@@ -1,458 +0,0 @@
/*
* Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package big
import (
"math/rand"
c "github.com/goplus/llgo/runtime/internal/clite"
"github.com/goplus/llgo/runtime/internal/clite/openssl"
)
// llgo:skipall
type _big struct { }
// A Word represents a single digit of a multi-precision unsigned integer.
type Word openssl . BN_ULONG
// -----------------------------------------------------------------------------
// TODO(xsw): share ctx
func ctxGet ( ) * openssl . BN_CTX {
return openssl . BN_CTXNew ( )
}
func ctxPut ( ctx * openssl . BN_CTX ) {
ctx . Free ( )
}
// -----------------------------------------------------------------------------
type Int openssl . BIGNUM
// Sign returns:
//
// -1 if x < 0
// 0 if x == 0
// +1 if x > 0
func ( x * Int ) Sign ( ) int {
a := ( * openssl . BIGNUM ) ( x )
if a . IsNegative ( ) != 0 {
return - 1
} else if a . IsZero ( ) != 0 {
return 0
}
return 1
}
// SetInt64 sets z to x and returns z.
func ( z * Int ) SetInt64 ( x int64 ) * Int {
a := ( * openssl . BIGNUM ) ( z )
if x < 0 {
a . SetWord ( openssl . BN_ULONG ( - x ) )
a . SetNegative ( 1 )
} else {
a . SetWord ( openssl . BN_ULONG ( x ) )
a . SetNegative ( 0 )
}
return z
}
// SetUint64 sets z to x and returns z.
func ( z * Int ) SetUint64 ( x uint64 ) * Int {
a := ( * openssl . BIGNUM ) ( z )
a . SetWord ( openssl . BN_ULONG ( x ) )
a . SetNegative ( 0 )
return z
}
// NewInt allocates and returns a new Int set to x.
func NewInt ( x int64 ) * Int {
z := ( * Int ) ( openssl . BNNew ( ) )
return z . SetInt64 ( x )
}
// Set sets z to x and returns z.
func ( z * Int ) Set ( x * Int ) * Int {
if z != x {
a := ( * openssl . BIGNUM ) ( z )
b := ( * openssl . BIGNUM ) ( x )
a . Copy ( b )
}
return z
}
// Abs sets z to |x| (the absolute value of x) and returns z.
func ( z * Int ) Abs ( x * Int ) * Int {
z . Set ( x )
a := ( * openssl . BIGNUM ) ( z )
a . SetNegative ( 0 )
return z
}
// Neg sets z to -x and returns z.
func ( z * Int ) Neg ( x * Int ) * Int {
z . Set ( x )
a := ( * openssl . BIGNUM ) ( z )
if a . IsNegative ( ) != 0 {
a . SetNegative ( 0 )
} else {
a . SetNegative ( 1 )
}
return z
}
// Bits provides raw (unchecked but fast) access to x by returning its
// absolute value as a little-endian Word slice. The result and x share
// the same underlying array.
// Bits is intended to support implementation of missing low-level Int
// functionality outside this package; it should be avoided otherwise.
func ( x * Int ) Bits ( ) [ ] Word {
panic ( "todo big.Bits" )
}
// SetBits provides raw (unchecked but fast) access to z by setting its
// value to abs, interpreted as a little-endian Word slice, and returning
// z. The result and abs share the same underlying array.
// SetBits is intended to support implementation of missing low-level Int
// functionality outside this package; it should be avoided otherwise.
func ( z * Int ) SetBits ( abs [ ] Word ) * Int {
panic ( "todo big.SetBits" )
}
// Add sets z to the sum x+y and returns z.
func ( z * Int ) Add ( x , y * Int ) * Int {
( * openssl . BIGNUM ) ( z ) . Add ( ( * openssl . BIGNUM ) ( x ) , ( * openssl . BIGNUM ) ( y ) )
return z
}
// Sub sets z to the difference x-y and returns z.
func ( z * Int ) Sub ( x , y * Int ) * Int {
( * openssl . BIGNUM ) ( z ) . Sub ( ( * openssl . BIGNUM ) ( x ) , ( * openssl . BIGNUM ) ( y ) )
return z
}
// Mul sets z to the product x*y and returns z.
func ( z * Int ) Mul ( x , y * Int ) * Int {
panic ( "todo big.Mul" )
}
// MulRange sets z to the product of all integers
// in the range [a, b] inclusively and returns z.
