This commit is contained in:
Huoji's
2025-03-09 00:06:37 +08:00
parent f7b0625bff
commit d2ed7936df
6 changed files with 615 additions and 36 deletions

View File

@@ -55,6 +55,7 @@
"xstddef": "cpp",
"xtr1common": "cpp",
"xtree": "cpp",
"xutility": "cpp"
"xutility": "cpp",
"functional": "cpp"
}
}

View File

@@ -32,9 +32,8 @@ auto getPeInfo(std::string inputFilePath) -> std::shared_ptr<BasicPeInfo> {
return sampleInfo;
}
int main() {
// auto sampleInfo =
// getPeInfo("E:\\对战平台\\CrowAntiCheat\\CrowAntiCheat\\client\\Console_Test\\x64\\Release\\Console_Test.exe");
auto sampleInfo = getPeInfo("C:\\ConsoleApplication1.exe");
auto sampleInfo = getPeInfo("z:\\Console_Test.exe");
// auto sampleInfo = getPeInfo("C:\\ConsoleApplication1.exe");
printf("input new file %s \n", sampleInfo->inputFilePath);
printf("is x64: %d\n", sampleInfo->isX64);
printf("is relocated: %d\n", sampleInfo->isRelocated);
@@ -42,6 +41,14 @@ int main() {
auto sandbox = std::make_shared<Sandbox>();
sandbox->InitEnv(sampleInfo);
sandbox->Run();
auto [peBuffer, peSize] = sandbox->DumpPE();
if (peBuffer) {
printf("peBuffer: %p\n", peBuffer.get());
printf("peSize: %d\n", peSize);
peconv::dump_to_file("z:\\dumped_main.exe", peBuffer.get(), peSize);
}
peBuffer.release();
system("pause");
return 0;
}

View File

@@ -173,10 +173,30 @@ auto Sandbox::PushModuleToVM(const char* dllName, uint64_t moduleBase) -> void {
return;
}
}
// 创建新模块
auto newModule = CreateModuleInfo(dllName, moduleBase, moduleBase);
m_moduleList.push_back(newModule);
printf("push `%s` module to vm base: %llx vm size: %llx\n", newModule->name,
newModule->base, newModule->size);
uc_mem_map(m_ucEngine, newModule->base, newModule->size,
UC_PROT_READ | UC_PROT_EXEC);
uc_mem_write(m_ucEngine, newModule->base, (void*)moduleBase,
newModule->size);
if (peconv::relocate_module((BYTE*)moduleBase, newModule->size,
newModule->base) == false) {
throw std::runtime_error("Failed to relocate module");
}
}
auto Sandbox::CreateModuleInfo(const char* dllName, uint64_t moduleBase,
uint64_t bufferAddress)
-> std::shared_ptr<struct_moudle> {
// 解析PE头
auto* dosHeader = reinterpret_cast<PIMAGE_DOS_HEADER>(moduleBase);
auto* dosHeader = reinterpret_cast<PIMAGE_DOS_HEADER>(bufferAddress);
auto* ntHeaders = reinterpret_cast<PIMAGE_NT_HEADERS>(
reinterpret_cast<LPBYTE>(moduleBase) + dosHeader->e_lfanew);
reinterpret_cast<LPBYTE>(bufferAddress) + dosHeader->e_lfanew);
// 获取区段对齐值
DWORD sectionAlignment =
@@ -191,7 +211,6 @@ auto Sandbox::PushModuleToVM(const char* dllName, uint64_t moduleBase) -> void {
sizeof(ntHeaders->FileHeader) +
ntHeaders->FileHeader.SizeOfOptionalHeader);
// 创建新模块
struct_moudle newModule{};
strncpy(newModule.name, dllName, strlen(dllName));
newModule.base =
@@ -216,9 +235,9 @@ auto Sandbox::PushModuleToVM(const char* dllName, uint64_t moduleBase) -> void {
protection |= UC_PROT_WRITE;
// 计算区段大小
auto sectionSize =
AlignSize(max(section.Misc.VirtualSize, section.SizeOfRawData),
sectionAlignment);
auto sectionSize = AlignToSectionAlignment(
max(section.Misc.VirtualSize, section.SizeOfRawData),
sectionAlignment);
// 创建区段信息
moudle_section newSection{};
@@ -233,17 +252,10 @@ auto Sandbox::PushModuleToVM(const char* dllName, uint64_t moduleBase) -> void {
