Merge pull request #1309 from MeteorsLiu/impl-baremetal-gc

feat: implement baremetal gc
This commit is contained in:
xushiwei
2025-11-17 07:41:31 +08:00
committed by GitHub
23 changed files with 1563 additions and 32 deletions

View File

@@ -61,7 +61,7 @@ jobs:
if ${{ startsWith(matrix.os, 'macos') }}; then
DEMO_PKG="cargs_darwin_arm64.zip"
else
DEMO_PKG="cargs_linux_amd64.zip"
DEMO_PKG="cargs_linux_amd64.zip"
fi
mkdir -p ./_demo/c/cargs/libs
@@ -186,11 +186,15 @@ jobs:
uses: actions/setup-go@v6
with:
go-version: ${{matrix.go}}
- name: Test Baremetal GC
if: ${{!startsWith(matrix.os, 'macos')}}
working-directory: runtime/internal/runtime/tinygogc
run: llgo test -tags testGC .
- name: run llgo test
run: |
llgo test ./...
hello:
continue-on-error: true
timeout-minutes: 30

View File

@@ -1,5 +1,4 @@
//go:build !nogc
// +build !nogc
//go:build !nogc && !baremetal
/*
* Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved.

View File

@@ -1,5 +1,4 @@
//go:build nogc
// +build nogc
//go:build nogc || baremetal
/*
* Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved.

View File

@@ -1,4 +1,4 @@
//go:build llgo
//go:build llgo && !baremetal
/*
* Copyright (c) 2025 The GoPlus Authors (goplus.org). All rights reserved.

View File

@@ -1,4 +1,4 @@
//go:build llgo && !nogc
//go:build llgo && !baremetal && !nogc
/*
* Copyright (c) 2025 The GoPlus Authors (goplus.org). All rights reserved.

View File

@@ -1,4 +1,4 @@
//go:build llgo && nogc
//go:build llgo && (nogc || baremetal)
/*
* Copyright (c) 2025 The GoPlus Authors (goplus.org). All rights reserved.

View File

@@ -1,4 +1,4 @@
//go:build !llgo
//go:build !llgo || baremetal
/*
* Copyright (c) 2025 The GoPlus Authors (goplus.org). All rights reserved.

View File

@@ -4,8 +4,6 @@
package runtime
import "runtime"
// Layout of in-memory per-function information prepared by linker
// See https://golang.org/s/go12symtab.
// Keep in sync with linker (../cmd/link/internal/ld/pcln.go:/pclntab)
@@ -30,10 +28,6 @@ func StopTrace() {
panic("todo: runtime.StopTrace")
}
func ReadMemStats(m *runtime.MemStats) {
panic("todo: runtime.ReadMemStats")
}
func SetMutexProfileFraction(rate int) int {
panic("todo: runtime.SetMutexProfileFraction")
}

View File

@@ -1,8 +1,16 @@
//go:build !nogc
//go:build !nogc && !baremetal
package runtime
import "github.com/goplus/llgo/runtime/internal/clite/bdwgc"
import (
"runtime"
"github.com/goplus/llgo/runtime/internal/clite/bdwgc"
)
func ReadMemStats(m *runtime.MemStats) {
panic("todo: runtime.ReadMemStats")
}
func GC() {
bdwgc.Gcollect()

View File

@@ -0,0 +1,29 @@
//go:build !nogc && baremetal
package runtime
import (
"runtime"
"github.com/goplus/llgo/runtime/internal/runtime/tinygogc"
)
func ReadMemStats(m *runtime.MemStats) {
stats := tinygogc.ReadGCStats()
m.Alloc = stats.Alloc
m.TotalAlloc = stats.TotalAlloc
m.Sys = stats.Sys
m.Mallocs = stats.Mallocs
m.Frees = stats.Frees
m.HeapAlloc = stats.HeapAlloc
m.HeapSys = stats.HeapSys
m.HeapIdle = stats.HeapIdle
m.HeapInuse = stats.HeapInuse
m.StackInuse = stats.StackInuse
m.StackSys = stats.StackSys
m.GCSys = stats.GCSys
}
func GC() {
tinygogc.GC()
}

