feat: implement baremetal GC

fix: pthread gc

fix: xiao-esp32c3 symbol

refactor: use clite memset instead of linking

fix: stack top symbol
This commit is contained in:
Haolan
2025-09-16 09:39:23 +08:00
parent 2f65c98eb4
commit 812dfd45c9
14 changed files with 707 additions and 18 deletions

View File

@@ -753,7 +753,6 @@ func compileExtraFiles(ctx *context, verbose bool) ([]string, error) {
}
func linkMainPkg(ctx *context, pkg *packages.Package, pkgs []*aPackage, global llssa.Package, outputPath string, verbose bool) error {
needRuntime := false
needPyInit := false
pkgsMap := make(map[*packages.Package]*aPackage, len(pkgs))
@@ -998,6 +997,10 @@ define weak void @runtime.init() {
ret void
}
define weak void @initGC() {
ret void
}
; TODO(lijie): workaround for syscall patch
define weak void @"syscall.init"() {
ret void
@@ -1009,6 +1012,7 @@ define weak void @"syscall.init"() {
_llgo_0:
store i32 %%0, ptr @__llgo_argc, align 4
store ptr %%1, ptr @__llgo_argv, align 8
call void @initGC()
%s
%s
%s

View File

@@ -26,6 +26,11 @@ const (
LLGoPackage = "link: $(pkg-config --libs bdw-gc); -lgc"
)
//export initGC
func initGC() {
Init()
}
// -----------------------------------------------------------------------------
//go:linkname Init C.GC_init

View File

@@ -1,5 +1,4 @@
//go:build !nogc
// +build !nogc
//go:build !nogc && !baremetal
/*
* Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved.

View File

@@ -1,5 +1,4 @@
//go:build nogc
// +build nogc
//go:build nogc || baremetal
/*
* Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved.

View File

@@ -1,4 +1,4 @@
//go:build !nogc
//go:build !nogc && !baremetal
package runtime

View File

@@ -0,0 +1,9 @@
//go:build !nogc && baremetal
package runtime
import "github.com/goplus/llgo/runtime/internal/runtime/tinygogc"
func GC() {
tinygogc.GC()
}