std::cout << "[PE] " << dllName << " Section found: " << newSection.name
<< '\n';
}
m_moduleList.push_back(std::make_shared<struct_moudle>(newModule));
printf("push `%s` module to vm base: %llx vm size: %llx\n", newModule.name,
newModule.base, newModule.size);
uc_mem_map(m_ucEngine, newModule.base, newModule.size,
UC_PROT_READ | UC_PROT_EXEC);
uc_mem_write(m_ucEngine, newModule.base, (void*)moduleBase, newModule.size);
if (peconv::relocate_module((BYTE*)moduleBase, newModule.size,
newModule.base) == false) {
throw std::runtime_error("Failed to relocate module");
}
return std::make_shared<struct_moudle>(newModule);
}
auto Sandbox::ResolveExport(uint64_t moduleBase)
-> std::vector<std::shared_ptr<moudle_export>> {
DWORD exportSize = 0;
@@ -295,6 +307,9 @@ auto Sandbox::ResolveExport(uint64_t moduleBase)
}
auto Sandbox::ResolveImportExports() -> void {
for (auto module : m_moduleList) {
if (module->base == m_peInfo->RecImageBase) {
continue;
}
const auto exports = ResolveExport(module->real_base);
for (const auto item : exports) {
printf("import export: [%s] %s => %llx\n", module->name, item->name,
@@ -388,8 +403,8 @@ auto Sandbox::SetupVirtualMachine() -> void {
*/
uint64_t m_KSharedUserDataBase = 0x7FFE0000;
uint64_t m_KSharedUserDataEnd = 0x7FFE0FFF; // 0x7FFE2000
uint64_t m_KSharedUserDataSize =
AlignSize(m_KSharedUserDataEnd - m_KSharedUserDataBase, PAGE_SIZE);
uint64_t m_KSharedUserDataSize = AlignToSectionAlignment(
m_KSharedUserDataEnd - m_KSharedUserDataBase, PAGE_SIZE);
uc_mem_map(m_ucEngine, m_KSharedUserDataBase, m_KSharedUserDataSize,
UC_PROT_READ);
@@ -400,10 +415,10 @@ auto Sandbox::SetupVirtualMachine() -> void {
m_pebBase = PEB_BASE; // 进程PEB地址
m_envBlockBase = ENV_BLOCK_BASE; // 环境变量块地址
// stack
m_stackBase =
AlignSize(this->m_peInfo->isX64 ? STACK_BASE_64 : STACK_BASE_32, 16);
m_stackSize =
AlignSize(this->m_peInfo->isX64 ? STACK_SIZE_64 : STACK_SIZE_32, 16);
m_stackBase = AlignToSectionAlignment(
this->m_peInfo->isX64 ? STACK_BASE_64 : STACK_BASE_32, 16);
m_stackSize = AlignToSectionAlignment(
this->m_peInfo->isX64 ? STACK_SIZE_64 : STACK_SIZE_32, 16);
m_stackEnd = m_stackBase + m_stackSize;
// heap
@@ -415,8 +430,10 @@ auto Sandbox::SetupVirtualMachine() -> void {
if (this->m_peInfo->isX64) {
// 设置64位PEB
m_peb64.ImageBaseAddress = m_peInfo->RecImageBase;
m_pebEnd = m_pebBase + AlignSize(sizeof(X64PEB), PAGE_SIZE);
m_tebEnd = m_tebBase + AlignSize(sizeof(X64TEB), PAGE_SIZE);
m_pebEnd =
m_pebBase + AlignToSectionAlignment(sizeof(X64PEB), PAGE_SIZE);
m_tebEnd =
m_tebBase + AlignToSectionAlignment(sizeof(X64TEB), PAGE_SIZE);
// 设置64位TEB
m_teb64.ClientId.UniqueProcess = GetCurrentProcessId();
@@ -431,7 +448,8 @@ auto Sandbox::SetupVirtualMachine() -> void {
// 设置GS基址结构
m_gsBaseStruct.teb = m_tebBase;
m_gsBaseStruct.peb = m_pebBase;
uint64_t gsAllocSize = AlignSize(sizeof(struct_gs_base), PAGE_SIZE);
uint64_t gsAllocSize =
AlignToSectionAlignment(sizeof(struct_gs_base), PAGE_SIZE);
// 映射PEB到虚拟内存
uc_mem_map(m_ucEngine, m_pebBase, m_pebEnd - m_pebBase,
@@ -456,8 +474,10 @@ auto Sandbox::SetupVirtualMachine() -> void {
} else {
// 设置32位PEB
m_peb32.ImageBaseAddress = static_cast<ULONG>(m_peInfo->RecImageBase);