View File

@@ -0,0 +1,184 @@
//go:build baremetal || testGC
package tinygogc
import "unsafe"
type GCStats struct {
// General statistics.
// Alloc is bytes of allocated heap objects.
//
// This is the same as HeapAlloc (see below).
Alloc uint64
// TotalAlloc is cumulative bytes allocated for heap objects.
//
// TotalAlloc increases as heap objects are allocated, but
// unlike Alloc and HeapAlloc, it does not decrease when
// objects are freed.
TotalAlloc uint64
// Sys is the total bytes of memory obtained from the OS.
//
// Sys is the sum of the XSys fields below. Sys measures the
// virtual address space reserved by the Go runtime for the
// heap, stacks, and other internal data structures. It's
// likely that not all of the virtual address space is backed
// by physical memory at any given moment, though in general
// it all was at some point.
Sys uint64
// Mallocs is the cumulative count of heap objects allocated.
// The number of live objects is Mallocs - Frees.
Mallocs uint64
// Frees is the cumulative count of heap objects freed.
Frees uint64
// Heap memory statistics.
//
// Interpreting the heap statistics requires some knowledge of
// how Go organizes memory. Go divides the virtual address
// space of the heap into "spans", which are contiguous
// regions of memory 8K or larger. A span may be in one of
// three states:
//
// An "idle" span contains no objects or other data. The
// physical memory backing an idle span can be released back
// to the OS (but the virtual address space never is), or it
// can be converted into an "in use" or "stack" span.
//
// An "in use" span contains at least one heap object and may
// have free space available to allocate more heap objects.
//
// A "stack" span is used for goroutine stacks. Stack spans
// are not considered part of the heap. A span can change
// between heap and stack memory; it is never used for both
// simultaneously.
// HeapAlloc is bytes of allocated heap objects.
//
// "Allocated" heap objects include all reachable objects, as
// well as unreachable objects that the garbage collector has
// not yet freed. Specifically, HeapAlloc increases as heap
// objects are allocated and decreases as the heap is swept
// and unreachable objects are freed. Sweeping occurs
// incrementally between GC cycles, so these two processes
// occur simultaneously, and as a result HeapAlloc tends to
// change smoothly (in contrast with the sawtooth that is
// typical of stop-the-world garbage collectors).
HeapAlloc uint64
// HeapSys is bytes of heap memory obtained from the OS.
//
// HeapSys measures the amount of virtual address space
// reserved for the heap. This includes virtual address space
// that has been reserved but not yet used, which consumes no
// physical memory, but tends to be small, as well as virtual
// address space for which the physical memory has been
// returned to the OS after it became unused (see HeapReleased
// for a measure of the latter).
//
// HeapSys estimates the largest size the heap has had.
HeapSys uint64
// HeapIdle is bytes in idle (unused) spans.
//
// Idle spans have no objects in them. These spans could be
// (and may already have been) returned to the OS, or they can
// be reused for heap allocations, or they can be reused as
// stack memory.
//
// HeapIdle minus HeapReleased estimates the amount of memory
// that could be returned to the OS, but is being retained by
// the runtime so it can grow the heap without requesting more
// memory from the OS. If this difference is significantly
// larger than the heap size, it indicates there was a recent
// transient spike in live heap size.
HeapIdle uint64
// HeapInuse is bytes in in-use spans.
//
// In-use spans have at least one object in them. These spans
// can only be used for other objects of roughly the same
// size.
//
// HeapInuse minus HeapAlloc estimates the amount of memory
// that has been dedicated to particular size classes, but is
// not currently being used. This is an upper bound on
// fragmentation, but in general this memory can be reused
// efficiently.
HeapInuse uint64
// Stack memory statistics.
//
// Stacks are not considered part of the heap, but the runtime
// can reuse a span of heap memory for stack memory, and
// vice-versa.
// StackInuse is bytes in stack spans.
//
// In-use stack spans have at least one stack in them. These
// spans can only be used for other stacks of the same size.
//
// There is no StackIdle because unused stack spans are
// returned to the heap (and hence counted toward HeapIdle).
StackInuse uint64
// StackSys is bytes of stack memory obtained from the OS.
//
// StackSys is StackInuse, plus any memory obtained directly
// from the OS for OS thread stacks.
//
// In non-cgo programs this metric is currently equal to StackInuse
// (but this should not be relied upon, and the value may change in
// the future).
//
// In cgo programs this metric includes OS thread stacks allocated
// directly from the OS. Currently, this only accounts for one stack in
// c-shared and c-archive build modes and other sources of stacks from
// the OS (notably, any allocated by C code) are not currently measured.
// Note this too may change in the future.
StackSys uint64
// GCSys is bytes of memory in garbage collection metadata.
GCSys uint64
}
func ReadGCStats() GCStats {
var heapInuse, heapIdle uint64
lock(&gcMutex)
for block := uintptr(0); block < endBlock; block++ {
bstate := gcStateOf(block)
if bstate == blockStateFree {
heapIdle += uint64(bytesPerBlock)
} else {
heapInuse += uint64(bytesPerBlock)
}
}
stackEnd := uintptr(unsafe.Pointer(&_stackEnd))
stackSys := stackTop - stackEnd
stats := GCStats{
Alloc: (gcTotalBlocks - gcFreedBlocks) * uint64(bytesPerBlock),
TotalAlloc: gcTotalAlloc,
Sys: uint64(heapEnd - heapStart),
Mallocs: gcMallocs,
Frees: gcFrees,
HeapAlloc: (gcTotalBlocks - gcFreedBlocks) * uint64(bytesPerBlock),
HeapSys: heapInuse + heapIdle,
HeapIdle: heapIdle,
HeapInuse: heapInuse,
StackInuse: uint64(stackTop - uintptr(getsp())),
StackSys: uint64(stackSys),
GCSys: uint64(heapEnd - uintptr(metadataStart)),
}
unlock(&gcMutex)
return stats
}

View File

@@ -0,0 +1,54 @@
//go:build !testGC
package tinygogc
import (
"unsafe"
_ "unsafe"
)
// LLGoPackage instructs the LLGo linker to wrap C standard library memory allocation
// functions (malloc, realloc, calloc) so they use the tinygogc allocator instead.
// This ensures all memory allocations go through the GC, including C library calls.
const LLGoPackage = "link: --wrap=malloc --wrap=realloc --wrap=calloc"
//export __wrap_malloc
func __wrap_malloc(size uintptr) unsafe.Pointer {
return Alloc(size)
}
//export __wrap_calloc
func __wrap_calloc(nmemb, size uintptr) unsafe.Pointer {
totalSize := nmemb * size
// Check for multiplication overflow
if nmemb != 0 && totalSize/nmemb != size {
return nil // Overflow
}
return Alloc(totalSize)
}
//export __wrap_realloc
func __wrap_realloc(ptr unsafe.Pointer, size uintptr) unsafe.Pointer {
return Realloc(ptr, size)
}
//go:linkname getsp llgo.stackSave
func getsp() unsafe.Pointer
//go:linkname _heapStart _heapStart
var _heapStart [0]byte
//go:linkname _heapEnd _heapEnd
var _heapEnd [0]byte
//go:linkname _stackStart _stack_top
var _stackStart [0]byte
//go:linkname _stackEnd _stack_end
var _stackEnd [0]byte
//go:linkname _globals_start _globals_start
var _globals_start [0]byte
//go:linkname _globals_end _globals_end
var _globals_end [0]byte

View File

@@ -0,0 +1,25 @@
//go:build testGC
package tinygogc
import (
_ "unsafe"
)
var currentStack uintptr
func getsp() uintptr {
return currentStack
}
var _heapStart [0]byte
var _heapEnd [0]byte
var _stackStart [0]byte
var _stackEnd [0]byte
var _globals_start [0]byte
var _globals_end [0]byte