View File

@@ -0,0 +1,537 @@
//go:build baremetal
/*
* Copyright (c) 2018-2025 The TinyGo Authors. All rights reserved.
* Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package runtime
import (
"unsafe"
_ "unsafe"
c "github.com/goplus/llgo/runtime/internal/clite"
"github.com/goplus/llgo/runtime/internal/runtime/tinygogc/memory"
)
const gcDebug = false
const needsStaticHeap = true
// Some globals + constants for the entire GC.
const (
wordsPerBlock = 4 // number of pointers in an allocated block
bytesPerBlock = wordsPerBlock * unsafe.Sizeof(memory.HeapStart)
stateBits = 2 // how many bits a block state takes (see blockState type)
blocksPerStateByte = 8 / stateBits
markStackSize = 8 * unsafe.Sizeof((*int)(nil)) // number of to-be-marked blocks to queue before forcing a rescan
)
// Provide some abc.Straction over heap blocks.
// blockState stores the four states in which a block can be. It is two bits in
// size.
const (
blockStateFree uint8 = 0 // 00
blockStateHead uint8 = 1 // 01
blockStateTail uint8 = 2 // 10
blockStateMark uint8 = 3 // 11
blockStateMask uint8 = 3 // 11
)
//go:linkname getsp llgo.stackSave
func getsp() unsafe.Pointer
func printlnAndPanic(c string) {
println(c)
panic("")
}
var (
nextAlloc uintptr // the next block that should be tried by the allocator
endBlock uintptr // the block just past the end of the available space
gcTotalAlloc uint64 // total number of bytes allocated
gcTotalBlocks uint64 // total number of allocated blocks
gcMallocs uint64 // total number of allocations
gcFrees uint64 // total number of objects freed
gcFreedBlocks uint64 // total number of freed blocks
// stackOverflow is a flag which is set when the GC scans too deep while marking.
// After it is set, all marked allocations must be re-scanned.
markStackOverflow bool
// zeroSizedAlloc is just a sentinel that gets returned when allocating 0 bytes.
zeroSizedAlloc uint8
)
// blockState stores the four states in which a block can be. It is two bits in
// size.
type blockState uint8
// The byte value of a block where every block is a 'tail' block.
const blockStateByteAllTails = 0 |
uint8(blockStateTail<<(stateBits*3)) |
uint8(blockStateTail<<(stateBits*2)) |
uint8(blockStateTail<<(stateBits*1)) |
uint8(blockStateTail<<(stateBits*0))
// blockFromAddr returns a block given an address somewhere in the heap (which
// might not be heap-aligned).
func blockFromAddr(addr uintptr) uintptr {
if addr < memory.HeapStart || addr >= uintptr(memory.MetadataStart) {
printlnAndPanic("gc: trying to get block from invalid address")
}
return (addr - memory.HeapStart) / bytesPerBlock
}
// Return a pointer to the start of the allocated object.
func gcPointerOf(blockAddr uintptr) unsafe.Pointer {
return unsafe.Pointer(gcAddressOf(blockAddr))
}
// Return the address of the start of the allocated object.
func gcAddressOf(blockAddr uintptr) uintptr {
addr := memory.HeapStart + blockAddr*bytesPerBlock
if addr > uintptr(memory.MetadataStart) {
printlnAndPanic("gc: block pointing inside metadata")
}
return addr
}
// findHead returns the head (first block) of an object, assuming the block
// points to an allocated object. It returns the same block if this block
// already points to the head.
func gcFindHead(blockAddr uintptr) uintptr {
for {
// Optimization: check whether the current block state byte (which
// contains the state of multiple blocks) is composed entirely of tail
// blocks. If so, we can skip back to the last block in the previous
// state byte.
// This optimization speeds up findHead for pointers that point into a
// large allocation.
stateByte := gcStateByteOf(blockAddr)
if stateByte == blockStateByteAllTails {
blockAddr -= (blockAddr % blocksPerStateByte) + 1
continue
}
// Check whether we've found a non-tail block, which means we found the
// head.
state := gcStateFromByte(blockAddr, stateByte)
if state != blockStateTail {
break
}
blockAddr--
}
if gcStateOf(blockAddr) != blockStateHead && gcStateOf(blockAddr) != blockStateMark {
printlnAndPanic("gc: found tail without head")
}
return blockAddr
}
// findNext returns the first block just past the end of the tail. This may or
// may not be the head of an object.
func gcFindNext(blockAddr uintptr) uintptr {
if gcStateOf(blockAddr) == blockStateHead || gcStateOf(blockAddr) == blockStateMark {
blockAddr++
}
for gcAddressOf(blockAddr) < uintptr(memory.MetadataStart) && gcStateOf(blockAddr) == blockStateTail {
blockAddr++
}
return blockAddr
}
func gcStateByteOf(blockAddr uintptr) byte {
return *(*uint8)(unsafe.Add(memory.MetadataStart, blockAddr/blocksPerStateByte))
}
// Return the block state given a state byte. The state byte must have been
// obtained using b.stateByte(), otherwise the result is incorrect.
func gcStateFromByte(blockAddr uintptr, stateByte byte) uint8 {
return uint8(stateByte>>((blockAddr%blocksPerStateByte)*stateBits)) & blockStateMask
}
// State returns the current block state.
func gcStateOf(blockAddr uintptr) uint8 {
return gcStateFromByte(blockAddr, gcStateByteOf(blockAddr))
}
// setState sets the current block to the given state, which must contain more