// If a > b (empty range), the result is 1.
func ( z * Int ) MulRange ( a , b int64 ) * Int {
panic ( "todo big.MulRange" )
}
// Binomial sets z to the binomial coefficient C(n, k) and returns z.
func ( z * Int ) Binomial ( n , k int64 ) * Int {
panic ( "todo big.Binomial" )
}
// Quo sets z to the quotient x/y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Quo implements truncated division (like Go); see QuoRem for more details.
func ( z * Int ) Quo ( x , y * Int ) * Int {
panic ( "todo big.Quo" )
}
// Rem sets z to the remainder x%y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Rem implements truncated modulus (like Go); see QuoRem for more details.
func ( z * Int ) Rem ( x , y * Int ) * Int {
panic ( "todo big.Rem" )
}
// QuoRem sets z to the quotient x/y and r to the remainder x%y
// and returns the pair (z, r) for y != 0.
// If y == 0, a division-by-zero run-time panic occurs.
//
// QuoRem implements T-division and modulus (like Go):
//
// q = x/y with the result truncated to zero
// r = x - y*q
//
// (See Daan Leijen, “Division and Modulus for Computer Scientists”.)
// See DivMod for Euclidean division and modulus (unlike Go).
func ( z * Int ) QuoRem ( x , y , r * Int ) ( * Int , * Int ) {
panic ( "todo big.QuoRem" )
}
// Div sets z to the quotient x/y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Div implements Euclidean division (unlike Go); see DivMod for more details.
func ( z * Int ) Div ( x , y * Int ) * Int {
panic ( "todo big.Div" )
}
// Mod sets z to the modulus x%y for y != 0 and returns z.
// If y == 0, a division-by-zero run-time panic occurs.
// Mod implements Euclidean modulus (unlike Go); see DivMod for more details.
func ( z * Int ) Mod ( x , y * Int ) * Int {
panic ( "todo big.Mod" )
}
// DivMod sets z to the quotient x div y and m to the modulus x mod y
// and returns the pair (z, m) for y != 0.
// If y == 0, a division-by-zero run-time panic occurs.
//
// DivMod implements Euclidean division and modulus (unlike Go):
//
// q = x div y such that
// m = x - y*q with 0 <= m < |y|
//
// (See Raymond T. Boute, “The Euclidean definition of the functions
// div and mod”. ACM Transactions on Programming Languages and
// Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
// ACM press.)
// See QuoRem for T-division and modulus (like Go).
func ( z * Int ) DivMod ( x , y , m * Int ) ( * Int , * Int ) {
panic ( "big.DivMod" )
}
// Cmp compares x and y and returns:
//
// -1 if x < y
// 0 if x == y
// +1 if x > y
func ( x * Int ) Cmp ( y * Int ) ( r int ) {
return int ( ( * openssl . BIGNUM ) ( x ) . Cmp ( ( * openssl . BIGNUM ) ( y ) ) )
}
// CmpAbs compares the absolute values of x and y and returns:
//
// -1 if |x| < |y|
// 0 if |x| == |y|
// +1 if |x| > |y|
func ( x * Int ) CmpAbs ( y * Int ) int {
return int ( ( * openssl . BIGNUM ) ( x ) . Ucmp ( ( * openssl . BIGNUM ) ( y ) ) )
}
// Int64 returns the int64 representation of x.
// If x cannot be represented in an int64, the result is undefined.
func ( x * Int ) Int64 ( ) int64 {
panic ( "todo big.Int64" )
}
// Uint64 returns the uint64 representation of x.