View File

@@ -0,0 +1,570 @@
//go:build baremetal || testGC
/*
* Copyright (c) 2018-2025 The TinyGo Authors. All rights reserved.
* Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Package tinygogc implements a conservative mark-and-sweep garbage collector
// for baremetal environments where the standard Go runtime and bdwgc are unavailable.
//
// This implementation is based on TinyGo's GC and is designed for resource-constrained
// embedded systems. It uses a block-based allocator with conservative pointer scanning.
//
// Build tags:
// - baremetal: Enables this GC for baremetal targets
// - testGC: Enables testing mode with mock implementations
//
// Memory Layout:
// The heap is divided into fixed-size blocks (32 bytes on 64-bit). Metadata is stored
// at the end of the heap, using 2 bits per block to track state (free/head/tail/mark).
package tinygogc
import (
"unsafe"
c "github.com/goplus/llgo/runtime/internal/clite"
)
const gcDebug = false
// blockState stores the four states in which a block can be. It is two bits in
// size.
const (
blockStateFree uint8 = 0 // 00
blockStateHead uint8 = 1 // 01
blockStateTail uint8 = 2 // 10
blockStateMark uint8 = 3 // 11
blockStateMask uint8 = 3 // 11
)
// The byte value of a block where every block is a 'tail' block.
const blockStateByteAllTails = 0 |
uint8(blockStateTail<<(stateBits*3)) |
uint8(blockStateTail<<(stateBits*2)) |
uint8(blockStateTail<<(stateBits*1)) |
uint8(blockStateTail<<(stateBits*0))
var (
heapStart uintptr // start address of heap area
heapEnd uintptr // end address of heap area
globalsStart uintptr // start address of global variable area
globalsEnd uintptr // end address of global variable area
stackTop uintptr // the top of stack
endBlock uintptr // GC end block index
metadataStart unsafe.Pointer // start address of GC metadata
nextAlloc uintptr // the next block that should be tried by the allocator
gcTotalAlloc uint64 // total number of bytes allocated
gcTotalBlocks uint64 // total number of allocated blocks
gcMallocs uint64 // total number of allocations
gcFrees uint64 // total number of objects freed
gcFreedBlocks uint64 // total number of freed blocks
// stackOverflow is a flag which is set when the GC scans too deep while marking.
// After it is set, all marked allocations must be re-scanned.
markStackOverflow bool
// zeroSizedAlloc is just a sentinel that gets returned when allocating 0 bytes.
zeroSizedAlloc uint8
gcMutex mutex // gcMutex protects GC related variables
isGCInit bool // isGCInit indicates GC initialization state
)
// Some globals + constants for the entire GC.
const (
wordsPerBlock = 4 // number of pointers in an allocated block
bytesPerBlock = wordsPerBlock * unsafe.Sizeof(heapStart)
stateBits = 2 // how many bits a block state takes (see blockState type)
blocksPerStateByte = 8 / stateBits
markStackSize = 8 * unsafe.Sizeof((*int)(nil)) // number of to-be-marked blocks to queue before forcing a rescan
)
// this function MUST be initalized first, which means it's required to be initalized before runtime
func initGC() {
// reserve 2K blocks for libc internal malloc, we cannot wrap those internal functions
heapStart = uintptr(unsafe.Pointer(&_heapStart)) + 2048
heapEnd = uintptr(unsafe.Pointer(&_heapEnd))
globalsStart = uintptr(unsafe.Pointer(&_globals_start))
globalsEnd = uintptr(unsafe.Pointer(&_globals_end))
totalSize := heapEnd - heapStart
metadataSize := (totalSize + blocksPerStateByte*bytesPerBlock) / (1 + blocksPerStateByte*bytesPerBlock)
metadataStart = unsafe.Pointer(heapEnd - metadataSize)
endBlock = (uintptr(metadataStart) - heapStart) / bytesPerBlock
stackTop = uintptr(unsafe.Pointer(&_stackStart))
c.Memset(metadataStart, 0, metadataSize)
}
func lazyInit() {
if !isGCInit {
initGC()
isGCInit = true
}
}
func gcPanic(s *c.Char) {
c.Printf(c.Str("%s"), s)
c.Exit(2)
}
// blockFromAddr returns a block given an address somewhere in the heap (which
// might not be heap-aligned).
func blockFromAddr(addr uintptr) uintptr {
if addr < heapStart || addr >= uintptr(metadataStart) {
gcPanic(c.Str("gc: trying to get block from invalid address"))
}
return (addr - heapStart) / bytesPerBlock
}
// Return a pointer to the start of the allocated object.
func gcPointerOf(blockAddr uintptr) unsafe.Pointer {
return unsafe.Pointer(gcAddressOf(blockAddr))
}
// Return the address of the start of the allocated object.
func gcAddressOf(blockAddr uintptr) uintptr {
addr := heapStart + blockAddr*bytesPerBlock
if addr > uintptr(metadataStart) {
gcPanic(c.Str("gc: block pointing inside metadata"))
}
return addr
}
// findHead returns the head (first block) of an object, assuming the block
// points to an allocated object. It returns the same block if this block
// already points to the head.
func gcFindHead(blockAddr uintptr) uintptr {
for {
// Optimization: check whether the current block state byte (which
// contains the state of multiple blocks) is composed entirely of tail
// blocks. If so, we can skip back to the last block in the previous
// state byte.
// This optimization speeds up findHead for pointers that point into a
// large allocation.
stateByte := gcStateByteOf(blockAddr)
if stateByte == blockStateByteAllTails {
blockAddr -= (blockAddr % blocksPerStateByte) + 1
continue
}
// Check whether we've found a non-tail block, which means we found the
// head.
state := gcStateFromByte(blockAddr, stateByte)
if state != blockStateTail {
break
}
blockAddr--
}
if gcStateOf(blockAddr) != blockStateHead && gcStateOf(blockAddr) != blockStateMark {
gcPanic(c.Str("gc: found tail without head"))
}
return blockAddr
}
// findNext returns the first block just past the end of the tail. This may or
// may not be the head of an object.
func gcFindNext(blockAddr uintptr) uintptr {
if gcStateOf(blockAddr) == blockStateHead || gcStateOf(blockAddr) == blockStateMark {
blockAddr++
}
for gcAddressOf(blockAddr) < uintptr(metadataStart) && gcStateOf(blockAddr) == blockStateTail {
blockAddr++
}
return blockAddr
}
func gcStateByteOf(blockAddr uintptr) byte {
return *(*uint8)(unsafe.Add(metadataStart, blockAddr/blocksPerStateByte))
}
// Return the block state given a state byte. The state byte must have been
// obtained using b.stateByte(), otherwise the result is incorrect.
func gcStateFromByte(blockAddr uintptr, stateByte byte) uint8 {
return uint8(stateByte>>((blockAddr%blocksPerStateByte)*stateBits)) & blockStateMask
}
// State returns the current block state.
func gcStateOf(blockAddr uintptr) uint8 {
return gcStateFromByte(blockAddr, gcStateByteOf(blockAddr))
}
// setState sets the current block to the given state, which must contain more
// bits than the current state. Allowed transitions: from free to any state and
// from head to mark.
func gcSetState(blockAddr uintptr, newState uint8) {
stateBytePtr := (*uint8)(unsafe.Add(metadataStart, blockAddr/blocksPerStateByte))
*stateBytePtr |= uint8(newState << ((blockAddr % blocksPerStateByte) * stateBits))
if gcStateOf(blockAddr) != newState {
gcPanic(c.Str("gc: setState() was not successful"))
}
}
// markFree sets the block state to free, no matter what state it was in before.
func gcMarkFree(blockAddr uintptr) {
stateBytePtr := (*uint8)(unsafe.Add(metadataStart, blockAddr/blocksPerStateByte))
*stateBytePtr &^= uint8(blockStateMask << ((blockAddr % blocksPerStateByte) * stateBits))
if gcStateOf(blockAddr) != blockStateFree {
gcPanic(c.Str("gc: markFree() was not successful"))
}
*(*[wordsPerBlock]uintptr)(unsafe.Pointer(gcAddressOf(blockAddr))) = [wordsPerBlock]uintptr{}
}
// unmark changes the state of the block from mark to head. It must be marked
// before calling this function.
func gcUnmark(blockAddr uintptr) {
if gcStateOf(blockAddr) != blockStateMark {
gcPanic(c.Str("gc: unmark() on a block that is not marked"))
}
clearMask := blockStateMask ^ blockStateHead // the bits to clear from the state
stateBytePtr := (*uint8)(unsafe.Add(metadataStart, blockAddr/blocksPerStateByte))
*stateBytePtr &^= uint8(clearMask << ((blockAddr % blocksPerStateByte) * stateBits))
if gcStateOf(blockAddr) != blockStateHead {
gcPanic(c.Str("gc: unmark() was not successful"))
}
}
func isOnHeap(ptr uintptr) bool {
return ptr >= heapStart && ptr < uintptr(metadataStart)
}