m_pebEnd = m_pebBase + AlignSize(sizeof(X32PEB), PAGE_SIZE);
m_tebEnd = m_tebBase + AlignSize(sizeof(X32TEB), PAGE_SIZE);
m_pebEnd =
m_pebBase + AlignToSectionAlignment(sizeof(X32PEB), PAGE_SIZE);
m_tebEnd =
m_tebBase + AlignToSectionAlignment(sizeof(X32TEB), PAGE_SIZE);
// 设置32位TEB
m_teb32.ClientId.UniqueProcess = GetCurrentProcessId();
@@ -491,7 +511,8 @@ auto Sandbox::SetupVirtualMachine() -> void {
uc_reg_write(m_ucEngine, UC_X86_REG_MSR, &msr);
}
// 映射新的内存区域
size_t envSize = AlignSize(this->GetEnvStringsSize(), PAGE_SIZE);
size_t envSize =
AlignToSectionAlignment(this->GetEnvStringsSize(), PAGE_SIZE);
printf("env block size: %llx\n", envSize); // 添加调试输出
uc_err envErr = uc_mem_map(m_ucEngine, m_envBlockBase, envSize,
UC_PROT_READ | UC_PROT_WRITE);
@@ -524,6 +545,13 @@ auto Sandbox::InitEnv(std::shared_ptr<BasicPeInfo> peInfo) -> void {
cs_close(&m_csHandle); // 清理已分配的capstone资源
throw std::runtime_error("Failed to initialize Unicorn");
}
// 一定要确保他是第一个.
auto newModule =
CreateModuleInfo("huoji.exe", m_peInfo->RecImageBase,
reinterpret_cast<uint64_t>(m_peInfo->peBuffer));
_ASSERTE(m_moduleList.size() == 0);
m_moduleList.push_back(newModule);
ResoveImport();
ResolveImportExports();
@@ -702,3 +730,342 @@ auto Sandbox::GetEnvString() -> std::vector<wchar_t> {
auto Sandbox::GetEnvStringsSize() -> size_t {
return GetEnvString().size() * sizeof(wchar_t);
}
auto Sandbox::getVirtualMemorySize(BYTE* peBuffer) -> size_t {
if (!peBuffer) {
return 0;
}
// 解析PE头
auto* dosHeader = reinterpret_cast<PIMAGE_DOS_HEADER>(peBuffer);
if (dosHeader->e_magic != IMAGE_DOS_SIGNATURE) {
return 0;
}
auto* ntHeaders = reinterpret_cast<PIMAGE_NT_HEADERS>(
reinterpret_cast<LPBYTE>(peBuffer) + dosHeader->e_lfanew);
// 获取区段头
auto* sectionHeader = reinterpret_cast<PIMAGE_SECTION_HEADER>(
reinterpret_cast<PUCHAR>(ntHeaders) + sizeof(ntHeaders->Signature) +
sizeof(ntHeaders->FileHeader) +
ntHeaders->FileHeader.SizeOfOptionalHeader);
DWORD minOffset = UINT_MAX;
DWORD totalSize = 0;
// 遍历所有区段
for (WORD i = 0; i < ntHeaders->FileHeader.NumberOfSections; i++) {
const auto& section = sectionHeader[i];
// 查找最小虚拟地址偏移
if (section.VirtualAddress < minOffset) {
minOffset = section.VirtualAddress;
}
// 累加虚拟大小
totalSize += section.Misc.VirtualSize;
}
// 添加最小偏移到总大小
totalSize += minOffset;
return static_cast<size_t>(totalSize);
}
auto Sandbox::DumpPE() -> std::pair<std::unique_ptr<BYTE[]>, size_t> {
// 查找目标模块 - 这里我们使用主模块(通常是被分析的可执行文件)
std::shared_ptr<struct_moudle> targetModule = nullptr;
for (const auto& module : m_moduleList) {
if (strcmp(module->name, "huoji.exe") == 0) {
targetModule = module;
break;
}
}
if (!targetModule) {
throw std::runtime_error("No modules found to dump");
}
// 计算虚拟内存大小
auto virtualMemorySize = getVirtualMemorySize(m_peInfo->peBuffer);
// 创建用于存储转储数据的缓冲区
auto resultBuffer = std::make_unique<BYTE[]>(virtualMemorySize);
// 从虚拟机内存中读取PE文件
uc_err err = uc_mem_read(m_ucEngine, m_peInfo->RecImageBase,
resultBuffer.get(), virtualMemorySize);
if (err != UC_ERR_OK) {
throw std::runtime_error("Failed to read memory during PE dump: " +
std::string(uc_strerror(err)));
}
// 确保PE头部的签名有效
auto* dosHeader = reinterpret_cast<PIMAGE_DOS_HEADER>(resultBuffer.get());
