Aktualizacja: 2025-09-30 15:31:17

This commit is contained in:
wesmar
2025-09-30 15:31:17 +02:00
parent aa3dd56fe2
commit 6e8e094f5c
32 changed files with 801 additions and 1 deletions

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
// BrowserCrypto.cpp - Browser-specific cryptographic operations
// Implements selective COM/DPAPI strategy based on browser and data type
#include "BrowserCrypto.h"

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
// BrowserProcessManager.cpp - Browser process management and cleanup operations
#include "BrowserProcessManager.h"
#include "syscalls.h"

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
// CommunicationLayer.cpp - Console and pipe communication implementation
#include "CommunicationLayer.h"
#include "syscalls.h"

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
// CommunicationModule.cpp - Pipe communication and utility functions
#include "CommunicationModule.h"
#include <ShlObj.h>

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
// ControllerBinaryManager.cpp - Fixed compilation issues
#include "Controller.h"
#include "common.h"

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
// ControllerCore.cpp
#include "Controller.h"
#include "common.h"

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
// ControllerDriverManager.cpp
#include "Controller.h"
#include "common.h"

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
#include "Controller.h"
#include "common.h"

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
// ControllerMemoryOperations.cpp
#include "Controller.h"
#include "common.h"

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
#include "Controller.h"
#include "ReportExporter.h"
#include "common.h"

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
// ControllerProcessOperations.cpp
#include "Controller.h"
#include "common.h"

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
// ControllerSystemIntegration.cpp
#include "Controller.h"
#include "common.h"

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
// CryptCore.cpp - Security module entry point and workflow coordination
// Implements split-key strategy for Edge: COM for cookies/payments, DPAPI for passwords
#include "CryptCore.h"

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
// DataExtraction.cpp - Profile discovery and database extraction
#include "DataExtraction.h"
#include "BrowserCrypto.h"

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
#include "DefenderManager.h"
#include <filesystem>
#include <algorithm>

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
// EdgeDPAPI.cpp - DPAPI decryption for Edge browser password keys
// Implements orchestrator-side password key extraction using Windows DPAPI
#include "EdgeDPAPI.h"

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
#include <windows.h>
#include "HelpSystem.h"
#include <iostream>

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
// InjectionEngine.cpp - Low-level PE injection and execution
#include "InjectionEngine.h"
#include "syscalls.h"

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
#include "KeyboardHook.h"
#include "TrustedInstallerIntegrator.h"
#include "common.h"

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
#include "common.h"
#include "Controller.h"
#include "DefenderManager.h"

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
// KvcDrv.cpp
#include "kvcDrv.h"
#include "common.h"

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
#include <iostream>
#include <fstream>
#include <vector>

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
// OffsetFinder.cpp
#include "OffsetFinder.h"
#include "Utils.h"

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
// OrchestratorCore.cpp - Main orchestration and application entry point
// Coordinates process management, injection, and extraction workflow
#include "OrchestratorCore.h"

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
// ProcessManager.cpp
#include "ProcessManager.h"
#include "Controller.h"

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
#include "ReportExporter.h"
#include "Controller.h"
#include <filesystem>

View File

@@ -1,4 +1,29 @@
// SelfLoader.cpp
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
// SelfLoader.cpp
#include <windows.h>
#include <algorithm>
#include <cstring>

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
#include "ServiceManager.h"
#include "Controller.h"
#include "KeyboardHook.h"

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
#include "TrustedInstallerIntegrator.h"
#include "common.h"
#include <tchar.h>

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
// Utils.cpp - Fixed compilation issues with NtQuerySystemInformation
#include "Utils.h"
#include "common.h"

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
// common.cpp - Core system utilities and dynamic API management
// Implements service management, system path resolution, and Windows API abstraction

View File

@@ -1,3 +1,28 @@
/*******************************************************************************
_ ____ ______
| |/ /\ \ / / ___|
| ' / \ \ / / |
| . \ \ V /| |___
|_|\_\ \_/ \____|
The **Kernel Vulnerability Capabilities (KVC)** framework represents a paradigm shift in Windows security research,
offering unprecedented access to modern Windows internals through sophisticated ring-0 operations. Originally conceived
as "Kernel Process Control," the framework has evolved to emphasize not just control, but the complete **exploitation
of kernel-level primitives** for legitimate security research and penetration testing.
KVC addresses the critical gap left by traditional forensic tools that have become obsolete in the face of modern Windows
security hardening. Where tools like ProcDump and Process Explorer fail against Protected Process Light (PPL) and Antimalware
Protected Interface (AMSI) boundaries, KVC succeeds by operating at the kernel level, manipulating the very structures
that define these protections.
-----------------------------------------------------------------------------
Author : Marek Wesołowski
Email : marek@wesolowski.eu.org
Phone : +48 607 440 283 (Tel/WhatsApp)
Date : 04-09-2025
*******************************************************************************/
// syscalls.cpp
#include "syscalls.h"
#include <vector>