// If x cannot be represented in a uint64, the result is undefined.
func ( x * Int ) Uint64 ( ) uint64 {
panic ( "todo big.Uint64" )
}
// IsInt64 reports whether x can be represented as an int64.
func ( x * Int ) IsInt64 ( ) bool {
panic ( "todo big.IsInt64" )
}
// IsUint64 reports whether x can be represented as a uint64.
func ( x * Int ) IsUint64 ( ) bool {
panic ( "todo big.IsUint64" )
}
// Float64 returns the float64 value nearest x,
// and an indication of any rounding that occurred.
// TODO(xsw):
/*
func (x *Int) Float64() (float64, Accuracy) {
panic("todo big.Float64")
}*/
// SetString sets z to the value of s, interpreted in the given base,
// and returns z and a boolean indicating success. The entire string
// (not just a prefix) must be valid for success. If SetString fails,
// the value of z is undefined but the returned value is nil.
//
// The base argument must be 0 or a value between 2 and MaxBase.
// For base 0, the number prefix determines the actual base: A prefix of
// “0b” or “0B” selects base 2, “0”, “0o” or “0O” selects base 8,
// and “0x” or “0X” selects base 16. Otherwise, the selected base is 10
// and no prefix is accepted.
//
// For bases <= 36, lower and upper case letters are considered the same:
// The letters 'a' to 'z' and 'A' to 'Z' represent digit values 10 to 35.
// For bases > 36, the upper case letters 'A' to 'Z' represent the digit
// values 36 to 61.
//
// For base 0, an underscore character “_” may appear between a base
// prefix and an adjacent digit, and between successive digits; such
// underscores do not change the value of the number.
// Incorrect placement of underscores is reported as an error if there
// are no other errors. If base != 0, underscores are not recognized
// and act like any other character that is not a valid digit.
func ( z * Int ) SetString ( s string , base int ) ( * Int , bool ) {
panic ( "todo big.SetString" )
}
// SetBytes interprets buf as the bytes of a big-endian unsigned
// integer, sets z to that value, and returns z.
func ( z * Int ) SetBytes ( buf [ ] byte ) * Int {
panic ( "todo big.SetBytes" )
}
// Bytes returns the absolute value of x as a big-endian byte slice.
//
// To use a fixed length slice, or a preallocated one, use FillBytes.
func ( x * Int ) Bytes ( ) [ ] byte {
panic ( "todo big.Bytes" )
}
// FillBytes sets buf to the absolute value of x, storing it as a zero-extended
// big-endian byte slice, and returns buf.
//
// If the absolute value of x doesn't fit in buf, FillBytes will panic.
func ( x * Int ) FillBytes ( buf [ ] byte ) [ ] byte {
panic ( "todo big.FillBytes" )
}
// BitLen returns the length of the absolute value of x in bits.
// The bit length of 0 is 0.
func ( x * Int ) BitLen ( ) int {
panic ( "todo big.BitLen" )
}
// TrailingZeroBits returns the number of consecutive least significant zero
// bits of |x|.
func ( x * Int ) TrailingZeroBits ( ) uint {
panic ( "todo big.TrailingZeroBits" )
}
// Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z.
// If m == nil or m == 0, z = x**y unless y <= 0 then z = 1. If m != 0, y < 0,
// and x and m are not relatively prime, z is unchanged and nil is returned.
//
// Modular exponentiation of inputs of a particular size is not a
// cryptographically constant-time operation.
func ( z * Int ) Exp ( x , y , m * Int ) * Int {
ctx := ctxGet ( )
mbn := ( * openssl . BIGNUM ) ( m )
if mbn == nil || mbn . IsZero ( ) != 0 {
( * openssl . BIGNUM ) ( z ) . Exp ( ( * openssl . BIGNUM ) ( x ) , ( * openssl . BIGNUM ) ( y ) , ctx )
} else {
( * openssl . BIGNUM ) ( z ) . ModExp ( ( * openssl . BIGNUM ) ( x ) , ( * openssl . BIGNUM ) ( y ) , mbn , ctx )
}
ctxPut ( ctx )
return z
}
// GCD sets z to the greatest common divisor of a and b and returns z.
// If x or y are not nil, GCD sets their value such that z = a*x + b*y.