// bits than the current state. Allowed transitions: from free to any state and
// from head to mark.
func gcSetState(blockAddr uintptr, newState uint8) {
stateBytePtr := (*uint8)(unsafe.Add(memory.MetadataStart, blockAddr/blocksPerStateByte))
*stateBytePtr |= uint8(newState << ((blockAddr % blocksPerStateByte) * stateBits))
if gcStateOf(blockAddr) != newState {
printlnAndPanic("gc: setState() was not successful")
}
}
// markFree sets the block state to free, no matter what state it was in before.
func gcMarkFree(blockAddr uintptr) {
stateBytePtr := (*uint8)(unsafe.Add(memory.MetadataStart, blockAddr/blocksPerStateByte))
*stateBytePtr &^= uint8(blockStateMask << ((blockAddr % blocksPerStateByte) * stateBits))
if gcStateOf(blockAddr) != blockStateFree {
printlnAndPanic("gc: markFree() was not successful")
}
*(*[wordsPerBlock]uintptr)(unsafe.Pointer(gcAddressOf(blockAddr))) = [wordsPerBlock]uintptr{}
}
// unmark changes the state of the block from mark to head. It must be marked
// before calling this function.
func gcUnmark(blockAddr uintptr) {
if gcStateOf(blockAddr) != blockStateMark {
printlnAndPanic("gc: unmark() on a block that is not marked")
}
clearMask := blockStateMask ^ blockStateHead // the bits to clear from the state
stateBytePtr := (*uint8)(unsafe.Add(memory.MetadataStart, blockAddr/blocksPerStateByte))
*stateBytePtr &^= uint8(clearMask << ((blockAddr % blocksPerStateByte) * stateBits))
if gcStateOf(blockAddr) != blockStateHead {
printlnAndPanic("gc: unmark() was not successful")
}
}
func isOnHeap(ptr uintptr) bool {
return ptr >= memory.HeapStart && ptr < uintptr(memory.MetadataStart)
}
// alloc tries to find some free space on the heap, possibly doing a garbage
// collection cycle if needed. If no space is free, it panics.
//
//go:noinline
func alloc(size uintptr) unsafe.Pointer {
if size == 0 {
return unsafe.Pointer(&zeroSizedAlloc)
}
gcTotalAlloc += uint64(size)
gcMallocs++
neededBlocks := (size + (bytesPerBlock - 1)) / bytesPerBlock
gcTotalBlocks += uint64(neededBlocks)
// Continue looping until a run of free blocks has been found that fits the
// requested size.
index := nextAlloc
numFreeBlocks := uintptr(0)
heapScanCount := uint8(0)
for {
if index == nextAlloc {
if heapScanCount == 0 {
heapScanCount = 1
} else if heapScanCount == 1 {
// The entire heap has been searched for free memory, but none
// could be found. Run a garbage collection cycle to reclaim
// free memory and try again.
heapScanCount = 2
freeBytes := GC()
heapSize := uintptr(memory.MetadataStart) - memory.HeapStart
if freeBytes < heapSize/3 {
// Ensure there is at least 33% headroom.
// This percentage was arbitrarily chosen, and may need to
// be tuned in the future.
growHeap()
}
} else {
// Even after garbage collection, no free memory could be found.
// Try to increase heap size.
if growHeap() {
// Success, the heap was increased in size. Try again with a
// larger heap.
} else {
// Unfortunately the heap could not be increased. This
// happens on baremetal systems for example (where all
// available RAM has already been dedicated to the heap).
printlnAndPanic("out of memory")
}
}
}
// Wrap around the end of the heap.
if index == memory.EndBlock {
index = 0
// Reset numFreeBlocks as allocations cannot wrap.
numFreeBlocks = 0
// In rare cases, the initial heap might be so small that there are
// no blocks at all. In this case, it's better to jump back to the
// start of the loop and try again, until the GC realizes there is
// no memory and grows the heap.
// This can sometimes happen on WebAssembly, where the initial heap
// is created by whatever is left on the last memory page.
continue
}
// Is the block we're looking at free?
if gcStateOf(index) != blockStateFree {
// This block is in use. Try again from this point.
numFreeBlocks = 0
index++
continue
}
numFreeBlocks++
index++
// Are we finished?
if numFreeBlocks == neededBlocks {
// Found a big enough range of free blocks!
nextAlloc = index
thisAlloc := index - neededBlocks
// Set the following blocks as being allocated.
gcSetState(thisAlloc, blockStateHead)
for i := thisAlloc + 1; i != nextAlloc; i++ {
gcSetState(i, blockStateTail)
}
// Return a pointer to this allocation.
return gcPointerOf(thisAlloc)
}
}
}
func realloc(ptr unsafe.Pointer, size uintptr) unsafe.Pointer {
if ptr == nil {
return alloc(size)
}
ptrAddress := uintptr(ptr)
endOfTailAddress := gcAddressOf(gcFindNext(blockFromAddr(ptrAddress)))
// this might be a few bytes longer than the original size of
// ptr, because we align to full blocks of size bytesPerBlock
oldSize := endOfTailAddress - ptrAddress
if size <= oldSize {
return ptr
}
newAlloc := alloc(size)
c.Memcpy(newAlloc, ptr, oldSize)
free(ptr)
return newAlloc
}
func free(ptr unsafe.Pointer) {
// TODO: free blocks on request, when the compiler knows they're unused.
}
// runGC performs a garbage collection cycle. It is the internal implementation
// of the runtime.GC() function. The difference is that it returns the number of
// free bytes in the heap after the GC is finished.
func GC() (freeBytes uintptr) {
if gcDebug {
println("running collection cycle...")
}