func isPointer(ptr uintptr) bool {
// TODO: implement precise GC
return isOnHeap(ptr)
}
// alloc tries to find some free space on the heap, possibly doing a garbage
// collection cycle if needed. If no space is free, it panics.
//
//go:noinline
func Alloc(size uintptr) unsafe.Pointer {
if size == 0 {
return unsafe.Pointer(&zeroSizedAlloc)
}
lock(&gcMutex)
lazyInit()
gcTotalAlloc += uint64(size)
gcMallocs++
neededBlocks := (size + (bytesPerBlock - 1)) / bytesPerBlock
gcTotalBlocks += uint64(neededBlocks)
// Continue looping until a run of free blocks has been found that fits the
// requested size.
index := nextAlloc
numFreeBlocks := uintptr(0)
heapScanCount := uint8(0)
for {
if index == nextAlloc {
if heapScanCount == 0 {
heapScanCount = 1
} else if heapScanCount == 1 {
// The entire heap has been searched for free memory, but none
// could be found. Run a garbage collection cycle to reclaim
// free memory and try again.
heapScanCount = 2
freeBytes := gc()
heapSize := uintptr(metadataStart) - heapStart
if freeBytes < heapSize/3 {
// Ensure there is at least 33% headroom.
// This percentage was arbitrarily chosen, and may need to
// be tuned in the future.
growHeap()
}
} else {
// Even after garbage collection, no free memory could be found.
// Try to increase heap size.
if growHeap() {
// Success, the heap was increased in size. Try again with a
// larger heap.
} else {
// Unfortunately the heap could not be increased. This
// happens on baremetal systems for example (where all
// available RAM has already been dedicated to the heap).
gcPanic(c.Str("out of memory"))
}
}
}
// Wrap around the end of the heap.
if index == endBlock {
index = 0
// Reset numFreeBlocks as allocations cannot wrap.
numFreeBlocks = 0
// In rare cases, the initial heap might be so small that there are
// no blocks at all. In this case, it's better to jump back to the
// start of the loop and try again, until the GC realizes there is
// no memory and grows the heap.
// This can sometimes happen on WebAssembly, where the initial heap
// is created by whatever is left on the last memory page.
continue
}
// Is the block we're looking at free?
if gcStateOf(index) != blockStateFree {
// This block is in use. Try again from this point.
numFreeBlocks = 0
index++
continue
}
numFreeBlocks++
index++
// Are we finished?
if numFreeBlocks == neededBlocks {
// Found a big enough range of free blocks!
nextAlloc = index
thisAlloc := index - neededBlocks
// Set the following blocks as being allocated.
gcSetState(thisAlloc, blockStateHead)
for i := thisAlloc + 1; i != nextAlloc; i++ {
gcSetState(i, blockStateTail)
}
unlock(&gcMutex)
// Return a pointer to this allocation.
return c.Memset(gcPointerOf(thisAlloc), 0, size)
}
}
}
func Realloc(ptr unsafe.Pointer, size uintptr) unsafe.Pointer {
if ptr == nil {
return Alloc(size)
}
lock(&gcMutex)
lazyInit()
unlock(&gcMutex)
ptrAddress := uintptr(ptr)
endOfTailAddress := gcAddressOf(gcFindNext(blockFromAddr(ptrAddress)))
// this might be a few bytes longer than the original size of
// ptr, because we align to full blocks of size bytesPerBlock
oldSize := endOfTailAddress - ptrAddress
if size <= oldSize {
return ptr
}
newAlloc := Alloc(size)
c.Memcpy(newAlloc, ptr, oldSize)
free(ptr)
return newAlloc
}
func free(ptr unsafe.Pointer) {
// TODO: free blocks on request, when the compiler knows they're unused.
}
func GC() uintptr {
lock(&gcMutex)
freeBytes := gc()
unlock(&gcMutex)
return freeBytes
}
// runGC performs a garbage collection cycle. It is the internal implementation
// of the runtime.GC() function. The difference is that it returns the number of
// free bytes in the heap after the GC is finished.
func gc() (freeBytes uintptr) {
lazyInit()
if gcDebug {
println("running collection cycle...")
}
// Mark phase: mark all reachable objects, recursively.
gcMarkReachable()
finishMark()
// If we're using threads, resume all other threads before starting the
// sweep.
gcResumeWorld()
// Sweep phase: free all non-marked objects and unmark marked objects for
// the next collection cycle.
freeBytes = sweep()
return
}
// markRoots reads all pointers from start to end (exclusive) and if they look
// like a heap pointer and are unmarked, marks them and scans that object as
// well (recursively). The start and end parameters must be valid pointers and
// must be aligned.
func markRoots(start, end uintptr) {
if start >= end {
gcPanic(c.Str("gc: unexpected range to mark"))
}
// Reduce the end bound to avoid reading too far on platforms where pointer alignment is smaller than pointer size.
// If the size of the range is 0, then end will be slightly below start after this.
end -= unsafe.Sizeof(end) - unsafe.Alignof(end)
for addr := start; addr < end; addr += unsafe.Alignof(addr) {
root := *(*uintptr)(unsafe.Pointer(addr))
markRoot(addr, root)
}
}
// startMark starts the marking process on a root and all of its children.
func startMark(root uintptr) {
var stack [markStackSize]uintptr
stack[0] = root
gcSetState(root, blockStateMark)
stackLen := 1
for stackLen > 0 {
// Pop a block off of the stack.
stackLen--
block := stack[stackLen]
start, end := gcAddressOf(block), gcAddressOf(gcFindNext(block))
for addr := start; addr != end; addr += unsafe.Alignof(addr) {
// Load the word.
word := *(*uintptr)(unsafe.Pointer(addr))
if !isPointer(word) {
// Not a heap pointer.
continue
}
// Find the corresponding memory block.
referencedBlock := blockFromAddr(word)
if gcStateOf(referencedBlock) == blockStateFree {
// The to-be-marked object doesn't actually exist.
// This is probably a false positive.
continue
}
// Move to the block's head.
referencedBlock = gcFindHead(referencedBlock)
if gcStateOf(referencedBlock) == blockStateMark {
// The block has already been marked by something else.
continue
}
// Mark block.
gcSetState(referencedBlock, blockStateMark)
if stackLen == len(stack) {
// The stack is full.
// It is necessary to rescan all marked blocks once we are done.
markStackOverflow = true
if gcDebug {
println("gc stack overflowed")
}
continue
}
// Push the pointer onto the stack to be scanned later.
stack[stackLen] = referencedBlock
stackLen++
}
}
}
// finishMark finishes the marking process by processing all stack overflows.
func finishMark() {
for markStackOverflow {
// Re-mark all blocks.
markStackOverflow = false
for block := uintptr(0); block < endBlock; block++ {
if gcStateOf(block) != blockStateMark {
// Block is not marked, so we do not need to rescan it.
continue
}
// Re-mark the block.
startMark(block)
}
}
}
// mark a GC root at the address addr.
func markRoot(addr, root uintptr) {
if isOnHeap(root) {
block := blockFromAddr(root)
if gcStateOf(block) == blockStateFree {
// The to-be-marked object doesn't actually exist.
// This could either be a dangling pointer (oops!) but most likely
// just a false positive.
return
}
head := gcFindHead(block)
if gcStateOf(head) != blockStateMark {
startMark(head)
}
}
}
// Sweep goes through all memory and frees unmarked
// It returns how many bytes are free in the heap after the sweep.
func sweep() (freeBytes uintptr) {
freeCurrentObject := false
var freed uint64
for block := uintptr(0); block < endBlock; block++ {
switch gcStateOf(block) {
case blockStateHead:
// Unmarked head. Free it, including all tail blocks following it.
gcMarkFree(block)
freeCurrentObject = true
gcFrees++
freed++
case blockStateTail:
if freeCurrentObject {
// This is a tail object following an unmarked head.
// Free it now.
gcMarkFree(block)
freed++
}
case blockStateMark:
// This is a marked object. The next tail blocks must not be freed,
// but the mark bit must be removed so the next GC cycle will
// collect this object if it is unreferenced then.
gcUnmark(block)
freeCurrentObject = false
case blockStateFree:
freeBytes += bytesPerBlock
}
}
gcFreedBlocks += freed
freeBytes += uintptr(freed) * bytesPerBlock
return
}
// growHeap tries to grow the heap size. It returns true if it succeeds, false
// otherwise.
func growHeap() bool {
// On baremetal, there is no way the heap can be grown.
return false
}
func gcMarkReachable() {
markRoots(uintptr(getsp()), stackTop)
markRoots(globalsStart, globalsEnd)
}
func gcResumeWorld() {
// Nothing to do here (single threaded).
}