//
// a and b may be positive, zero or negative. (Before Go 1.14 both had
// to be > 0.) Regardless of the signs of a and b, z is always >= 0.
//
// If a == b == 0, GCD sets z = x = y = 0.
//
// If a == 0 and b != 0, GCD sets z = |b|, x = 0, y = sign(b) * 1.
//
// If a != 0 and b == 0, GCD sets z = |a|, x = sign(a) * 1, y = 0.
func ( z * Int ) GCD ( x , y , a , b * Int ) * Int {
panic ( "todo big.GCD" )
}
// Rand sets z to a pseudo-random number in [0, n) and returns z.
//
// As this uses the math/rand package, it must not be used for
// security-sensitive work. Use crypto/rand.Int instead.
func ( z * Int ) Rand ( rnd * rand . Rand , n * Int ) * Int {
panic ( "todo big.Rand" )
}
// ModInverse sets z to the multiplicative inverse of g in the ring ℤ /nℤ
// and returns z. If g and n are not relatively prime, g has no multiplicative
// inverse in the ring ℤ /nℤ . In this case, z is unchanged and the return value
// is nil. If n == 0, a division-by-zero run-time panic occurs.
func ( z * Int ) ModInverse ( g , n * Int ) * Int {
panic ( "todo big.ModInverse" )
}
// Jacobi returns the Jacobi symbol (x/y), either +1, -1, or 0.
// The y argument must be an odd integer.
func Jacobi ( x , y * Int ) int {
panic ( "todo big.Jacobi" )
}
// ModSqrt sets z to a square root of x mod p if such a square root exists, and
// returns z. The modulus p must be an odd prime. If x is not a square mod p,
// ModSqrt leaves z unchanged and returns nil. This function panics if p is
// not an odd integer, its behavior is undefined if p is odd but not prime.
func ( z * Int ) ModSqrt ( x , p * Int ) * Int {
panic ( "todo big.ModSqrt" )
}
// Lsh sets z = x << n and returns z.
func ( z * Int ) Lsh ( x * Int , n uint ) * Int {
a := ( * openssl . BIGNUM ) ( z )
b := ( * openssl . BIGNUM ) ( x )
a . Lshift ( b , c . Int ( n ) )
return z
}
// Rsh sets z = x >> n and returns z.
func ( z * Int ) Rsh ( x * Int , n uint ) * Int {
a := ( * openssl . BIGNUM ) ( z )
b := ( * openssl . BIGNUM ) ( x )
a . Rshift ( b , c . Int ( n ) )
return z
}
// Bit returns the value of the i'th bit of x. That is, it
// returns (x>>i)&1. The bit index i must be >= 0.
func ( x * Int ) Bit ( i int ) uint {
panic ( "todo big.Bit" )
}
// SetBit sets z to x, with x's i'th bit set to b (0 or 1).
// That is, if b is 1 SetBit sets z = x | (1 << i);
// if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1,
// SetBit will panic.
func ( z * Int ) SetBit ( x * Int , i int , b uint ) * Int {
panic ( "todo big.SetBit" )
}
// And sets z = x & y and returns z.
func ( z * Int ) And ( x , y * Int ) * Int {
panic ( "todo big.And" )
}
// AndNot sets z = x &^ y and returns z.
func ( z * Int ) AndNot ( x , y * Int ) * Int {
panic ( "todo big.AndNot" )
}
// Or sets z = x | y and returns z.
func ( z * Int ) Or ( x , y * Int ) * Int {
panic ( "todo big.Or" )
}
// Xor sets z = x ^ y and returns z.
func ( z * Int ) Xor ( x , y * Int ) * Int {
panic ( "todo big.Xor" )
}
// Not sets z = ^x and returns z.
func ( z * Int ) Not ( x * Int ) * Int {
panic ( "todo big.Not" )
}
// Sqrt sets z to ⌊√x⌋, the largest integer such that z² ≤ x, and returns z.
// It panics if x is negative.
func ( z * Int ) Sqrt ( x * Int ) * Int {
panic ( "todo big.Sqrt" )
}
// -----------------------------------------------------------------------------