Update to go v1.23.2

This commit is contained in:
Vorapol Rinsatitnon
2024-10-02 08:34:23 +10:00
parent 439cdb4d4e
commit 45c3c1f20a
6 changed files with 449 additions and 9 deletions

View File

@@ -1,2 +1,2 @@
go1.23.1
time 2024-08-29T20:56:24Z
go1.23.2
time 2024-09-28T01:34:15Z

View File

@@ -318,9 +318,9 @@ func containsClosure(f, c *ir.Func) bool {
return false
}
// Closures within function Foo are named like "Foo.funcN..."
// Closures within function Foo are named like "Foo.funcN..." or "Foo-rangeN".
// TODO(mdempsky): Better way to recognize this.
fn := f.Sym().Name
cn := c.Sym().Name
return len(cn) > len(fn) && cn[:len(fn)] == fn && cn[len(fn)] == '.'
return len(cn) > len(fn) && cn[:len(fn)] == fn && (cn[len(fn)] == '.' || cn[len(fn)] == '-')
}

View File

@@ -26,10 +26,40 @@ type timer struct {
// mu protects reads and writes to all fields, with exceptions noted below.
mu mutex
astate atomic.Uint8 // atomic copy of state bits at last unlock
state uint8 // state bits
isChan bool // timer has a channel; immutable; can be read without lock
blocked uint32 // number of goroutines blocked on timer's channel
astate atomic.Uint8 // atomic copy of state bits at last unlock
state uint8 // state bits
isChan bool // timer has a channel; immutable; can be read without lock
// isSending is used to handle races between running a
// channel timer and stopping or resetting the timer.
// It is used only for channel timers (t.isChan == true).
// The lowest zero bit is set when about to send a value on the channel,
// and cleared after sending the value.
// The stop/reset code uses this to detect whether it
// stopped the channel send.
//
// An isSending bit is set only when t.mu is held.
// An isSending bit is cleared only when t.sendLock is held.
// isSending is read only when both t.mu and t.sendLock are held.
//
// Setting and clearing Uint8 bits handles the case of
// a timer that is reset concurrently with unlockAndRun.
// If the reset timer runs immediately, we can wind up with
// concurrent calls to unlockAndRun for the same timer.
// Using matched bit set and clear in unlockAndRun
// ensures that the value doesn't get temporarily out of sync.
//
// We use a uint8 to keep the timer struct small.
// This means that we can only support up to 8 concurrent
// runs of a timer, where a concurrent run can only occur if
// we start a run, unlock the timer, the timer is reset to a new
// value (or the ticker fires again), it is ready to run,
// and it is actually run, all before the first run completes.
// Since completing a run is fast, even 2 concurrent timer runs are
// nearly impossible, so this should be safe in practice.
isSending atomic.Uint8
blocked uint32 // number of goroutines blocked on timer's channel
// Timer wakes up at when, and then at when+period, ... (period > 0 only)
// each time calling f(arg, seq, delay) in the timer goroutine, so f must be
@@ -431,6 +461,15 @@ func (t *timer) stop() bool {
// Stop any future sends with stale values.
// See timer.unlockAndRun.
t.seq++
// If there is currently a send in progress,
// incrementing seq is going to prevent that
// send from actually happening. That means
// that we should return true: the timer was
// stopped, even though t.when may be zero.
if t.isSending.Load() > 0 {
pending = true
}
}
t.unlock()
if !async && t.isChan {
@@ -525,6 +564,15 @@ func (t *timer) modify(when, period int64, f func(arg any, seq uintptr, delay in
// Stop any future sends with stale values.
// See timer.unlockAndRun.
t.seq++
// If there is currently a send in progress,
// incrementing seq is going to prevent that
// send from actually happening. That means
// that we should return true: the timer was
// stopped, even though t.when may be zero.
if t.isSending.Load() > 0 {
pending = true
}
}
t.unlock()
if !async && t.isChan {
@@ -1013,6 +1061,24 @@ func (t *timer) unlockAndRun(now int64) {
}
t.updateHeap()
}
async := debug.asynctimerchan.Load() != 0
var isSendingClear uint8
if !async && t.isChan {
// Tell Stop/Reset that we are sending a value.
// Set the lowest zero bit.
// We do this awkward step because atomic.Uint8
// doesn't support Add or CompareAndSwap.
// We only set bits with t locked.
v := t.isSending.Load()
i := sys.TrailingZeros8(^v)
if i == 8 {
throw("too many concurrent timer firings")
}
isSendingClear = 1 << i
t.isSending.Or(isSendingClear)
}
t.unlock()
if raceenabled {
@@ -1028,7 +1094,6 @@ func (t *timer) unlockAndRun(now int64) {
ts.unlock()
}
async := debug.asynctimerchan.Load() != 0
if !async && t.isChan {
// For a timer channel, we want to make sure that no stale sends
// happen after a t.stop or t.modify, but we cannot hold t.mu
@@ -1044,6 +1109,10 @@ func (t *timer) unlockAndRun(now int64) {
// and double-check that t.seq is still the seq value we saw above.
// If not, the timer has been updated and we should skip the send.
// We skip the send by reassigning f to a no-op function.
//
// The isSending field tells t.stop or t.modify that we have
// started to send the value. That lets them correctly return
// true meaning that no value was sent.
lock(&t.sendLock)
if t.seq != seq {
f = func(any, uintptr, int64) {}
@@ -1053,6 +1122,9 @@ func (t *timer) unlockAndRun(now int64) {
f(arg, seq, delay)
if !async && t.isChan {
// We are no longer sending a value.
t.isSending.And(^isSendingClear)
unlock(&t.sendLock)
}