View File

@@ -0,0 +1,8 @@
package tinygogc
// TODO(MeteorsLiu): mutex lock for baremetal GC
type mutex struct{}
func lock(m *mutex) {}
func unlock(m *mutex) {}

View File

@@ -0,0 +1,604 @@
//go:build testGC
package tinygogc
import (
"testing"
"unsafe"
c "github.com/goplus/llgo/runtime/internal/clite"
)
const (
// Mock a typical embedded system with 128KB RAM
mockHeapSize = 128 * 1024 // 128KB
mockGlobalsSize = 4 * 1024 // 4KB for globals
mockStackSize = 8 * 1024 // 8KB for stack
mockReservedSize = 2048 // 2KB reserved as in real implementation
)
type testObject struct {
data [4]uintptr
}
// mockGCEnv provides a controlled root environment for GC testing
type mockGCEnv struct {
memory []byte
heapStart uintptr
heapEnd uintptr
globalsStart uintptr
globalsEnd uintptr
stackStart uintptr
stackEnd uintptr
// Controlled root sets for testing
rootObjects []unsafe.Pointer
// Original GC state to restore
originalHeapStart uintptr
originalHeapEnd uintptr
originalGlobalsStart uintptr
originalGlobalsEnd uintptr
originalStackTop uintptr
originalEndBlock uintptr
originalMetadataStart unsafe.Pointer
originalNextAlloc uintptr
originalIsGCInit bool
// Mock mode flag
mockMode bool
}
// createMockGCEnv creates a completely isolated GC environment
func createMockGCEnv() *mockGCEnv {
totalMemory := mockHeapSize + mockGlobalsSize + mockStackSize
memory := make([]byte, totalMemory)
baseAddr := uintptr(unsafe.Pointer(&memory[0]))
env := &mockGCEnv{
memory: memory,
globalsStart: baseAddr,
globalsEnd: baseAddr + mockGlobalsSize,
heapStart: baseAddr + mockGlobalsSize + mockReservedSize,
heapEnd: baseAddr + mockGlobalsSize + mockHeapSize,
stackStart: baseAddr + mockGlobalsSize + mockHeapSize,
stackEnd: baseAddr + uintptr(totalMemory),
rootObjects: make([]unsafe.Pointer, 0),
mockMode: false,
}
return env
}
// setupMockGC initializes the GC with mock memory layout using initGC's logic
func (env *mockGCEnv) setupMockGC() {
// Save original GC state
env.originalHeapStart = heapStart
env.originalHeapEnd = heapEnd
env.originalGlobalsStart = globalsStart
env.originalGlobalsEnd = globalsEnd
env.originalStackTop = stackTop
env.originalEndBlock = endBlock
env.originalMetadataStart = metadataStart
env.originalNextAlloc = nextAlloc
env.originalIsGCInit = isGCInit
// Set currentStack for getsp()
currentStack = env.stackStart
// Apply initGC's logic with our mock memory layout
// This is the same logic as initGC() but with our mock addresses
heapStart = env.heapStart + 2048 // reserve 2K blocks like initGC does
heapEnd = env.heapEnd
globalsStart = env.globalsStart
globalsEnd = env.globalsEnd
stackTop = env.stackEnd
totalSize := heapEnd - heapStart
metadataSize := (totalSize + blocksPerStateByte*bytesPerBlock) / (1 + blocksPerStateByte*bytesPerBlock)
metadataStart = unsafe.Pointer(heapEnd - metadataSize)
endBlock = (uintptr(metadataStart) - heapStart) / bytesPerBlock
// Clear metadata using memset like initGC does
c.Memset(metadataStart, 0, metadataSize)
// Reset allocator state and all GC statistics for clean test environment
nextAlloc = 0
isGCInit = true
// Reset all GC statistics to start from clean state
gcTotalAlloc = 0
gcTotalBlocks = 0
gcMallocs = 0
gcFrees = 0
gcFreedBlocks = 0
markStackOverflow = false
}
// restoreOriginalGC restores the original GC state
func (env *mockGCEnv) restoreOriginalGC() {
heapStart = env.originalHeapStart
heapEnd = env.originalHeapEnd
globalsStart = env.originalGlobalsStart
globalsEnd = env.originalGlobalsEnd
stackTop = env.originalStackTop
endBlock = env.originalEndBlock
metadataStart = env.originalMetadataStart
nextAlloc = env.originalNextAlloc
isGCInit = false
}
// enableMockMode enables mock root scanning mode
func (env *mockGCEnv) enableMockMode() {
env.mockMode = true
}
// disableMockMode disables mock root scanning mode
func (env *mockGCEnv) disableMockMode() {
env.mockMode = false
}
// addRoot adds an object to the controlled root set
func (env *mockGCEnv) addRoot(ptr unsafe.Pointer) {
env.rootObjects = append(env.rootObjects, ptr)
}
// clearRoots removes all objects from the controlled root set
func (env *mockGCEnv) clearRoots() {
env.rootObjects = env.rootObjects[:0]
}
// mockMarkReachable replaces gcMarkReachable when in mock mode
func (env *mockGCEnv) mockMarkReachable() {
if !env.mockMode {
// Use original logic
markRoots(uintptr(getsp()), stackTop)
markRoots(globalsStart, globalsEnd)
return
}
// Mock mode: only scan our controlled roots
for _, root := range env.rootObjects {
addr := uintptr(root)
markRoot(addr, addr)
}
}
// runMockGC runs standard GC but with controlled root scanning
func (env *mockGCEnv) runMockGC() uintptr {
lock(&gcMutex)
defer unlock(&gcMutex)
lazyInit()
if gcDebug {
println("running mock collection cycle...")
}
// Mark phase: use our mock root scanning
env.mockMarkReachable()
finishMark()
// Resume world (no-op in single threaded)
gcResumeWorld()
// Sweep phase: use standard sweep logic
return sweep()
}
// createTestObjects creates a network of objects for testing reachability
func createTestObjects(env *mockGCEnv) []*testObject {
// Allocate several test objects
objects := make([]*testObject, 0, 10)
// Dependencies Graph
// root1 -> child1 -> grandchild1 -> child2
// root1 -> child2 -> grandchild1
// Create root objects (reachable from stack/globals)
root1 := (*testObject)(Alloc(unsafe.Sizeof(testObject{})))
root2 := (*testObject)(Alloc(unsafe.Sizeof(testObject{})))
objects = append(objects, root1, root2)
// Create objects reachable from root1
child1 := (*testObject)(Alloc(unsafe.Sizeof(testObject{})))
child2 := (*testObject)(Alloc(unsafe.Sizeof(testObject{})))
root1.data[0] = uintptr(unsafe.Pointer(child1))
root1.data[1] = uintptr(unsafe.Pointer(child2))
objects = append(objects, child1, child2)
// Create objects reachable from child1
grandchild1 := (*testObject)(Alloc(unsafe.Sizeof(testObject{})))
child1.data[0] = uintptr(unsafe.Pointer(grandchild1))
objects = append(objects, grandchild1)
// Create circular reference between child2 and grandchild1
child2.data[0] = uintptr(unsafe.Pointer(grandchild1))