if (dosHeader->e_magic != IMAGE_DOS_SIGNATURE) {
throw std::runtime_error("Invalid DOS signature in dumped PE");
}
auto* ntHeaders = reinterpret_cast<PIMAGE_NT_HEADERS>(resultBuffer.get() +
dosHeader->e_lfanew);
if (ntHeaders->Signature != IMAGE_NT_SIGNATURE) {
throw std::runtime_error("Invalid NT signature in dumped PE");
}
// 获取当前RIP/EIP作为新的入口点
uint64_t currentEntryPoint = 0;
if (this->GetCrossSectionExecution().size() > 0) {
currentEntryPoint = this->GetCrossSectionExecution()
[this->GetCrossSectionExecution().size() - 1] -
m_peInfo->RecImageBase;
}
PIMAGE_SECTION_HEADER sectionHeaders = nullptr;
WORD numberOfSections = 0;
// 处理32位或64位PE文件
if (m_peInfo->isX64) {
auto* optHeader64 =
&reinterpret_cast<PIMAGE_NT_HEADERS64>(ntHeaders)->OptionalHeader;
optHeader64->ImageBase = m_peInfo->RecImageBase;
if (currentEntryPoint != 0) {
// 修改入口点为当前执行位置
optHeader64->AddressOfEntryPoint =
static_cast<DWORD>(currentEntryPoint);
}
// 修改SizeOfImage
optHeader64->SizeOfImage = static_cast<DWORD>(AlignToSectionAlignment(
virtualMemorySize, optHeader64->SectionAlignment));
// 修改DllCharacteristics以移除ASLR标记
optHeader64->DllCharacteristics &=
~IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE;
// 获取区段头信息
sectionHeaders = reinterpret_cast<PIMAGE_SECTION_HEADER>(
reinterpret_cast<ULONG_PTR>(ntHeaders) +
sizeof(ntHeaders->Signature) + sizeof(ntHeaders->FileHeader) +
ntHeaders->FileHeader.SizeOfOptionalHeader);
numberOfSections = ntHeaders->FileHeader.NumberOfSections;
} else {
auto* optHeader32 =
&reinterpret_cast<PIMAGE_NT_HEADERS32>(ntHeaders)->OptionalHeader;
optHeader32->ImageBase = static_cast<DWORD>(m_peInfo->RecImageBase);
if (currentEntryPoint != 0) {
// 修改入口点为当前执行位置
optHeader32->AddressOfEntryPoint =
static_cast<DWORD>(currentEntryPoint);
}
// 修改SizeOfImage
optHeader32->SizeOfImage = static_cast<DWORD>(AlignToSectionAlignment(
virtualMemorySize, optHeader32->SectionAlignment));
// 修改DllCharacteristics以移除ASLR标记
optHeader32->DllCharacteristics &=
~IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE;
// 获取区段头信息
sectionHeaders = reinterpret_cast<PIMAGE_SECTION_HEADER>(
reinterpret_cast<ULONG_PTR>(ntHeaders) +
sizeof(ntHeaders->Signature) + sizeof(ntHeaders->FileHeader) +
ntHeaders->FileHeader.SizeOfOptionalHeader);
numberOfSections = ntHeaders->FileHeader.NumberOfSections;
}
// 更新代码基址和大小
UpdateBaseOfCode(sectionHeaders, ntHeaders, numberOfSections,
static_cast<DWORD>(currentEntryPoint));
// 修复区段
FixSections(sectionHeaders, numberOfSections, virtualMemorySize);
// 创建一个ExportsMapper对象用于导入表修复
peconv::ExportsMapper exportsMap;
// 添加所有已加载模块到导出表映射中
for (const auto& module : m_moduleList) {
if (module->base == 0 || module->size == 0) {
continue;
}
// 创建临时缓冲区以存储模块内容
std::unique_ptr<BYTE[]> moduleBuffer =
std::make_unique<BYTE[]>(module->size);
// 从虚拟机内存读取模块内容
uc_err readErr = uc_mem_read(m_ucEngine, module->base,
moduleBuffer.get(), module->size);
if (readErr != UC_ERR_OK) {
printf(
"Warning: Could not read module %s for exports mapping: %s\n",
module->name, uc_strerror(readErr));
continue;
}
// 添加模块到导出表映射
exportsMap.add_to_lookup(module->name,
reinterpret_cast<HMODULE>(moduleBuffer.get()),
module->base);
}
//这里有一个严重的问题,就懒得处理了:
//壳里面吐出来的代码的导入表和壳的导入表不是同样一个.