View File

@@ -785,6 +785,68 @@ func TestAdjustTimers(t *testing.T) {
}
}
func TestStopResult(t *testing.T) {
testStopResetResult(t, true)
}
func TestResetResult(t *testing.T) {
testStopResetResult(t, false)
}
// Test that when racing between running a timer and stopping a timer Stop
// consistently indicates whether a value can be read from the channel.
// Issue #69312.
func testStopResetResult(t *testing.T, testStop bool) {
for _, name := range []string{"0", "1", "2"} {
t.Run("asynctimerchan="+name, func(t *testing.T) {
testStopResetResultGODEBUG(t, testStop, name)
})
}
}
func testStopResetResultGODEBUG(t *testing.T, testStop bool, godebug string) {
t.Setenv("GODEBUG", "asynctimerchan="+godebug)
stopOrReset := func(timer *Timer) bool {
if testStop {
return timer.Stop()
} else {
return timer.Reset(1 * Hour)
}
}
start := make(chan struct{})
var wg sync.WaitGroup
const N = 1000
wg.Add(N)
for range N {
go func() {
defer wg.Done()
<-start
for j := 0; j < 100; j++ {
timer1 := NewTimer(1 * Millisecond)
timer2 := NewTimer(1 * Millisecond)
select {
case <-timer1.C:
if !stopOrReset(timer2) {
// The test fails if this
// channel read times out.
<-timer2.C
}
case <-timer2.C:
if !stopOrReset(timer1) {
// The test fails if this
// channel read times out.
<-timer1.C
}
}
}
}()
}
close(start)
wg.Wait()
}
// Benchmark timer latency when the thread that creates the timer is busy with
// other work and the timers must be serviced by other threads.
// https://golang.org/issue/38860

