document research framework and analysis methods
This commit is contained in:
458
docs/RESEARCH_FRAMEWORK.md
Normal file
458
docs/RESEARCH_FRAMEWORK.md
Normal file
@@ -0,0 +1,458 @@
|
||||
# Security Research Framework
|
||||
|
||||
## Academic Collaboration & Research
|
||||
|
||||
Ghost serves as a research platform for studying process injection techniques and developing novel detection methodologies. This framework supports security researchers, academics, and threat hunters.
|
||||
|
||||
## Research Capabilities
|
||||
|
||||
### 1. Technique Analysis Database
|
||||
|
||||
```rust
|
||||
use ghost_core::research::{TechniqueDatabase, MitreAttack};
|
||||
|
||||
// Map detections to MITRE ATT&CK framework
|
||||
let technique_db = TechniqueDatabase::new();
|
||||
technique_db.add_mapping("T1055", "Process Injection");
|
||||
technique_db.add_mapping("T1055.001", "Dynamic-link Library Injection");
|
||||
technique_db.add_mapping("T1055.002", "Portable Executable Injection");
|
||||
```
|
||||
|
||||
### 2. Behavioral Pattern Mining
|
||||
|
||||
```rust
|
||||
// Extract behavioral patterns from detection data
|
||||
pub struct PatternMiner {
|
||||
sequence_analyzer: SequenceAnalyzer,
|
||||
anomaly_clusterer: AnomalyClusterer,
|
||||
temporal_correlator: TemporalCorrelator,
|
||||
}
|
||||
|
||||
impl PatternMiner {
|
||||
pub fn mine_injection_patterns(&self, events: &[DetectionEvent]) -> Vec<Pattern> {
|
||||
let sequences = self.sequence_analyzer.extract_sequences(events);
|
||||
let clusters = self.anomaly_clusterer.cluster_anomalies(&sequences);
|
||||
self.temporal_correlator.correlate_patterns(clusters)
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 3. Adversarial Testing Framework
|
||||
|
||||
```rust
|
||||
// Test detection capabilities against known techniques
|
||||
pub struct AdversarialTester {
|
||||
technique_library: TechniqueLibrary,
|
||||
evasion_simulator: EvasionSimulator,
|
||||
effectiveness_measurer: EffectivenessMeasurer,
|
||||
}
|
||||
|
||||
impl AdversarialTester {
|
||||
pub fn test_detection_coverage(&self) -> CoverageReport {
|
||||
let techniques = self.technique_library.get_all_techniques();
|
||||
let mut results = Vec::new();
|
||||
|
||||
for technique in techniques {
|
||||
let evasions = self.evasion_simulator.generate_variants(&technique);
|
||||
let detection_rate = self.effectiveness_measurer.measure(&evasions);
|
||||
results.push(TestResult { technique, detection_rate });
|
||||
}
|
||||
|
||||
CoverageReport::new(results)
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Data Collection & Analysis
|
||||
|
||||
### Event Correlation Engine
|
||||
|
||||
```rust
|
||||
pub struct CorrelationEngine {
|
||||
event_buffer: RingBuffer<DetectionEvent>,
|
||||
correlation_rules: Vec<CorrelationRule>,
|
||||
timeline_analyzer: TimelineAnalyzer,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct DetectionEvent {
|
||||
pub timestamp: SystemTime,
|
||||
pub process_id: u32,
|
||||
pub technique: String,
|
||||
pub indicators: Vec<String>,
|
||||
pub context: EventContext,
|
||||
}
|
||||
|
||||
impl CorrelationEngine {
|
||||
pub fn correlate_events(&mut self, new_event: DetectionEvent) -> Vec<CorrelatedIncident> {
|
||||
self.event_buffer.push(new_event.clone());
|
||||
|
||||
let mut incidents = Vec::new();
|
||||
for rule in &self.correlation_rules {
|
||||
if let Some(incident) = rule.evaluate(&self.event_buffer, &new_event) {
|
||||
incidents.push(incident);
|
||||
}
|
||||
}
|
||||
|
||||
incidents
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Statistical Analysis Module
|
||||
|
||||
```rust
|
||||
use ndarray::{Array1, Array2};
|
||||
use linfa::prelude::*;
|
||||
|
||||
pub struct StatisticalAnalyzer {
|
||||
feature_extractor: FeatureExtractor,
|
||||
dimensionality_reducer: PCA,
|
||||
classifier: LogisticRegression,
|
||||
}
|
||||
|
||||
impl StatisticalAnalyzer {
|
||||
pub fn analyze_detection_patterns(&self, data: &[ProcessData]) -> AnalysisReport {
