444 lines
12 KiB
Markdown
444 lines
12 KiB
Markdown
# Async I/O Design
|
|
|
|
## Async functions in different languages
|
|
|
|
### JavaScript
|
|
|
|
- [Async/Await](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function)
|
|
|
|
Prototype:
|
|
|
|
```javascript
|
|
async function name(param0) {
|
|
statements;
|
|
}
|
|
async function name(param0, param1) {
|
|
statements;
|
|
}
|
|
async function name(param0, param1, /* …, */ paramN) {
|
|
statements;
|
|
}
|
|
```
|
|
|
|
Example:
|
|
|
|
```typescript
|
|
async function resolveAfter1Second(): Promise<string> {
|
|
return new Promise((resolve) => {
|
|
setTimeout(() => {
|
|
resolve("Resolved after 1 second");
|
|
}, 1000);
|
|
});
|
|
}
|
|
|
|
async function asyncCall(): Promise<string> {
|
|
const result = await resolveAfter1Second();
|
|
return `AsyncCall: ${result}`;
|
|
}
|
|
|
|
function asyncCall2(): Promise<string> {
|
|
return resolveAfter1Second();
|
|
}
|
|
|
|
function asyncCall3(): void {
|
|
resolveAfter1Second().then((result) => {
|
|
console.log(`AsyncCall3: ${result}`);
|
|
});
|
|
}
|
|
|
|
async function main() {
|
|
console.log("Starting AsyncCall");
|
|
const result1 = await asyncCall();
|
|
console.log(result1);
|
|
|
|
console.log("Starting AsyncCall2");
|
|
const result2 = await asyncCall2();
|
|
console.log(result2);
|
|
|
|
console.log("Starting AsyncCall3");
|
|
asyncCall3();
|
|
|
|
// Wait for AsyncCall3 to complete
|
|
await new Promise((resolve) => setTimeout(resolve, 1000));
|
|
|
|
console.log("Main function completed");
|
|
}
|
|
|
|
main().catch(console.error);
|
|
```
|
|
|
|
### Python
|
|
|
|
- [async def](https://docs.python.org/3/library/asyncio-task.html#coroutines)
|
|
|
|
Prototype:
|
|
|
|
```python
|
|
async def name(param0):
|
|
statements
|
|
```
|
|
|
|
Example:
|
|
|
|
```python
|
|
import asyncio
|
|
|
|
async def resolve_after_1_second() -> str:
|
|
await asyncio.sleep(1)
|
|
return "Resolved after 1 second"
|
|
|
|
async def async_call() -> str:
|
|
result = await resolve_after_1_second()
|
|
return f"AsyncCall: {result}"
|
|
|
|
def async_call2() -> asyncio.Task:
|
|
return resolve_after_1_second()
|
|
|
|
def async_call3() -> None:
|
|
asyncio.create_task(print_after_1_second())
|
|
|
|
async def print_after_1_second() -> None:
|
|
result = await resolve_after_1_second()
|
|
print(f"AsyncCall3: {result}")
|
|
|
|
async def main():
|
|
print("Starting AsyncCall")
|
|
result1 = await async_call()
|
|
print(result1)
|
|
|
|
print("Starting AsyncCall2")
|
|
result2 = await async_call2()
|
|
print(result2)
|
|
|
|
print("Starting AsyncCall3")
|
|
async_call3()
|
|
|
|
# Wait for AsyncCall3 to complete
|
|
await asyncio.sleep(1)
|
|
|
|
print("Main function completed")
|
|
|
|
# Run the main coroutine
|
|
asyncio.run(main())
|
|
```
|
|
|
|
### Rust
|
|
|
|
- [async fn](https://doc.rust-lang.org/std/keyword.async.html)
|
|
|
|
Prototype:
|
|
|
|
```rust
|
|
async fn name(param0: Type) -> ReturnType {
|
|
statements
|
|
}
|
|
```
|
|
|
|
Example:
|
|
|
|
```rust
|
|
use std::time::Duration;
|
|
use tokio::time::sleep;
|
|
use std::future::Future;
|
|
|
|
async fn resolve_after_1_second() -> String {
|
|
sleep(Duration::from_secs(1)).await;
|
|
"Resolved after 1 second".to_string()
|
|
}
|
|
|
|
async fn async_call() -> String {
|
|
let result = resolve_after_1_second().await;
|
|
format!("AsyncCall: {}", result)
|
|
}
|
|
|
|
fn async_call2() -> impl Future<Output = String> {
|
|
resolve_after_1_second()
|
|
}
|
|
|
|
fn async_call3() {
|
|
tokio::spawn(async {
|
|
let result = resolve_after_1_second().await;
|
|
println!("AsyncCall3: {}", result);
|
|
});
|
|
}
|
|
|
|
#[tokio::main]
|
|
async fn main() {
|
|
println!("Starting AsyncCall");
|
|
