data_x[zeus] == 'is_cheat':
continue
if csv_data_x[zeus] in csv_data_y_avg.keys():
csv_data_y_avg[csv_data_x[zeus]] = float(
csv_data_y_avg[csv_data_x[zeus]]) + float(csv_data[index][zeus])
else:
csv_data_y_avg[csv_data_x[zeus]] = float(csv_data[index][zeus])
for key in csv_data_y_avg:
csv_data_y_avg[key] = float(csv_data_y_avg[key]) / float(len(csv_data) - 1)
print(csv_data_y_avg)
def process_continuous_data(mean, data):
data = tf.cast(data, tf.float32) * 1/(2*mean)
return tf.reshape(data, [-1, 1])
def create_model():
numerical_columns = []
for feature in csv_data_y_avg.keys():
num_col = tf.feature_column.numeric_column(
feature, normalizer_fn=functools.partial(process_continuous_data, csv_data_y_avg[feature]))
numerical_columns.append(num_col)
preprocessing_layer = tf.keras.layers.DenseFeatures(numerical_columns)
model = tf.keras.models.Sequential([
preprocessing_layer,
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(1, activation='sigmoid'),
])
model.compile(optimizer='adam',
loss=tf.losses.BinaryCrossentropy(
from_logits=True),
metrics=['accuracy'])
return model
def get_dataset(file_path):
dataset = tf.data.experimental.make_csv_dataset(
file_path,
batch_size=32,
label_name='is_cheat',
na_value="?",
num_epochs=1,
ignore_errors=True)
return dataset
def start_predict():
test_data = get_dataset(test_file_path)
print(test_data)
test_loss, test_accuracy = model.evaluate(test_data)
predict_data = model.predict(test_data)
print("anti-aimbot model, accuracy:{:5.2f}%".format(100 * test_accuracy))
num_cheat = 0
for pre, result in zip(predict_data[:20], list(test_data)[0][1][:20]):
num_access = 100 * pre[0]
if num_access >= 60:
num_cheat = num_cheat + 1
print("player is aimbot :{:5.2f}% ".format(
num_access), " is cheat: ", ("yes" if bool(result) else "no"))
print("result:", num_cheat)
if len(predict_data) < 20:
print("player kill must > 20")
if num_cheat >= (len(predict_data) / 2) - 2:
print("player is aimbot")
else:
print("player is not aimbot")
model = create_model()
model.load_weights('./save/model_weight')
start_predict()
while True:
input("any key ...")
start_predict()