// Mark phase: mark all reachable objects, recursively.
gcMarkReachable()
finishMark()
// If we're using threads, resume all other threads before starting the
// sweep.
gcResumeWorld()
// Sweep phase: free all non-marked objects and unmark marked objects for
// the next collection cycle.
freeBytes = sweep()
return
}
// markRoots reads all pointers from start to end (exclusive) and if they look
// like a heap pointer and are unmarked, marks them and scans that object as
// well (recursively). The start and end parameters must be valid pointers and
// must be aligned.
func markRoots(start, end uintptr) {
if true {
if start >= end {
printlnAndPanic("gc: unexpected range to mark")
}
if start%unsafe.Alignof(start) != 0 {
printlnAndPanic("gc: unaligned start pointer")
}
if end%unsafe.Alignof(end) != 0 {
printlnAndPanic("gc: unaligned end pointer")
}
}
// Reduce the end bound to avoid reading too far on platforms where pointer alignment is smaller than pointer size.
// If the size of the range is 0, then end will be slightly below start after this.
end -= unsafe.Sizeof(end) - unsafe.Alignof(end)
for addr := start; addr < end; addr += unsafe.Alignof(addr) {
root := *(*uintptr)(unsafe.Pointer(addr))
markRoot(addr, root)
}
}
// startMark starts the marking process on a root and all of its children.
func startMark(root uintptr) {
var stack [markStackSize]uintptr
stack[0] = root
gcSetState(root, blockStateMark)
stackLen := 1
for stackLen > 0 {
// Pop a block off of the stack.
stackLen--
block := stack[stackLen]
start, end := gcAddressOf(block), gcAddressOf(gcFindNext(block))
for addr := start; addr != end; addr += unsafe.Alignof(addr) {
// Load the word.
word := *(*uintptr)(unsafe.Pointer(addr))
if !isOnHeap(word) {
// Not a heap pointer.
continue
}
// Find the corresponding memory block.
referencedBlock := blockFromAddr(word)
if gcStateOf(referencedBlock) == blockStateFree {
// The to-be-marked object doesn't actually exist.
// This is probably a false positive.
continue
}
// Move to the block's head.
referencedBlock = gcFindHead(referencedBlock)
if gcStateOf(referencedBlock) == blockStateMark {
// The block has already been marked by something else.
continue
}
// Mark block.
gcSetState(referencedBlock, blockStateMark)
println("mark: %lx from %lx", gcPointerOf(referencedBlock), gcPointerOf(root))
if stackLen == len(stack) {
// The stack is full.
// It is necessary to rescan all marked blocks once we are done.
markStackOverflow = true
if gcDebug {
println("gc stack overflowed")
}
continue
}
// Push the pointer onto the stack to be scanned later.
stack[stackLen] = referencedBlock
stackLen++
}
}
}
// finishMark finishes the marking process by processing all stack overflows.
func finishMark() {
for markStackOverflow {
// Re-mark all blocks.
markStackOverflow = false
for block := uintptr(0); block < memory.EndBlock; block++ {
if gcStateOf(block) != blockStateMark {
// Block is not marked, so we do not need to rescan it.
continue
}
// Re-mark the block.
startMark(block)
}
}
}
// mark a GC root at the address addr.
func markRoot(addr, root uintptr) {
if isOnHeap(root) {
println("on the heap: %lx", gcPointerOf(root))
block := blockFromAddr(root)
if gcStateOf(block) == blockStateFree {
// The to-be-marked object doesn't actually exist.
// This could either be a dangling pointer (oops!) but most likely
// just a false positive.
return
}
head := gcFindHead(block)
if gcStateOf(head) != blockStateMark {
startMark(head)
}
}
}
// Sweep goes through all memory and frees unmarked memory.
// It returns how many bytes are free in the heap after the sweep.
func sweep() (freeBytes uintptr) {
freeCurrentObject := false
var freed uint64
var from uintptr
for block := uintptr(0); block < memory.EndBlock; block++ {
switch gcStateOf(block) {
case blockStateHead:
// Unmarked head. Free it, including all tail blocks following it.
gcMarkFree(block)
freeCurrentObject = true
gcFrees++
freed++
from = block
case blockStateTail:
if freeCurrentObject {
// This is a tail object following an unmarked head.
// Free it now.
gcMarkFree(block)
freed++
}
println("free from %lx to %lx", gcPointerOf(from), gcPointerOf(block))
case blockStateMark:
// This is a marked object. The next tail blocks must not be freed,
// but the mark bit must be removed so the next GC cycle will
// collect this object if it is unreferenced then.
gcUnmark(block)
freeCurrentObject = false
case blockStateFree:
freeBytes += bytesPerBlock
}
}
gcFreedBlocks += freed
freeBytes += uintptr(freed) * bytesPerBlock
return
}
// growHeap tries to grow the heap size. It returns true if it succeeds, false
// otherwise.
func growHeap() bool {
// On baremetal, there is no way the heap can be grown.
return false
}
func gcMarkReachable() {
// a compiler trick to get current SP
println("scan stack", unsafe.Pointer(getsp()), unsafe.Pointer(memory.StackTop))
markRoots(uintptr(getsp()), memory.StackTop)
println("scan global", unsafe.Pointer(memory.GlobalsStart), unsafe.Pointer(memory.GlobalsEnd))
markRoots(memory.GlobalsStart, memory.GlobalsEnd)
}
func gcResumeWorld() {
// Nothing to do here (single threaded).
}