View File

@@ -0,0 +1,173 @@
// run
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package main
import (
"bufio"
"fmt"
"io"
"iter"
"math/rand"
"os"
"strings"
"unicode"
)
// WordReader is the struct that implements io.Reader
type WordReader struct {
scanner *bufio.Scanner
}
// NewWordReader creates a new WordReader from an io.Reader
func NewWordReader(r io.Reader) *WordReader {
scanner := bufio.NewScanner(r)
scanner.Split(bufio.ScanWords)
return &WordReader{
scanner: scanner,
}
}
// Read reads data from the input stream and returns a single lowercase word at a time
func (wr *WordReader) Read(p []byte) (n int, err error) {
if !wr.scanner.Scan() {
if err := wr.scanner.Err(); err != nil {
return 0, err
}
return 0, io.EOF
}
word := wr.scanner.Text()
cleanedWord := removeNonAlphabetic(word)
if len(cleanedWord) == 0 {
return wr.Read(p)
}
n = copy(p, []byte(cleanedWord))
return n, nil
}
// All returns an iterator allowing the caller to iterate over the WordReader using for/range.
func (wr *WordReader) All() iter.Seq[string] {
word := make([]byte, 1024)
return func(yield func(string) bool) {
var err error
var n int
for n, err = wr.Read(word); err == nil; n, err = wr.Read(word) {
if !yield(string(word[:n])) {
return
}
}
if err != io.EOF {
fmt.Fprintf(os.Stderr, "error reading word: %v\n", err)
}
}
}
// removeNonAlphabetic removes non-alphabetic characters from a word using strings.Map
func removeNonAlphabetic(word string) string {
return strings.Map(func(r rune) rune {
if unicode.IsLetter(r) {
return unicode.ToLower(r)
}
return -1
}, word)
}
// ProbabilisticSkipper determines if an item should be retained with probability 1/(1<<n)
type ProbabilisticSkipper struct {
n int
counter uint64
bitmask uint64
}
// NewProbabilisticSkipper initializes the ProbabilisticSkipper
func NewProbabilisticSkipper(n int) *ProbabilisticSkipper {
pr := &ProbabilisticSkipper{n: n}
pr.refreshCounter()
return pr
}
// check panics if pr.n is not the expected value
func (pr *ProbabilisticSkipper) check(n int) {
if pr.n != n {
panic(fmt.Sprintf("check: pr.n != n %d != %d", pr.n, n))
}
}
// refreshCounter refreshes the counter with a new random value
func (pr *ProbabilisticSkipper) refreshCounter() {
if pr.n == 0 {
pr.bitmask = ^uint64(0) // All bits set to 1
} else {
pr.bitmask = rand.Uint64()
for i := 0; i < pr.n-1; i++ {
pr.bitmask &= rand.Uint64()
}
}
pr.counter = 64
}
// ShouldSkip returns true with probability 1/(1<<n)
func (pr *ProbabilisticSkipper) ShouldSkip() bool {
remove := pr.bitmask&1 == 0
pr.bitmask >>= 1
pr.counter--
if pr.counter == 0 {
pr.refreshCounter()
}
return remove
}
// EstimateUniqueWordsIter estimates the number of unique words using a probabilistic counting method
func EstimateUniqueWordsIter(reader io.Reader, memorySize int) int {
wordReader := NewWordReader(reader)
words := make(map[string]struct{}, memorySize)
rounds := 0
roundRemover := NewProbabilisticSkipper(1)
wordSkipper := NewProbabilisticSkipper(rounds)
wordSkipper.check(rounds)
for word := range wordReader.All() {
wordSkipper.check(rounds)
if wordSkipper.ShouldSkip() {
delete(words, word)
} else {
words[word] = struct{}{}
if len(words) >= memorySize {
rounds++
wordSkipper = NewProbabilisticSkipper(rounds)
for w := range words {
if roundRemover.ShouldSkip() {
delete(words, w)
}
}
}
}
wordSkipper.check(rounds)
}
if len(words) == 0 {
return 0
}
invProbability := 1 << rounds
estimatedUniqueWords := len(words) * invProbability
return estimatedUniqueWords
}
func main() {
input := "Hello, world! This is a test. Hello, world, hello!"
expectedUniqueWords := 6 // "hello", "world", "this", "is", "a", "test" (but "hello" and "world" are repeated)
memorySize := 6
reader := strings.NewReader(input)
estimatedUniqueWords := EstimateUniqueWordsIter(reader, memorySize)
if estimatedUniqueWords != expectedUniqueWords {
// ...
}
}

View File

@@ -0,0 +1,133 @@
// run
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package main
func main() {
err := run()
if err != nil {
panic(err)
}
}
func run() error {
methods := "AB"
type node struct {
tag string
choices []string
}
all := []node{
{"000", permutations(methods)},
}
next := 1
for len(all) > 0 {
cur := all[0]
k := copy(all, all[1:])
all = all[:k]
if len(cur.choices) == 1 {
continue
}
var bestM map[byte][]string
bMax := len(cur.choices) + 1
bMin := -1
for sel := range selections(methods) {
m := make(map[byte][]string)
for _, order := range cur.choices {
x := findFirstMatch(order, sel)
m[x] = append(m[x], order)
}
min := len(cur.choices) + 1
max := -1
for _, v := range m {
if len(v) < min {
min = len(v)
}
if len(v) > max {
max = len(v)
}
}
if max < bMax || (max == bMax && min > bMin) {
bestM = m
bMin = min
bMax = max
}
}
if bMax == len(cur.choices) {
continue
}
cc := Keys(bestM)
for c := range cc {
choices := bestM[c]
next++
switch c {
case 'A':
case 'B':
default:
panic("unexpected selector type " + string(c))
}
all = append(all, node{"", choices})
}
}
return nil
}
func permutations(s string) []string {
if len(s) <= 1 {
return []string{s}
}
var result []string
for i, char := range s {
rest := s[:i] + s[i+1:]
for _, perm := range permutations(rest) {
result = append(result, string(char)+perm)
}
}
return result
}
type Seq[V any] func(yield func(V) bool)
func selections(s string) Seq[string] {
return func(yield func(string) bool) {
for bits := 1; bits < 1<<len(s); bits++ {
var choice string
for j, char := range s {
if bits&(1<<j) != 0 {
choice += string(char)
}
}
if !yield(choice) {
break
}
}
}
}
func findFirstMatch(order, sel string) byte {
for _, c := range order {
return byte(c)
}
return 0
}
func Keys[Map ~map[K]V, K comparable, V any](m Map) Seq[K] {
return func(yield func(K) bool) {
for k := range m {
if !yield(k) {
return
}
}
}
}