library (todo): crypto/hmac, internal/fmtsort

This commit is contained in:
xushiwei
2024-08-06 17:03:22 +08:00
parent 6a05aa4e53
commit a2b5b9f97e
4 changed files with 245 additions and 245 deletions

View File

@@ -1,7 +1,15 @@
package main
import "crypto/hmac"
import (
"crypto/hmac"
"crypto/sha1"
"fmt"
"io"
)
func main() {
hmac.New(nil, []byte{'1', '2'})
h := hmac.New(sha1.New, []byte("<key>"))
io.WriteString(h, "The fog is getting thicker!")
io.WriteString(h, "And Leon's getting laaarger!")
fmt.Printf("%x", h.Sum(nil))
}

View File

@@ -6,7 +6,15 @@ import (
"github.com/goplus/llgo/c"
)
const EVP_MAX_MD_SIZE = 64 /* longest known is SHA512 */
const (
EVP_MAX_MD_SIZE = 64 /* longest known is SHA512 */
)
// -----------------------------------------------------------------------------
type EVP_MD struct {
Unused [0]byte
}
// const EVP_MD *EVP_sha1(void)
//
@@ -43,9 +51,7 @@ func EVP_sha384() *EVP_MD
//go:linkname EVP_sha512 C.EVP_sha512
func EVP_sha512() *EVP_MD
type EVP_MD struct {
Unused [0]byte
}
// -----------------------------------------------------------------------------
type HMAC_CTX struct {
Unused [0]byte
@@ -115,3 +121,5 @@ func (c *HMAC_CTX) Copy(sctx *HMAC_CTX) c.Int { return 0 }
//
// llgo:link (*HMAC_CTX).SetFlags C.HMAC_CTX_set_flags
func (c *HMAC_CTX) SetFlags(flags c.Ulong) {}
// -----------------------------------------------------------------------------