View File

@@ -0,0 +1,9 @@
package tinygogc
import "github.com/goplus/llgo/runtime/internal/runtime"
const LLGoPackage = "noinit"
func GC() {
runtime.GC()
}

View File

@@ -0,0 +1,71 @@
//go:build baremetal
package memory
import "unsafe"
// no init function, we don't want to init this twice
const LLGoPackage = "noinit"
//go:linkname _heapStart _heapStart
var _heapStart [0]byte
//go:linkname _heapEnd _heapEnd
var _heapEnd [0]byte
//go:linkname _stackStart _stack_top
var _stackStart [0]byte
//go:linkname _globals_start _globals_start
var _globals_start [0]byte
//go:linkname _globals_end _globals_end
var _globals_end [0]byte
// since we don't have an init() function, these should be initalized by initHeap(), which is called by <main> entry
var (
HeapStart uintptr // start address of heap area
HeapEnd uintptr // end address of heap area
GlobalsStart uintptr // start address of global variable area
GlobalsEnd uintptr // end address of global variable area
StackTop uintptr // the top of stack
EndBlock uintptr // GC end block index
MetadataStart unsafe.Pointer // start address of GC metadata
)
// Some globals + constants for the entire GC.
const (
wordsPerBlock = 4 // number of pointers in an allocated block
bytesPerBlock = wordsPerBlock * unsafe.Sizeof(HeapStart)
stateBits = 2 // how many bits a block state takes (see blockState type)
blocksPerStateByte = 8 / stateBits
markStackSize = 8 * unsafe.Sizeof((*int)(nil)) // number of to-be-marked blocks to queue before forcing a rescan
)
// zeroSizedAlloc is just a sentinel that gets returned when allocating 0 bytes.
var zeroSizedAlloc uint8
// when executing initGC(), we must ensure there's no any allocations.
// use linking here to avoid import clite
//
//go:linkname memset C.memset
func memset(unsafe.Pointer, int, uintptr)
// this function MUST be initalized first, which means it's required to be initalized before runtime
//
//export initGC
func initGC() {
// reserve 2K blocks for malloc
HeapStart = uintptr(unsafe.Pointer(&_heapStart)) + 2048
HeapEnd = uintptr(unsafe.Pointer(&_heapEnd))
GlobalsStart = uintptr(unsafe.Pointer(&_globals_start))
GlobalsEnd = uintptr(unsafe.Pointer(&_globals_end))
totalSize := HeapEnd - HeapStart
metadataSize := (totalSize + blocksPerStateByte*bytesPerBlock) / (1 + blocksPerStateByte*bytesPerBlock)
MetadataStart = unsafe.Pointer(HeapEnd - metadataSize)
EndBlock = (uintptr(MetadataStart) - HeapStart) / bytesPerBlock
StackTop = uintptr(unsafe.Pointer(&_stackStart))
memset(MetadataStart, 0, metadataSize)
}

View File

@@ -1,5 +1,4 @@
//go:build !nogc
// +build !nogc
//go:build !nogc && !baremetal
/*
* Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved.