//这个修的是壳的 导入表,所以导入表 修 不 全
//有个很简单的办法,需要搜索IAT结构,然后修改脱壳后的IAT的字段到壳的字段里面,然后再执行一次fix_imports
//懒得写了,家庭作业.自己完成
bool importsFixed = peconv::fix_imports(
resultBuffer.get(), virtualMemorySize, exportsMap, nullptr);
if (importsFixed) {
printf("PE file imports fixed successfully\n");
} else {
printf("Warning: Failed to fix PE file imports\n");
}
size_t out_size = 0;
// 重新计算校验和
if (m_peInfo->isX64) {
auto* optHeader64 =
&reinterpret_cast<PIMAGE_NT_HEADERS64>(ntHeaders)->OptionalHeader;
optHeader64->CheckSum =
CalculateChecksum(resultBuffer.get(), virtualMemorySize);
} else {
auto* optHeader32 =
&reinterpret_cast<PIMAGE_NT_HEADERS32>(ntHeaders)->OptionalHeader;
optHeader32->CheckSum =
CalculateChecksum(resultBuffer.get(), virtualMemorySize);
}
printf(
"PE file dumped successfully from address: 0x%llx, size: %zu bytes\n",
m_peInfo->RecImageBase, virtualMemorySize);
printf("Entry point set to: 0x%llx (RVA: 0x%llx)\n",
m_peInfo->RecImageBase + currentEntryPoint, currentEntryPoint);
return {std::move(resultBuffer), virtualMemorySize};
}
// 修复区段信息
void Sandbox::FixSections(PIMAGE_SECTION_HEADER sectionHeaders,
WORD numberOfSections, size_t virtualMemorySize) {
if (numberOfSections == 0 || sectionHeaders == nullptr) {
return;
}
// 修复每个区段的信息
for (WORD i = 0; i < numberOfSections - 1; i++) {
auto& currentSection = sectionHeaders[i];
auto& nextSection = sectionHeaders[i + 1];
// 修复大小,使之与下一个区段的起始地址对齐
currentSection.SizeOfRawData =
nextSection.VirtualAddress - currentSection.VirtualAddress;
currentSection.PointerToRawData = currentSection.VirtualAddress;
currentSection.Misc.VirtualSize = currentSection.SizeOfRawData;
}
// 修复最后一个区段
auto& lastSection = sectionHeaders[numberOfSections - 1];
lastSection.SizeOfRawData =
static_cast<DWORD>(virtualMemorySize) - lastSection.VirtualAddress;
lastSection.PointerToRawData = lastSection.VirtualAddress;
lastSection.Misc.VirtualSize = lastSection.SizeOfRawData;
}
// 计算校验和
DWORD Sandbox::CalculateChecksum(const BYTE* peBuffer, size_t size) {
DWORD sum = 0;
const DWORD* ptr = reinterpret_cast<const DWORD*>(peBuffer);
const DWORD count = static_cast<DWORD>(size / sizeof(DWORD));
// 获取校验和字段的偏移
const auto dosHeader = (PIMAGE_DOS_HEADER)(peBuffer);
const auto ntHeaders = (PIMAGE_NT_HEADERS)(peBuffer + dosHeader->e_lfanew);
DWORD checksumOffset = dosHeader->e_lfanew +
FIELD_OFFSET(IMAGE_NT_HEADERS, OptionalHeader) +
FIELD_OFFSET(IMAGE_OPTIONAL_HEADER, CheckSum);
// 计算总和,跳过校验和字段本身
for (DWORD i = 0; i < count; i++) {
// 跳过校验和字段
if ((i * sizeof(DWORD)) == checksumOffset ||
(i * sizeof(DWORD)) == checksumOffset + sizeof(DWORD) - 1) {
continue;
}
sum += ptr[i];
// 处理溢出
if (sum < ptr[i]) {
sum++;
}
}
// 完成计算
sum = (sum & 0xFFFF) + (sum >> 16);
sum = (sum & 0xFFFF) + (sum >> 16);
sum = sum + static_cast<DWORD>(size);
return sum;
}
// 按区段对齐大小进行对齐
DWORD Sandbox::AlignToSectionAlignment(size_t size, DWORD alignment) {
return static_cast<DWORD>(((size + alignment - 1) / alignment) * alignment);
}
// 更新代码基址和代码大小
void Sandbox::UpdateBaseOfCode(PIMAGE_SECTION_HEADER sectionHeader,
PIMAGE_NT_HEADERS ntHeaders,