|
||||
// Extract features for statistical analysis
|
||||
let features = self.feature_extractor.extract_batch(data);
|
||||
|
||||
// Apply dimensionality reduction
|
||||
let reduced_features = self.dimensionality_reducer.transform(&features);
|
||||
|
||||
// Classify injection likelihood
|
||||
let predictions = self.classifier.predict(&reduced_features);
|
||||
|
||||
AnalysisReport {
|
||||
feature_importance: self.calculate_feature_importance(&features),
|
||||
classification_accuracy: self.calculate_accuracy(&predictions),
|
||||
statistical_significance: self.calculate_significance(&features),
|
||||
recommendations: self.generate_recommendations(&predictions),
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Research Datasets
|
||||
|
||||
### Synthetic Data Generation
|
||||
|
||||
```rust
|
||||
pub struct SyntheticDataGenerator {
|
||||
process_simulator: ProcessSimulator,
|
||||
injection_simulator: InjectionSimulator,
|
||||
noise_generator: NoiseGenerator,
|
||||
}
|
||||
|
||||
impl SyntheticDataGenerator {
|
||||
pub fn generate_training_dataset(&self, config: DatasetConfig) -> Dataset {
|
||||
let mut samples = Vec::new();
|
||||
|
||||
// Generate clean processes
|
||||
for _ in 0..config.clean_samples {
|
||||
let process = self.process_simulator.generate_clean_process();
|
||||
samples.push(LabeledSample {
|
||||
data: process,
|
||||
label: Label::Clean,
|
||||
});
|
||||
}
|
||||
|
||||
// Generate injected processes
|
||||
for technique in &config.injection_techniques {
|
||||
for _ in 0..config.samples_per_technique {
|
||||
let process = self.injection_simulator.simulate_injection(technique);
|
||||
samples.push(LabeledSample {
|
||||
data: process,
|
||||
label: Label::Injected(technique.clone()),
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// Add realistic noise
|
||||
for sample in &mut samples {
|
||||
self.noise_generator.add_noise(&mut sample.data);
|
||||
}
|
||||
|
||||
Dataset::new(samples)
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Benchmark Datasets
|
||||
|
||||
```rust
|
||||
// Standard benchmark datasets for research comparison
|
||||
pub struct BenchmarkDatasets;
|
||||
|
||||
impl BenchmarkDatasets {
|
||||
pub fn load_mitre_dataset() -> Result<Dataset, Error> {
|
||||
// Load MITRE ATT&CK evaluation dataset
|
||||
unimplemented!("Load standardized MITRE evaluation data")
|
||||
}
|
||||
|
||||
pub fn load_academic_dataset(name: &str) -> Result<Dataset, Error> {
|
||||
// Load academic research datasets
|
||||
match name {
|
||||
"injection_patterns_2024" => self.load_injection_patterns(),
|
||||
"evasion_techniques_2024" => self.load_evasion_techniques(),
|
||||
"behavioral_anomalies_2024" => self.load_behavioral_anomalies(),
|
||||
_ => Err(Error::DatasetNotFound),
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Publication & Collaboration
|
||||
|
||||
### Research Metrics
|
||||
|
||||
```rust
|
||||
pub struct ResearchMetrics {
|
||||
detection_rates: HashMap<String, f64>,
|
||||
false_positive_rates: HashMap<String, f64>,
|
||||
performance_metrics: PerformanceMetrics,
|
||||
coverage_analysis: CoverageAnalysis,
|
||||
}
|
||||
|
||||
impl ResearchMetrics {
|
||||
pub fn generate_publication_data(&self) -> PublicationData {
|
||||
PublicationData {
|
||||
methodology: self.describe_methodology(),
|
||||
experimental_setup: self.describe_setup(),
|
||||
results: self.compile_results(),
|
||||
statistical_analysis: self.perform_statistical_tests(),
|
||||
reproducibility_package: self.create_reproducibility_package(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn export_for_publication(&self, format: PublicationFormat) -> String {
|
||||
match format {
|
||||
PublicationFormat::LaTeX => self.generate_latex_tables(),
|
||||
PublicationFormat::CSV => self.export_csv_data(),
|
||||
PublicationFormat::JSON => self.export_json_data(),
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Collaborative Research Platform