View File

@@ -2,91 +2,10 @@ package hmac
// llgo:skipall
import (
"bytes"
"fmt"
"crypto/subtle"
"hash"
"unsafe"
"github.com/goplus/llgo/c"
"github.com/goplus/llgo/c/openssl"
)
type marshalable interface {
MarshalBinary() ([]byte, error)
UnmarshalBinary([]byte) error
}
type hmac struct {
opad, ipad []byte
outer, inner hash.Hash
// If marshaled is true, then opad and ipad do not contain a padded
// copy of the key, but rather the marshaled state of outer/inner after
// opad/ipad has been fed into it.
marshaled bool
}
func (h *hmac) Sum(in []byte) []byte {
origLen := len(in)
in = h.inner.Sum(in)
if h.marshaled {
if err := h.outer.(marshalable).UnmarshalBinary(h.opad); err != nil {
panic(err)
}
} else {
h.outer.Reset()
h.outer.Write(h.opad)
}
h.outer.Write(in[origLen:])
return h.outer.Sum(in[:origLen])
}
func (h *hmac) Write(p []byte) (n int, err error) {
return h.inner.Write(p)
}
func (h *hmac) Size() int { return h.outer.Size() }
func (h *hmac) BlockSize() int { return h.inner.BlockSize() }
func (h *hmac) Reset() {
if h.marshaled {
if err := h.inner.(marshalable).UnmarshalBinary(h.ipad); err != nil {
panic(err)
}
return
}
h.inner.Reset()
h.inner.Write(h.ipad)
// If the underlying hash is marshalable, we can save some time by
// saving a copy of the hash state now, and restoring it on future
// calls to Reset and Sum instead of writing ipad/opad every time.
//
// If either hash is unmarshalable for whatever reason,
// it's safe to bail out here.
marshalableInner, innerOK := h.inner.(marshalable)
if !innerOK {
return
}
marshalableOuter, outerOK := h.outer.(marshalable)
if !outerOK {
return
}
imarshal, err := marshalableInner.MarshalBinary()
if err != nil {
return
}
h.outer.Reset()
h.outer.Write(h.opad)
omarshal, err := marshalableOuter.MarshalBinary()
if err != nil {
return
}
// Marshaling succeeded; save the marshaled state for later
h.ipad = imarshal
h.opad = omarshal
h.marshaled = true
}
// New returns a new HMAC hash using the given [hash.Hash] type and key.
// New functions like sha256.New from [crypto/sha256] can be used as h.
// h must return a new Hash every time it is called.
@@ -94,50 +13,7 @@ func (h *hmac) Reset() {
// the returned Hash does not implement [encoding.BinaryMarshaler]
// or [encoding.BinaryUnmarshaler].
func New(h func() hash.Hash, key []byte) hash.Hash {
fmt.Println("My New")
return nil
if true {
hm := NewHMAC(h, key)
if hm != nil {
return hm
}
// BoringCrypto did not recognize h, so fall through to standard Go code.
}
hm := new(hmac)
hm.outer = h()
hm.inner = h()
unique := true
func() {
defer func() {
// The comparison might panic if the underlying types are not comparable.
_ = recover()
}()
if hm.outer == hm.inner {
unique = false
}
}()
if !unique {
panic("crypto/hmac: hash generation function does not produce unique values")
}
blocksize := hm.inner.BlockSize()
hm.ipad = make([]byte, blocksize)
hm.opad = make([]byte, blocksize)
if len(key) > blocksize {
// If key is too big, hash it.
hm.outer.Write(key)
key = hm.outer.Sum(nil)
}
copy(hm.ipad, key)
copy(hm.opad, key)
for i := range hm.ipad {
hm.ipad[i] ^= 0x36
}
for i := range hm.opad {
hm.opad[i] ^= 0x5c
}
hm.inner.Write(hm.ipad)
return hm
panic("todo")
}
// Equal compares two MACs for equality without leaking timing information.
@@ -145,117 +21,5 @@ func Equal(mac1, mac2 []byte) bool {
// We don't have to be constant time if the lengths of the MACs are
// different as that suggests that a completely different hash function
// was used.
return constantTimeCompare(mac1, mac2) == 1
}
func constantTimeCompare(x, y []byte) int {
if len(x) != len(y) {
return 0
}
var v byte
for i := 0; i < len(x); i++ {
v |= x[i] ^ y[i]
}
return constantTimeByteEq(v, 0)
}
func constantTimeByteEq(x, y uint8) int {
return int((uint32(x^y) - 1) >> 31)
}
type boringHMAC struct {
md *openssl.EVP_MD
ctx *openssl.HMAC_CTX
ctx2 *openssl.HMAC_CTX
size int
blockSize int
key []byte
sum []byte
}
func (h *boringHMAC) Reset() {
if h.ctx != nil {
h.ctx.Free()
}
h.ctx = openssl.NewHMAC_CTX()
if h.ctx == nil {
panic("NewHMAC_CTX fail")
}
ret := h.ctx.Init(unsafe.Pointer(unsafe.SliceData(h.key)), c.Int(len(h.key)), h.md)
if ret == 0 {
panic("boringcrypto: HMAC_Init failed")
}
if c.Int(h.ctx.Size()) != c.Int(h.size) {
println("boringcrypto: HMAC size:", h.ctx.Size(), "!=", h.size)
panic("boringcrypto: HMAC size mismatch")
}
h.sum = nil
}
func (h *boringHMAC) Write(p []byte) (int, error) {
if len(p) > 0 {
h.ctx.UpdateBytes(p)
}
//runtime.KeepAlive(h)
return len(p), nil
}
func (h *boringHMAC) Size() int {
return h.size
}
func (h *boringHMAC) BlockSize() int {
return h.blockSize
}
func (h *boringHMAC) Sum(in []byte) []byte {
if h.sum == nil {
size := h.Size()
h.sum = make([]byte, size)
}
// Make copy of context because Go hash.Hash mandates
// that Sum has no effect on the underlying stream.
// In particular it is OK to Sum, then Write more, then Sum again,
// and the second Sum acts as if the first didn't happen.
h.ctx2 = openssl.NewHMAC_CTX()
if h.ctx2 == nil {
panic("NewHMAC_CTX fail")
}
ret := h.ctx.Copy(h.ctx2)
if ret == 0 {
panic("boringcrypto: HMAC_CTX_copy_ex failed")
}
var lenSum c.Uint = c.Uint(len(h.sum))
h.ctx2.Final(&h.sum[0], &lenSum)
return append(in, h.sum...)
}
func NewHMAC(h func() hash.Hash, key []byte) hash.Hash {
if h == nil {
panic("h == nil")
}
ch := h()
if ch == nil {
panic("ch == nil")
}
md := hashToMD(ch)
if md == nil {
panic("md == nil")
}
hkey := bytes.Clone(key)
hmac := &boringHMAC{
md: md,
size: ch.Size(),
blockSize: ch.BlockSize(),
key: hkey,
}
hmac.Reset()
return hmac
}
func hashToMD(h hash.Hash) *openssl.EVP_MD {
return openssl.EVP_sha1()
return subtle.ConstantTimeCompare(mac1, mac2) == 1
}