WORD numberOfSections, DWORD entryPoint) {
if (sectionHeader == nullptr || ntHeaders == nullptr ||
numberOfSections == 0) {
return;
}
DWORD baseOfCode = 0;
DWORD sizeOfCode = 0;
bool foundSection = false;
// 寻找包含入口点的区段
for (WORD i = 0; i < numberOfSections; i++) {
auto& section = sectionHeader[i];
if (entryPoint >= section.VirtualAddress &&
entryPoint < (section.VirtualAddress + section.Misc.VirtualSize)) {
baseOfCode = section.VirtualAddress;
sizeOfCode = section.Misc.VirtualSize;
foundSection = true;
break;
}
}
// 如果没有找到包含入口点的区段,使用第一个可执行区段
if (!foundSection) {
for (WORD i = 0; i < numberOfSections; i++) {
auto& section = sectionHeader[i];
if (section.Characteristics & IMAGE_SCN_MEM_EXECUTE) {
baseOfCode = section.VirtualAddress;
sizeOfCode = section.Misc.VirtualSize;
foundSection = true;
break;
}
}
}
// 更新NT头部信息
if (foundSection) {
if (ntHeaders->FileHeader.Machine == IMAGE_FILE_MACHINE_AMD64) {
// 64位PE
auto* optHeader64 =
&reinterpret_cast<PIMAGE_NT_HEADERS64>(ntHeaders)
->OptionalHeader;
optHeader64->BaseOfCode = baseOfCode;
} else {
// 32位PE
auto* optHeader32 =
&reinterpret_cast<PIMAGE_NT_HEADERS32>(ntHeaders)
->OptionalHeader;
optHeader32->BaseOfCode = baseOfCode;
optHeader32->SizeOfCode = sizeOfCode;
}
}
}

View File

@@ -111,6 +111,46 @@ class Sandbox {
auto SplitBlock(HeapBlock* block, size_t size) -> void;
auto GetEnvBlockBase() const -> uint64_t { return m_envBlockBase; }
std::map<uint64_t, HeapSegment*> m_heapSegments; // 堆段映射表
auto GetHeapBlocks() const -> std::map<uint64_t, HeapSegment*> {
return m_heapSegments;
}
// 从内存中提取PE文件并修复重定位和导入表返回原始PE的缓冲区
auto DumpPE() -> std::pair<std::unique_ptr<BYTE[]>, size_t>;
// 计算PE文件的虚拟内存大小
auto getVirtualMemorySize(BYTE* peBuffer) -> size_t;
// 修复PE区段信息
void FixSections(PIMAGE_SECTION_HEADER sectionHeader, WORD numberOfSections,
size_t virtualMemorySize);
// 更新代码基址和大小
void UpdateBaseOfCode(PIMAGE_SECTION_HEADER sectionHeader,
PIMAGE_NT_HEADERS ntHeaders, WORD numberOfSections,
DWORD entryPoint);
// 对齐到区段对齐值
DWORD AlignToSectionAlignment(size_t size, DWORD alignment);
// 计算PE校验和
DWORD CalculateChecksum(const BYTE* buffer, size_t size);
auto SetupVirtualMachine() -> void;
auto PushModuleToVM(const char* dllName, uint64_t moduleBase) -> void;
auto processImportModule(const moudle_import* importModule) -> void;
auto GetCrossSectionExecution() -> std::vector<uint64_t> {
return m_crossSectionExecution;
}
auto GetLastExecuteSectionIndex() -> uint64_t {
return m_lastExecuteSectionIndex;
}
auto SetLastExecuteSectionIndex(uint64_t index) -> void {
m_lastExecuteSectionIndex = index;
}
auto SetCrossSectionExecution(uint64_t address) -> void {
return m_crossSectionExecution.push_back(address);
}
private:
std::shared_ptr<BasicPeInfo> m_peInfo;
@@ -167,12 +207,14 @@ class Sandbox {
L"USERPROFILE=C:\\Users\\User",
L"windir=C:\\Windows"};
auto ResoveImport() -> void;
auto SetupVirtualMachine() -> void;
auto PushModuleToVM(const char* dllName, uint64_t moduleBase) -> void;
auto processImportModule(const moudle_import* importModule) -> void;
auto ResolveImportExports() -> void;