View File

@@ -0,0 +1,36 @@
//go:build !nogc && baremetal
/*
* Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package runtime
import (
"unsafe"
c "github.com/goplus/llgo/runtime/internal/clite"
)
// AllocU allocates uninitialized memory.
func AllocU(size uintptr) unsafe.Pointer {
return alloc(size)
}
// AllocZ allocates zero-initialized memory.
func AllocZ(size uintptr) unsafe.Pointer {
ptr := alloc(size)
return c.Memset(ptr, 0, size)
}

View File

@@ -1,6 +1,4 @@
__stack = ORIGIN(dram_seg) + LENGTH(dram_seg);
__MIN_STACK_SIZE = 0x1000;
_stack_top = __stack;
_heapEnd = ORIGIN(dram_seg) + LENGTH(dram_seg);
/* Default entry point */
ENTRY(_start)
@@ -104,6 +102,14 @@ SECTIONS
. += ORIGIN(iram_seg) == ORIGIN(dram_seg) ? 0 : _iram_end - _iram_start;
} > dram_seg
.stack (NOLOAD) :
{
__stack_end = .;
. = ALIGN(16);
. += 16K;
__stack = .;
}
.data :
{
_data_start = .;
@@ -148,7 +154,7 @@ SECTIONS
} > dram_seg
/* Check if data + heap + stack exceeds RAM limit */
ASSERT(_end <= __stack - __MIN_STACK_SIZE, "region DRAM overflowed by .data and .bss sections")
ASSERT(_end <= _heapEnd, "region DRAM overflowed by .data and .bss sections")
/* Stabs debugging sections. */
.stab 0 : { *(.stab) }
@@ -193,3 +199,8 @@ SECTIONS
.gnu.attributes 0 : { KEEP (*(.gnu.attributes)) }
/DISCARD/ : { *(.note.GNU-stack) *(.gnu_debuglink) *(.gnu.lto_*) }
}
_globals_start = _data_start;
_globals_end = _end;
_heapStart = _end;
_stack_top = __stack;

View File

@@ -1,5 +1,4 @@
__stack = ORIGIN(dram_seg) + LENGTH(dram_seg);
__MIN_STACK_SIZE = 0x2000;
_heapEnd = ORIGIN(dram_seg) + LENGTH(dram_seg);
ENTRY(_start)
SECTIONS
@@ -26,6 +25,14 @@ SECTIONS
the same address within the page on the next page up. */
. = ALIGN (CONSTANT (MAXPAGESIZE)) - ((CONSTANT (MAXPAGESIZE) - .) & (CONSTANT (MAXPAGESIZE) - 1)); . = DATA_SEGMENT_ALIGN (CONSTANT (MAXPAGESIZE), CONSTANT (COMMONPAGESIZE));
.stack (NOLOAD) :
{
__stack_end = .;
. = ALIGN(16);
. += 16K;
__stack = .;
}
.rodata :
{
@@ -116,7 +123,7 @@ SECTIONS
. = DATA_SEGMENT_END (.);
/* Check if data + heap + stack exceeds RAM limit */
ASSERT(. <= __stack - __MIN_STACK_SIZE, "region DRAM overflowed by .data and .bss sections")
ASSERT(. <= _heapEnd, "region DRAM overflowed by .data and .bss sections")
/* Stabs debugging sections. */
.stab 0 : { *(.stab) }
@@ -165,4 +172,7 @@ SECTIONS
_sbss = __bss_start;
_ebss = _end;
_globals_start = _data_start;
_globals_end = _end;
_heapStart = _end;
_stack_top = __stack;

View File

@@ -19,8 +19,8 @@ MEMORY
/* 64k at the end of DRAM, after ROM bootloader stack
* or entire DRAM (for QEMU only)
*/
dram_seg (RW) : org = 0x3FFF0000 ,
len = 0x10000
dram_seg (RW) : org = 0x3ffae000 ,
len = 0x52000
}
INCLUDE "targets/esp32.app.elf.ld";