let result1 = async_call().await;
|
|
println!("{}", result1);
|
|
|
|
println!("Starting AsyncCall2");
|
|
let result2 = async_call2().await;
|
|
println!("{}", result2);
|
|
|
|
println!("Starting AsyncCall3");
|
|
async_call3();
|
|
|
|
// Wait for AsyncCall3 to complete
|
|
sleep(Duration::from_secs(2)).await;
|
|
|
|
println!("Main function completed");
|
|
}
|
|
```
|
|
|
|
### C#
|
|
|
|
- [async](https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/)
|
|
|
|
Prototype:
|
|
|
|
```csharp
|
|
async Task<ReturnType> NameAsync(Type param0)
|
|
{
|
|
statements;
|
|
}
|
|
```
|
|
|
|
Example:
|
|
|
|
```csharp
|
|
using System;
|
|
using System.Threading.Tasks;
|
|
|
|
class Program
|
|
{
|
|
static async Task<string> ResolveAfter1Second()
|
|
{
|
|
await Task.Delay(1000);
|
|
return "Resolved after 1 second";
|
|
}
|
|
|
|
static async Task<string> AsyncCall()
|
|
{
|
|
string result = await ResolveAfter1Second();
|
|
return $"AsyncCall: {result}";
|
|
}
|
|
|
|
static Task<string> AsyncCall2()
|
|
{
|
|
return ResolveAfter1Second();
|
|
}
|
|
|
|
static void AsyncCall3()
|
|
{
|
|
_ = Task.Run(async () =>
|
|
{
|
|
string result = await ResolveAfter1Second();
|
|
Console.WriteLine($"AsyncCall3: {result}");
|
|
});
|
|
}
|
|
|
|
static async Task Main()
|
|
{
|
|
Console.WriteLine("Starting AsyncCall");
|
|
string result1 = await AsyncCall();
|
|
Console.WriteLine(result1);
|
|
|
|
Console.WriteLine("Starting AsyncCall2");
|
|
string result2 = await AsyncCall2();
|
|
Console.WriteLine(result2);
|
|
|
|
Console.WriteLine("Starting AsyncCall3");
|
|
AsyncCall3();
|
|
|
|
// Wait for AsyncCall3 to complete
|
|
await Task.Delay(1000);
|
|
|
|
Console.WriteLine("Main method completed");
|
|
}
|
|
}
|
|
```
|
|
|
|
### C++ 20 Coroutines
|
|
|
|
- [co_await](https://en.cppreference.com/w/cpp/language/coroutines)
|
|
|
|
Prototype:
|
|
|
|
```cpp
|
|
TaskReturnType NameAsync(Type param0)
|
|
{
|
|
co_return co_await expression;
|
|
}
|
|
```
|
|
|
|
Example:
|
|
|
|
```cpp
|
|
#include <cppcoro/task.hpp>
|
|
#include <cppcoro/sync_wait.hpp>
|
|
#include <cppcoro/when_all.hpp>
|
|
#include <chrono>
|
|
#include <iostream>
|
|
#include <thread>
|
|
|
|
cppcoro::task<std::string> resolveAfter1Second() {
|
|
co_await std::chrono::seconds(1);
|
|
co_return "Resolved after 1 second";
|
|
}
|
|
|
|
cppcoro::task<std::string> asyncCall() {
|
|
auto result = co_await resolveAfter1Second();
|
|
co_return "AsyncCall: " + result;
|
|
}
|
|
|
|
cppcoro::task<std::string> asyncCall2() {
|
|
return resolveAfter1Second();
|
|
}
|
|
|
|
cppcoro::task<void> asyncCall3() {
|
|
auto result = co_await resolveAfter1Second();
|
|
std::cout << "AsyncCall3: " << result << std::endl;
|
|
}
|
|
|
|
cppcoro::task<void> main() {
|
|
std::cout << "Starting AsyncCall" << std::endl;
|
|
auto result1 = co_await asyncCall();
|
|
std::cout << result1 << std::endl;
|
|
|
|
std::cout << "Starting AsyncCall2" << std::endl;
|
|
auto result2 = co_await asyncCall2();
|
|
std::cout << result2 << std::endl;
|
|
|
|
std::cout << "Starting AsyncCall3" << std::endl;
|
|
auto asyncCall3Task = asyncCall3();
|
|
|
|
// Wait for AsyncCall3 to complete
|
|
co_await asyncCall3Task;
|
|
|
|
std::cout << "Main function completed" << std::endl;
|
|
}
|
|
|
|
int main() {
|
|
try {
|
|
cppcoro::sync_wait(::main());
|
|
} catch (const std::exception& e) {
|
|
std::cerr << "Error: " << e.what() << std::endl;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
```
|
|
|
|
## Common concepts
|
|
|
|
### Promise, Future, Task, and Coroutine
|
|
|
|
- **Promise**: An object that represents the eventual completion (or failure) of an asynchronous operation and its resulting value. It is used to produce a value that will be consumed by a `Future`.