auto CreateModuleInfo(const char* dllName, uint64_t moduleBase,
uint64_t bufferAddress)
-> std::shared_ptr<struct_moudle>;
auto ResolveExport(uint64_t moduleBase)
-> std::vector<std::shared_ptr<moudle_export>>;
auto InitApiHooks() -> void;
auto InitCommandLine(std::string commandLine) -> void;
std::vector<uint64_t> m_crossSectionExecution; // 记录跨区段执行地址
uint64_t m_lastExecuteSectionIndex = 0; // 上次执行的区段索引
};

View File

@@ -2047,6 +2047,132 @@ auto Api_SetUnhandledExceptionFilter(void* sandbox, uc_engine* uc,
&prev_filter);
}
// 将Windows VirtualProtect保护标志转换为Unicorn内存保护标志
uint32_t WindowsToUnicornProtect(uint32_t windowsProtect) {
uint32_t unicornProtect = UC_PROT_NONE;
// 转换基本属性
if (windowsProtect & (PAGE_READONLY | PAGE_READWRITE | PAGE_EXECUTE_READ |
PAGE_EXECUTE_READWRITE)) {
unicornProtect |= UC_PROT_READ;
}
if (windowsProtect & (PAGE_READWRITE | PAGE_WRITECOPY |
PAGE_EXECUTE_READWRITE | PAGE_EXECUTE_WRITECOPY)) {
unicornProtect |= UC_PROT_WRITE;
}
if (windowsProtect & (PAGE_EXECUTE | PAGE_EXECUTE_READ |
PAGE_EXECUTE_READWRITE | PAGE_EXECUTE_WRITECOPY)) {
unicornProtect |= UC_PROT_EXEC;
}
// 如果没有有效标志,至少给予读权限以防崩溃
if (unicornProtect == UC_PROT_NONE && windowsProtect != PAGE_NOACCESS) {
unicornProtect = UC_PROT_READ;
}
return unicornProtect;
}
auto Api_VirtualProtect(void* sandbox, uc_engine* uc, uint64_t address)
-> void {
auto context = static_cast<Sandbox*>(sandbox);
uint64_t lpAddress = 0;
uint64_t dwSize = 0;
uint32_t flNewProtect = 0;
uint64_t lpflOldProtect = 0;
// 获取参数
if (context->GetPeInfo()->isX64) {
// x64: rcx = lpAddress, rdx = dwSize, r8 = flNewProtect, r9 =
// lpflOldProtect
uc_reg_read(uc, UC_X86_REG_RCX, &lpAddress);
uc_reg_read(uc, UC_X86_REG_RDX, &dwSize);
uint64_t temp_protect;
uc_reg_read(uc, UC_X86_REG_R8, &temp_protect);
flNewProtect = static_cast<uint32_t>(temp_protect);
uc_reg_read(uc, UC_X86_REG_R9, &lpflOldProtect);
} else {
// x86: 从栈上读取参数
uint32_t esp_address = 0;
uc_reg_read(uc, UC_X86_REG_ESP, &esp_address);
esp_address += 0x4; // 跳过返回地址
uint32_t temp_address;
uc_mem_read(uc, esp_address, &temp_address, sizeof(uint32_t));
lpAddress = temp_address;
esp_address += 0x4;
uint32_t temp_size;
uc_mem_read(uc, esp_address, &temp_size, sizeof(uint32_t));
dwSize = temp_size;
esp_address += 0x4;
uc_mem_read(uc, esp_address, &flNewProtect, sizeof(uint32_t));
esp_address += 0x4;
uint32_t temp_old_protect;
uc_mem_read(uc, esp_address, &temp_old_protect, sizeof(uint32_t));
lpflOldProtect = temp_old_protect;
}
// 检查参数有效性
if (lpAddress == 0 || dwSize == 0 || lpflOldProtect == 0) {
uint64_t result = 0; // FALSE
uc_reg_write(
uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
// 设置错误码 - ERROR_INVALID_PARAMETER
DWORD error = ERROR_INVALID_PARAMETER;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
return;
}
// 检查地址范围是否已映射
uint32_t unicornProtect = WindowsToUnicornProtect(flNewProtect);
uc_err err = uc_mem_protect(uc, lpAddress, dwSize, unicornProtect);
if (err != UC_ERR_OK) {
uint64_t result = 0; // FALSE
uc_reg_write(
uc, context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