|
||||
|
||||
```rust
|
||||
pub struct CollaborationPlatform {
|
||||
experiment_registry: ExperimentRegistry,
|
||||
data_sharing_service: DataSharingService,
|
||||
result_verification: ResultVerification,
|
||||
}
|
||||
|
||||
impl CollaborationPlatform {
|
||||
pub fn register_experiment(&mut self, experiment: Experiment) -> ExperimentId {
|
||||
let id = self.experiment_registry.register(experiment);
|
||||
self.data_sharing_service.create_workspace(id);
|
||||
id
|
||||
}
|
||||
|
||||
pub fn share_results(&self, experiment_id: ExperimentId, results: Results) -> Result<(), Error> {
|
||||
// Verify result integrity
|
||||
self.result_verification.verify(&results)?;
|
||||
|
||||
// Share with registered collaborators
|
||||
self.data_sharing_service.publish_results(experiment_id, results)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Educational Components
|
||||
|
||||
### Interactive Learning Modules
|
||||
|
||||
```rust
|
||||
pub struct EducationalFramework {
|
||||
technique_simulator: TechniqueSimulator,
|
||||
guided_analysis: GuidedAnalysis,
|
||||
assessment_engine: AssessmentEngine,
|
||||
}
|
||||
|
||||
impl EducationalFramework {
|
||||
pub fn create_learning_scenario(&self, technique: &str) -> LearningScenario {
|
||||
LearningScenario {
|
||||
description: self.get_technique_description(technique),
|
||||
simulated_environment: self.technique_simulator.create_scenario(technique),
|
||||
analysis_steps: self.guided_analysis.generate_steps(technique),
|
||||
assessment_criteria: self.assessment_engine.get_criteria(technique),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn evaluate_student_analysis(&self, scenario_id: u64, analysis: StudentAnalysis) -> Assessment {
|
||||
let criteria = self.assessment_engine.get_criteria_for_scenario(scenario_id);
|
||||
self.assessment_engine.evaluate(analysis, criteria)
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Technique Documentation Generator
|
||||
|
||||
```rust
|
||||
pub struct TechniqueDocGenerator {
|
||||
technique_analyzer: TechniqueAnalyzer,
|
||||
documentation_builder: DocumentationBuilder,
|
||||
example_generator: ExampleGenerator,
|
||||
}
|
||||
|
||||
impl TechniqueDocGenerator {
|
||||
pub fn generate_technique_guide(&self, technique: &InjectionTechnique) -> TechniqueGuide {
|
||||
TechniqueGuide {
|
||||
overview: self.technique_analyzer.analyze_technique(technique),
|
||||
detection_methods: self.technique_analyzer.get_detection_methods(technique),
|
||||
code_examples: self.example_generator.generate_examples(technique),
|
||||
countermeasures: self.technique_analyzer.get_countermeasures(technique),
|
||||
references: self.technique_analyzer.get_academic_references(technique),
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Research APIs
|
||||
|
||||
### Data Export API
|
||||
|
||||
```rust
|
||||
use serde::{Serialize, Deserialize};
|
||||
|
||||
#[derive(Serialize, Deserialize)]
|
||||
pub struct ResearchDataExport {
|
||||
pub metadata: ExperimentMetadata,
|
||||
pub detection_events: Vec<DetectionEvent>,
|
||||
pub performance_metrics: PerformanceMetrics,
|
||||
pub statistical_summary: StatisticalSummary,
|
||||
}
|
||||
|
||||
impl ResearchDataExport {
|
||||
pub fn export_to_format(&self, format: ExportFormat) -> Result<String, Error> {
|
||||
match format {
|
||||
ExportFormat::JSON => serde_json::to_string_pretty(self).map_err(Error::from),
|
||||
ExportFormat::CSV => self.to_csv(),
|
||||
ExportFormat::Parquet => self.to_parquet(),
|
||||
ExportFormat::HDF5 => self.to_hdf5(),
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### Analysis Pipeline API
|
||||
|
||||
```rust
|
||||
pub trait AnalysisPipeline {
|
||||
fn process_detection_data(&self, data: &[DetectionEvent]) -> AnalysisResult;
|
||||
fn extract_features(&self, events: &[DetectionEvent]) -> FeatureMatrix;
|
||||
fn apply_ml_models(&self, features: &FeatureMatrix) -> PredictionResults;
|
||||