grandchild1.data[0] = uintptr(unsafe.Pointer(child2))
// Create unreachable objects (garbage)
garbage1 := (*testObject)(Alloc(unsafe.Sizeof(testObject{})))
garbage2 := (*testObject)(Alloc(unsafe.Sizeof(testObject{})))
// Create circular reference in garbage
garbage1.data[0] = uintptr(unsafe.Pointer(garbage2))
garbage2.data[0] = uintptr(unsafe.Pointer(garbage1))
objects = append(objects, garbage1, garbage2)
return objects
}
func TestMockGCBasicAllocation(t *testing.T) {
env := createMockGCEnv()
env.setupMockGC()
defer env.restoreOriginalGC()
// Test basic allocation
ptr1 := Alloc(32)
if ptr1 == nil {
t.Fatal("Failed to allocate 32 bytes")
}
ptr2 := Alloc(64)
if ptr2 == nil {
t.Fatal("Failed to allocate 64 bytes")
}
// Verify pointers are within heap bounds
addr1 := uintptr(ptr1)
addr2 := uintptr(ptr2)
if addr1 < heapStart || addr1 >= uintptr(metadataStart) {
t.Errorf("ptr1 %x not within heap bounds [%x, %x)", addr1, heapStart, uintptr(metadataStart))
}
if addr2 < heapStart || addr2 >= uintptr(metadataStart) {
t.Errorf("ptr2 %x not within heap bounds [%x, %x)", addr2, heapStart, uintptr(metadataStart))
}
t.Logf("Allocated ptr1 at %x, ptr2 at %x", addr1, addr2)
t.Logf("Heap bounds: [%x, %x)", heapStart, uintptr(metadataStart))
}
func TestMockGCReachabilityAndSweep(t *testing.T) {
env := createMockGCEnv()
env.setupMockGC()
defer env.restoreOriginalGC()
// Track initial stats
initialMallocs := gcMallocs
initialFrees := gcFrees
// Create test object network
objects := createTestObjects(env)
// Add first 2 objects as roots using mock control
env.enableMockMode()
env.addRoot(unsafe.Pointer(objects[0])) // root1
env.addRoot(unsafe.Pointer(objects[1])) // root2
t.Logf("Created %d objects, 2 are roots", len(objects))
t.Logf("Mallocs: %d", gcMallocs-initialMallocs)
// Verify all objects are initially allocated
for i, obj := range objects {
addr := uintptr(unsafe.Pointer(obj))
block := blockFromAddr(addr)
state := gcStateOf(block)
if state != blockStateHead {
t.Errorf("Object %d at %x has state %d, expected %d (HEAD)", i, addr, state, blockStateHead)
}
}
// Perform GC with controlled root scanning
freedBytes := env.runMockGC()
t.Logf("Freed %d bytes during GC", freedBytes)
t.Logf("Frees: %d (delta: %d)", gcFrees, gcFrees-initialFrees)
// Verify reachable objects are still allocated
reachableObjects := []unsafe.Pointer{
unsafe.Pointer(objects[0]), // root1
unsafe.Pointer(objects[1]), // root2
unsafe.Pointer(objects[2]), // child1 (reachable from root1)
unsafe.Pointer(objects[3]), // child2 (reachable from root1)
unsafe.Pointer(objects[4]), // grandchild1 (reachable from child1, child2)
}
for i, obj := range reachableObjects {
addr := uintptr(obj)
block := blockFromAddr(addr)
state := gcStateOf(block)
if state != blockStateHead {
t.Errorf("Reachable object %d at %x has state %d, expected %d (HEAD)", i, addr, state, blockStateHead)
}
}
// Verify unreachable objects are freed
unreachableObjects := []unsafe.Pointer{
unsafe.Pointer(objects[5]), // garbage1
unsafe.Pointer(objects[6]), // garbage2
}
for i, obj := range unreachableObjects {
addr := uintptr(obj)
block := blockFromAddr(addr)
state := gcStateOf(block)
if state != blockStateFree {
t.Errorf("Unreachable object %d at %x has state %d, expected %d (FREE)", i, addr, state, blockStateFree)
}
}
// Verify some memory was actually freed
if freedBytes == 0 {
t.Error("Expected some memory to be freed, but freed 0 bytes")
}
if gcFrees == initialFrees {
t.Error("Expected some objects to be freed, but free count didn't change")
}
// Clear refs to make grandchild1 unreachable
objects[2].data[0] = 0 // child1 -> grandchild1
objects[3].data[0] = 0 // child2 -> grandchild1
// Run GC again with same roots
freedBytes = env.runMockGC()
// child2 should still be reachable (through root1)
blockAddr := blockFromAddr(uintptr(unsafe.Pointer(objects[3])))
state := gcStateOf(blockAddr)
if state != blockStateHead {
t.Errorf("Object child2 at %x has state %d, expected %d (HEAD)", blockAddr, state, blockStateHead)
}
// grandchild1 should now be unreachable and freed
blockAddr = blockFromAddr(uintptr(unsafe.Pointer(objects[4])))
state = gcStateOf(blockAddr)
if state != blockStateFree {
t.Errorf("Object grandchild1 at %x has state %d, expected %d (FREE)", blockAddr, state, blockStateFree)
}
}
func TestMockGCMemoryPressure(t *testing.T) {
env := createMockGCEnv()
env.setupMockGC()
defer env.restoreOriginalGC()
// Calculate available heap space
heapSize := uintptr(metadataStart) - heapStart
blockSize := bytesPerBlock
maxBlocks := heapSize / blockSize
t.Logf("Heap size: %d bytes, Block size: %d bytes, Max blocks: %d",
heapSize, blockSize, maxBlocks)
// Allocate until we trigger GC
var allocations []unsafe.Pointer
allocSize := uintptr(32) // Small allocations
// Allocate about 80% of heap to trigger GC pressure
targetAllocations := int(maxBlocks * 4 / 5) // 80% capacity
for i := 0; i < targetAllocations; i++ {
ptr := Alloc(allocSize)
if ptr == nil {
t.Fatalf("Failed to allocate at iteration %d", i)
}
allocations = append(allocations, ptr)
}
initialMallocs := gcMallocs
t.Logf("Allocated %d objects (%d mallocs total)", len(allocations), initialMallocs)
// Enable mock mode and keep only half the allocations as roots
env.enableMockMode()
keepCount := len(allocations) / 2
for i := 0; i < keepCount; i++ {
env.addRoot(allocations[i])
}
t.Logf("Keeping %d objects as roots, %d should be freed", keepCount, len(allocations)-keepCount)
// Force GC with controlled roots
freeBytes := env.runMockGC()
t.Logf("GC freed %d bytes", freeBytes)
t.Logf("Objects freed: %d", gcFrees)
// Try to allocate more after GC
for i := 0; i < 10; i++ {
ptr := Alloc(allocSize)
if ptr == nil {
t.Fatalf("Failed to allocate after GC at iteration %d", i)
}
}
t.Log("Successfully allocated more objects after GC")
}
func TestMockGCStats(t *testing.T) {
env := createMockGCEnv()
env.setupMockGC()
defer env.restoreOriginalGC()
// Get initial stats
initialStats := ReadGCStats()
t.Logf("Initial stats - Mallocs: %d, Frees: %d, TotalAlloc: %d, Alloc: %d",