View File

@@ -0,0 +1,220 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package fmtsort provides a general stable ordering mechanism
// for maps, on behalf of the fmt and text/template packages.
// It is not guaranteed to be efficient and works only for types
// that are valid map keys.
package fmtsort
// llgo:skipall
import (
"reflect"
"sort"
)
// Note: Throughout this package we avoid calling reflect.Value.Interface as
// it is not always legal to do so and it's easier to avoid the issue than to face it.
// SortedMap represents a map's keys and values. The keys and values are
// aligned in index order: Value[i] is the value in the map corresponding to Key[i].
type SortedMap struct {
Key []reflect.Value
Value []reflect.Value
}
func (o *SortedMap) Len() int { return len(o.Key) }
func (o *SortedMap) Less(i, j int) bool { return compare(o.Key[i], o.Key[j]) < 0 }
func (o *SortedMap) Swap(i, j int) {
o.Key[i], o.Key[j] = o.Key[j], o.Key[i]
o.Value[i], o.Value[j] = o.Value[j], o.Value[i]
}
// Sort accepts a map and returns a SortedMap that has the same keys and
// values but in a stable sorted order according to the keys, modulo issues
// raised by unorderable key values such as NaNs.
//
// The ordering rules are more general than with Go's < operator:
//
// - when applicable, nil compares low
// - ints, floats, and strings order by <
// - NaN compares less than non-NaN floats
// - bool compares false before true
// - complex compares real, then imag
// - pointers compare by machine address
// - channel values compare by machine address
// - structs compare each field in turn
// - arrays compare each element in turn.
// Otherwise identical arrays compare by length.
// - interface values compare first by reflect.Type describing the concrete type
// and then by concrete value as described in the previous rules.
func Sort(mapValue reflect.Value) *SortedMap {
if mapValue.Type().Kind() != reflect.Map {
return nil
}
// Note: this code is arranged to not panic even in the presence
// of a concurrent map update. The runtime is responsible for
// yelling loudly if that happens. See issue 33275.
n := mapValue.Len()
key := make([]reflect.Value, 0, n)
value := make([]reflect.Value, 0, n)
iter := mapValue.MapRange()
for iter.Next() {
key = append(key, iter.Key())
value = append(value, iter.Value())
}
sorted := &SortedMap{
Key: key,
Value: value,
}
sort.Stable(sorted)
return sorted
}
// compare compares two values of the same type. It returns -1, 0, 1
// according to whether a > b (1), a == b (0), or a < b (-1).
// If the types differ, it returns -1.
// See the comment on Sort for the comparison rules.
func compare(aVal, bVal reflect.Value) int {
aType, bType := aVal.Type(), bVal.Type()
if aType != bType {
return -1 // No good answer possible, but don't return 0: they're not equal.
}
switch aVal.Kind() {
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
a, b := aVal.Int(), bVal.Int()
switch {
case a < b:
return -1
case a > b:
return 1
default:
return 0
}
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
a, b := aVal.Uint(), bVal.Uint()
switch {
case a < b:
return -1
case a > b:
return 1
default:
return 0
}
case reflect.String:
a, b := aVal.String(), bVal.String()
switch {
case a < b:
return -1
case a > b:
return 1
default:
return 0
}
case reflect.Float32, reflect.Float64:
return floatCompare(aVal.Float(), bVal.Float())
case reflect.Complex64, reflect.Complex128:
a, b := aVal.Complex(), bVal.Complex()
if c := floatCompare(real(a), real(b)); c != 0 {
return c
}
return floatCompare(imag(a), imag(b))
case reflect.Bool:
a, b := aVal.Bool(), bVal.Bool()
switch {
case a == b:
return 0
case a:
return 1
default:
return -1
}
case reflect.Pointer, reflect.UnsafePointer:
a, b := aVal.Pointer(), bVal.Pointer()
switch {
case a < b:
return -1
case a > b:
return 1
default:
return 0
}
case reflect.Chan:
if c, ok := nilCompare(aVal, bVal); ok {
return c
}
ap, bp := aVal.Pointer(), bVal.Pointer()
switch {
case ap < bp:
return -1
case ap > bp:
return 1
default:
return 0
}
case reflect.Struct:
for i := 0; i < aVal.NumField(); i++ {
if c := compare(aVal.Field(i), bVal.Field(i)); c != 0 {
return c
}
}
return 0
case reflect.Array:
for i := 0; i < aVal.Len(); i++ {
if c := compare(aVal.Index(i), bVal.Index(i)); c != 0 {
return c
}
}
return 0
case reflect.Interface:
if c, ok := nilCompare(aVal, bVal); ok {
return c
}
c := compare(reflect.ValueOf(aVal.Elem().Type()), reflect.ValueOf(bVal.Elem().Type()))
if c != 0 {
return c
}
return compare(aVal.Elem(), bVal.Elem())
default:
// Certain types cannot appear as keys (maps, funcs, slices), but be explicit.
panic("bad type in compare: " + aType.String())
}
}
// nilCompare checks whether either value is nil. If not, the boolean is false.
// If either value is nil, the boolean is true and the integer is the comparison
// value. The comparison is defined to be 0 if both are nil, otherwise the one
// nil value compares low. Both arguments must represent a chan, func,
// interface, map, pointer, or slice.
func nilCompare(aVal, bVal reflect.Value) (int, bool) {
if aVal.IsNil() {
if bVal.IsNil() {
return 0, true
}
return -1, true
}
if bVal.IsNil() {
return 1, true
}
return 0, false
}
// floatCompare compares two floating-point values. NaNs compare low.
func floatCompare(a, b float64) int {
switch {
case isNaN(a):
return -1 // No good answer if b is a NaN so don't bother checking.
case isNaN(b):
return 1
case a < b:
return -1
case a > b:
return 1
}
return 0
}
func isNaN(a float64) bool {
return a != a
}