fn generate_insights(&self, predictions: &PredictionResults) -> Vec<Insight>;
|
||||
}
|
||||
|
||||
pub struct StandardAnalysisPipeline {
|
||||
feature_extractor: FeatureExtractor,
|
||||
ml_models: Vec<Box<dyn MLModel>>,
|
||||
insight_generator: InsightGenerator,
|
||||
}
|
||||
|
||||
impl AnalysisPipeline for StandardAnalysisPipeline {
|
||||
fn process_detection_data(&self, data: &[DetectionEvent]) -> AnalysisResult {
|
||||
let features = self.extract_features(data);
|
||||
let predictions = self.apply_ml_models(&features);
|
||||
let insights = self.generate_insights(&predictions);
|
||||
|
||||
AnalysisResult {
|
||||
features,
|
||||
predictions,
|
||||
insights,
|
||||
metadata: self.generate_metadata(),
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Citation & Attribution
|
||||
|
||||
When using Ghost for research, please cite:
|
||||
|
||||
```bibtex
|
||||
@software{ghost_detection_framework,
|
||||
title={Ghost: Cross-Platform Process Injection Detection Framework},
|
||||
author={Security Research Team},
|
||||
year={2024},
|
||||
url={https://github.com/pandaadir05/ghost},
|
||||
version={1.0.0}
|
||||
}
|
||||
```
|
||||
|
||||
## Research Ethics & Responsible Disclosure
|
||||
|
||||
### Ethical Guidelines
|
||||
|
||||
1. **Responsible Research**: Use Ghost only for legitimate security research
|
||||
2. **Data Privacy**: Anonymize sensitive data in publications
|
||||
3. **Disclosure Policy**: Report vulnerabilities through proper channels
|
||||
4. **Academic Integrity**: Properly attribute prior work and collaborations
|
||||
|
||||
### Data Handling
|
||||
|
||||
```rust
|
||||
pub struct EthicalDataHandler {
|
||||
anonymizer: DataAnonymizer,
|
||||
consent_manager: ConsentManager,
|
||||
audit_logger: AuditLogger,
|
||||
}
|
||||
|
||||
impl EthicalDataHandler {
|
||||
pub fn handle_research_data(&self, data: RawData) -> Result<AnonymizedData, Error> {
|
||||
// Verify consent for data usage
|
||||
self.consent_manager.verify_consent(&data)?;
|
||||
|
||||
// Anonymize sensitive information
|
||||
let anonymized = self.anonymizer.anonymize(data)?;
|
||||
|
||||
// Log handling for audit trail
|
||||
self.audit_logger.log_data_handling(&anonymized);
|
||||
|
||||
Ok(anonymized)
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Community Contributions
|
||||
|
||||
### Research Collaboration
|
||||
|
||||
- **Open Source Contributions**: Submit improvements via GitHub
|
||||
- **Academic Partnerships**: Collaborate on research projects
|
||||
- **Industry Collaboration**: Partner with security vendors
|
||||
- **Conference Presentations**: Present findings at security conferences
|
||||
|
||||
### Contribution Guidelines
|
||||
|
||||
1. **Code Quality**: Follow Rust best practices
|
||||
2. **Documentation**: Comprehensive documentation required
|
||||
3. **Testing**: Include unit and integration tests
|
||||
4. **Benchmarking**: Provide performance benchmarks
|
||||
5. **Research Value**: Demonstrate novel research contributions
|
||||
|
||||
## Future Research Directions
|
||||
|
||||
### Emerging Techniques
|
||||
|
||||
- **AI-Powered Evasion**: Detection of AI-generated injection techniques
|
||||
- **Hardware-Assisted Injection**: Analysis of hardware-based attacks
|
||||
- **Cloud-Native Threats**: Container and serverless injection techniques
|
||||
- **IoT Security**: Process injection in embedded systems
|
||||
|
||||
### Advanced Analytics
|
||||
|
||||
- **Graph Neural Networks**: Process relationship modeling
|
||||
- **Temporal Analysis**: Time-series detection modeling
|
||||
- **Federated Learning**: Distributed detection model training
|
||||
- **Adversarial ML**: Robust ML models against evasion
|
||||
|
||||
For additional research resources, see:
|
||||
- [Academic Papers](docs/research/PAPERS.md)
|
||||
- [Dataset Specifications](docs/research/DATASETS.md)
|
||||
- [Collaboration Guidelines](docs/research/COLLABORATION.md)
|
||||
Reference in New Issue
Block a user