initialStats.Mallocs, initialStats.Frees, initialStats.TotalAlloc, initialStats.Alloc)
// Verify basic system stats
expectedSys := uint64(env.heapEnd - env.heapStart - 2048)
if initialStats.Sys != expectedSys {
t.Errorf("Expected Sys %d, got %d", expectedSys, initialStats.Sys)
}
expectedGCSys := uint64(env.heapEnd - uintptr(metadataStart))
if initialStats.GCSys != expectedGCSys {
t.Errorf("Expected GCSys %d, got %d", expectedGCSys, initialStats.GCSys)
}
// Allocate some objects
var allocations []unsafe.Pointer
allocSize := uintptr(64)
numAllocs := 10
for i := 0; i < numAllocs; i++ {
ptr := Alloc(allocSize)
if ptr == nil {
t.Fatalf("Failed to allocate at iteration %d", i)
}
allocations = append(allocations, ptr)
}
// Check stats after allocation
afterAllocStats := ReadGCStats()
t.Logf("After allocation - Mallocs: %d, Frees: %d, TotalAlloc: %d, Alloc: %d",
afterAllocStats.Mallocs, afterAllocStats.Frees, afterAllocStats.TotalAlloc, afterAllocStats.Alloc)
// Verify allocation stats increased
if afterAllocStats.Mallocs <= initialStats.Mallocs {
t.Errorf("Expected Mallocs to increase from %d, got %d", initialStats.Mallocs, afterAllocStats.Mallocs)
}
if afterAllocStats.TotalAlloc <= initialStats.TotalAlloc {
t.Errorf("Expected TotalAlloc to increase from %d, got %d", initialStats.TotalAlloc, afterAllocStats.TotalAlloc)
}
if afterAllocStats.Alloc <= initialStats.Alloc {
t.Errorf("Expected Alloc to increase from %d, got %d", initialStats.Alloc, afterAllocStats.Alloc)
}
// Verify Alloc and HeapAlloc are the same
if afterAllocStats.Alloc != afterAllocStats.HeapAlloc {
t.Errorf("Expected Alloc (%d) to equal HeapAlloc (%d)", afterAllocStats.Alloc, afterAllocStats.HeapAlloc)
}
// Perform GC with controlled roots - keep only half the allocations
env.enableMockMode()
keepCount := len(allocations) / 2
for i := 0; i < keepCount; i++ {
env.addRoot(allocations[i])
}
freedBytes := env.runMockGC()
t.Logf("GC freed %d bytes", freedBytes)
// Check stats after GC
afterGCStats := ReadGCStats()
t.Logf("After GC - Mallocs: %d, Frees: %d, TotalAlloc: %d, Alloc: %d",
afterGCStats.Mallocs, afterGCStats.Frees, afterGCStats.TotalAlloc, afterGCStats.Alloc)
// Verify GC stats
if afterGCStats.Frees <= afterAllocStats.Frees {
t.Errorf("Expected Frees to increase from %d, got %d", afterAllocStats.Frees, afterGCStats.Frees)
}
// TotalAlloc should not decrease (cumulative)
if afterGCStats.TotalAlloc != afterAllocStats.TotalAlloc {
t.Errorf("Expected TotalAlloc to remain %d after GC, got %d", afterAllocStats.TotalAlloc, afterGCStats.TotalAlloc)
}
// Alloc should decrease (freed objects)
if afterGCStats.Alloc >= afterAllocStats.Alloc {
t.Errorf("Expected Alloc to decrease from %d after GC, got %d", afterAllocStats.Alloc, afterGCStats.Alloc)
}
// Verify heap statistics consistency
if afterGCStats.HeapSys != afterGCStats.HeapInuse+afterGCStats.HeapIdle {
t.Errorf("Expected HeapSys (%d) to equal HeapInuse (%d) + HeapIdle (%d)",
afterGCStats.HeapSys, afterGCStats.HeapInuse, afterGCStats.HeapIdle)
}
// Verify live objects calculation
expectedLiveObjects := afterGCStats.Mallocs - afterGCStats.Frees
t.Logf("Live objects: %d (Mallocs: %d - Frees: %d)", expectedLiveObjects, afterGCStats.Mallocs, afterGCStats.Frees)
// The number of live objects should be reasonable (we kept half the allocations plus some overhead)
if expectedLiveObjects < uint64(keepCount) {
t.Errorf("Expected at least %d live objects, got %d", keepCount, expectedLiveObjects)
}
// Test stack statistics
if afterGCStats.StackInuse > afterGCStats.StackSys {
t.Errorf("StackInuse (%d) should not exceed StackSys (%d)", afterGCStats.StackInuse, afterGCStats.StackSys)
}
}
func TestMockGCCircularReferences(t *testing.T) {
env := createMockGCEnv()
env.setupMockGC()
defer env.restoreOriginalGC()
type Node struct {
data [3]uintptr
next uintptr
}
// Create a circular linked list
nodes := make([]*Node, 5)
for i := range nodes {
nodes[i] = (*Node)(Alloc(unsafe.Sizeof(Node{})))
nodes[i].data[0] = uintptr(i) // Store index as data
}
// Link them in a circle
for i := range nodes {
nextIdx := (i + 1) % len(nodes)
nodes[i].next = uintptr(unsafe.Pointer(nodes[nextIdx]))
}
t.Logf("Created circular list of %d nodes", len(nodes))
// Initially all should be allocated
for i, node := range nodes {
addr := uintptr(unsafe.Pointer(node))
block := blockFromAddr(addr)
state := gcStateOf(block)
if state != blockStateHead {
t.Errorf("Node %d at %x has state %d, expected %d", i, addr, state, blockStateHead)
}
}
// Test 1: With root references - objects should NOT be freed
env.enableMockMode()
// Add the first node as root (keeps entire circle reachable)
env.addRoot(unsafe.Pointer(nodes[0]))
freeBytes := env.runMockGC()
t.Logf("GC with root reference freed %d bytes", freeBytes)
// All nodes should still be allocated since they're reachable through the root
for i, node := range nodes {
addr := uintptr(unsafe.Pointer(node))
block := blockFromAddr(addr)
state := gcStateOf(block)
if state != blockStateHead {
t.Errorf("Node %d at %x should still be allocated, but has state %d", i, addr, state)
}
}
// Test 2: Without root references - all circular objects should be freed
env.clearRoots() // Remove all root references
freeBytes = env.runMockGC()
t.Logf("GC without roots freed %d bytes", freeBytes)
// All nodes should now be freed since they're not reachable from any roots
expectedFreed := uintptr(len(nodes)) * ((unsafe.Sizeof(Node{}) + bytesPerBlock - 1) / bytesPerBlock) * bytesPerBlock
if freeBytes < expectedFreed {
t.Errorf("Expected at least %d bytes freed, got %d", expectedFreed, freeBytes)
}
// Verify all nodes are actually freed
for i, node := range nodes {
addr := uintptr(unsafe.Pointer(node))
block := blockFromAddr(addr)
state := gcStateOf(block)
if state != blockStateFree {
t.Errorf("Node %d at %x should be freed, but has state %d", i, addr, state)
}
}
// Verify we can allocate new objects in the freed space
newPtr := Alloc(unsafe.Sizeof(Node{}))
if newPtr == nil {
t.Error("Failed to allocate after freeing circular references")
}
}