// 设置错误码 - ERROR_INVALID_ADDRESS
DWORD error = ERROR_INVALID_ADDRESS;
if (context->GetPeInfo()->isX64) {
context->GetTeb64()->LastErrorValue = error;
} else {
context->GetTeb32()->LastErrorValue = error;
}
return;
}
// 模拟的旧保护属性,这里简化为一个默认值
// 实际应用中,应该从内存映射表中获取
uint32_t oldProtect = PAGE_READWRITE;
// 写入旧保护值到lpflOldProtect指向的内存
uc_mem_write(uc, lpflOldProtect, &oldProtect, sizeof(uint32_t));
// 调试输出
printf(
"[*] VirtualProtect: Address=0x%llx, Size=0x%llx, WindowsProtect=0x%x, "
"UnicornProtect=0x%x, OldProtect=0x%x\n",
lpAddress, dwSize, flNewProtect, unicornProtect, oldProtect);
// 设置返回值为TRUE
uint64_t result = 1; // TRUE
uc_reg_write(uc,
context->GetPeInfo()->isX64 ? UC_X86_REG_RAX : UC_X86_REG_EAX,
&result);
}
auto Sandbox::InitApiHooks() -> void {
auto FakeApi_GetSystemTimeAsFileTime =
_fakeApi{.func = Api_GetSystemTimeAsFileTime, .paramCount = 1};
@@ -2113,6 +2239,8 @@ auto Sandbox::InitApiHooks() -> void {
_fakeApi{.func = Api_FreeEnvironmentStringsW, .paramCount = 1};
auto FakeApi_SetUnhandledExceptionFilter =
_fakeApi{.func = Api_SetUnhandledExceptionFilter, .paramCount = 1};
auto FakeApi_VirtualProtect =
_fakeApi{.func = Api_VirtualProtect, .paramCount = 4};
api_map = {
{"GetSystemTimeAsFileTime",
@@ -2171,6 +2299,7 @@ auto Sandbox::InitApiHooks() -> void {
std::make_shared<_fakeApi>(FakeApi_FreeEnvironmentStringsW)},
{"SetUnhandledExceptionFilter",
std::make_shared<_fakeApi>(FakeApi_SetUnhandledExceptionFilter)},
{"VirtualProtect", std::make_shared<_fakeApi>(FakeApi_VirtualProtect)},
};
}
auto Sandbox::EmulateApi(uc_engine* uc, uint64_t address, uint64_t rip,

View File

@@ -1,5 +1,5 @@
#include "sandbox_callbacks.h"
#define LOG_LEVEL 1
#define LOG_LEVEL 0
namespace sandboxCallbacks {
void handleCodeRun(uc_engine* uc, uint64_t address, uint32_t size,
void* userData) {
@@ -24,6 +24,39 @@ void handleCodeRun(uc_engine* uc, uint64_t address, uint32_t size,
uc_reg_read(uc,
sandbox->GetPeInfo()->isX64 ? UC_X86_REG_RSP : UC_X86_REG_ESP,
&currentRsp);
// 检查当前执行地址所在区段
int currentSectionIndex = -1;
for (size_t i = 0; i < sandbox->GetModuleList()[0]->sections.size(); i++) {
auto section = sandbox->GetModuleList()[0]->sections[i];
uint64_t sectionStart =
sandbox->GetPeInfo()->RecImageBase + section->base;
uint64_t sectionEnd = sectionStart + section->size;
if (address >= sectionStart && address < sectionEnd) {
currentSectionIndex = static_cast<int>(i);
break;
}
}
// 如果找到区段,并且与上次执行的区段不同,记录跨区段行为
if (currentSectionIndex >= 0 &&
sandbox->GetLastExecuteSectionIndex() != currentSectionIndex &&
sandbox->GetLastExecuteSectionIndex() != 0) {
printf(
"[!!!]detect cross section excute, from %d to %d,address: 0x%llx\n",
sandbox->GetLastExecuteSectionIndex(), currentSectionIndex,
address);
// 记录跨区段执行地址
sandbox->SetCrossSectionExecution(address);
}
// 更新上次执行的区段
if (currentSectionIndex >= 0) {
sandbox->SetLastExecuteSectionIndex(currentSectionIndex);
}
for (auto module : sandbox->GetModuleList()) {
for (auto item : module->export_function) {
const auto vmAddress = module->base + item->function_address;