View File

@@ -1,4 +1,4 @@
//go:build !nogc
//go:build !nogc && !baremetal
/*
* Copyright (c) 2025 The GoPlus Authors (goplus.org). All rights reserved.

View File

@@ -1,4 +1,4 @@
//go:build nogc
//go:build nogc || baremetal
/*
* Copyright (c) 2025 The GoPlus Authors (goplus.org). All rights reserved.

View File

@@ -1,5 +1,4 @@
//go:build !nogc
// +build !nogc
//go:build !nogc && !baremetal
/*
* Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved.

View File

@@ -0,0 +1,35 @@
//go:build !nogc && baremetal
/*
* Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package runtime
import (
"unsafe"
"github.com/goplus/llgo/runtime/internal/runtime/tinygogc"
)
// AllocU allocates uninitialized memory.
func AllocU(size uintptr) unsafe.Pointer {
return tinygogc.Alloc(size)
}
// AllocZ allocates zero-initialized memory.
func AllocZ(size uintptr) unsafe.Pointer {
return tinygogc.Alloc(size)
}

View File

@@ -1,6 +1,4 @@
__stack = ORIGIN(dram_seg) + LENGTH(dram_seg);
__MIN_STACK_SIZE = 0x1000;
_stack_top = __stack;
_heapEnd = ORIGIN(dram_seg) + LENGTH(dram_seg);
/* Default entry point */
ENTRY(_start)
@@ -94,6 +92,12 @@ SECTIONS
_iram_end = .;
} > iram_seg
.stack (NOLOAD) :
{
. += 16K;
__stack = .;
} > dram_seg
/**
* This section is required to skip .iram0.text area because iram0_0_seg and
* dram0_0_seg reflect the same address space on different buses.
@@ -148,7 +152,7 @@ SECTIONS
} > dram_seg
/* Check if data + heap + stack exceeds RAM limit */
ASSERT(_end <= __stack - __MIN_STACK_SIZE, "region DRAM overflowed by .data and .bss sections")
ASSERT(_end <= _heapEnd, "region DRAM overflowed by .data and .bss sections")
/* Stabs debugging sections. */
.stab 0 : { *(.stab) }
@@ -193,3 +197,8 @@ SECTIONS
.gnu.attributes 0 : { KEEP (*(.gnu.attributes)) }
/DISCARD/ : { *(.note.GNU-stack) *(.gnu_debuglink) *(.gnu.lto_*) }
}
_globals_start = _data_start;
_globals_end = _end;
_heapStart = _end;
_stack_top = __stack;

View File

@@ -1,5 +1,4 @@
__stack = ORIGIN(dram_seg) + LENGTH(dram_seg);
__MIN_STACK_SIZE = 0x2000;
_heapEnd = ORIGIN(dram_seg) + LENGTH(dram_seg);
ENTRY(_start)
SECTIONS
@@ -26,6 +25,14 @@ SECTIONS
the same address within the page on the next page up. */
. = ALIGN (CONSTANT (MAXPAGESIZE)) - ((CONSTANT (MAXPAGESIZE) - .) & (CONSTANT (MAXPAGESIZE) - 1)); . = DATA_SEGMENT_ALIGN (CONSTANT (MAXPAGESIZE), CONSTANT (COMMONPAGESIZE));
.stack (NOLOAD) :
{
_stack_end = .;
. = ALIGN(16);
. += 16K;
__stack = .;
}
.rodata :
{
@@ -116,7 +123,7 @@ SECTIONS
. = DATA_SEGMENT_END (.);
/* Check if data + heap + stack exceeds RAM limit */
ASSERT(. <= __stack - __MIN_STACK_SIZE, "region DRAM overflowed by .data and .bss sections")
ASSERT(. <= _heapEnd, "region DRAM overflowed by .data and .bss sections")
/* Stabs debugging sections. */
.stab 0 : { *(.stab) }
@@ -165,4 +172,7 @@ SECTIONS
_sbss = __bss_start;
_ebss = _end;
_globals_start = _data_start;
_globals_end = _end;
_heapStart = _end;
_stack_top = __stack;

View File

@@ -19,8 +19,8 @@ MEMORY
/* 64k at the end of DRAM, after ROM bootloader stack
* or entire DRAM (for QEMU only)
*/
dram_seg (RW) : org = 0x3FFF0000 ,
len = 0x10000
dram_seg (RW) : org = 0x3ffae000 ,
len = 0x52000
}
INCLUDE "targets/esp32.app.elf.ld";