|
|
|
|
- **Future**: An object that represents the result of an asynchronous operation. It is used to obtain the value produced by a `Promise`.
|
|
|
|
- **Task**: A unit of work that can be scheduled and executed asynchronously. It is a higher-level abstraction that combines a `Promise` and a `Future`.
|
|
|
|
- **Coroutine**: A special type of function that can suspend its execution and return control to the caller without losing its state. It can be resumed later, allowing for asynchronous programming.
|
|
|
|
### `async`, `await` and similar keywords
|
|
|
|
- **`async`**: A keyword used to define a function that returns a `Promise` or `Task`. It allows the function to pause its execution and resume later.
|
|
|
|
- **`await`**: A keyword used to pause the execution of an `async` function until a `Promise` or `Task` is resolved. It unwraps the value of the `Promise` or `Task` and allows the function to continue.
|
|
|
|
- **`co_return`**: A keyword used in C++ coroutines to return a value from a coroutine. It is similar to `return` but is used in coroutines to indicate that the coroutine has completed. It's similar to `return` in `async` functions in other languages that boxes the value into a `Promise` or `Task`.
|
|
|
|
`async/await` and similar constructs provide a more readable and synchronous-like way of writing asynchronous code, it hides the type of `Promise`/`Future`/`Task` from the user and allows them to focus on the logic of the code.
|
|
|
|
### Executing Multiple Async Operations Concurrently
|
|
|
|
To run multiple promises concurrently, JavaScript provides `Promise.all`, `Promise.allSettled` and `Promise.any`, Python provides `asyncio.gather`, Rust provides `tokio::try_join`, C# provides `Task.WhenAll`, and C++ provides `cppcoro::when_all`.
|
|
|
|
In some situations, you may want to get the first result of multiple async operations. JavaScript provides `Promise.race` to get the first result of multiple promises. Python provides `asyncio.wait` to get the first result of multiple coroutines. Rust provides `tokio::select!` to get the first result of multiple futures. C# provides `Task.WhenAny` to get the first result of multiple tasks. C++ provides `cppcoro::when_any` to get the first result of multiple tasks. Those functions are very simular to `select` in Go.
|
|
|
|
### Error Handling
|
|
|
|
`await` commonly unwraps the value of a `Promise` or `Task`, but it also propagates errors. If the `Promise` or `Task` is rejected or throws an error, the error will be thrown in the `async` function by the `await` keyword. You can use `try/catch` blocks to handle errors in `async` functions.
|
|
|
|
## Common patterns
|
|
|
|
- `async` keyword hides the types of `Promise`/`Future`/`Task` in the function signature in Python and Rust, but not in JavaScript, C#, and C++.
|
|
- `await` keyword unwraps the value of a `Promise`/`Future`/`Task`.
|
|
- `return` keyword boxes the value into a `Promise`/`Future`/`Task` if it's not already.
|
|
|
|
## Design considerations in LLGo
|
|
|
|
- Don't introduce `async`/`await` keywords to compatible with Go
|
|
- For performance and memory reasons don't implement async functions with goroutines, coroutines, or other mechanisms that require per-task stack allocation
|
|
- Avoid implementing async task by using `chan` that blocking the thread
|
|
|
|
## Design
|
|
|
|
### `async.Future[T]` type
|
|
|
|
Introduce `async.Future[T]` type to represent an eventual completion (or failure) of an asynchronous operation and its resulting value, similar to `Promise`/`Future` in other languages. Functions that return `async.Future[T]` are considered asynchronous functions.
|
|
|
|
### Future creation
|
|
|
|
`async.Future[T]` can be created by `async.Async[T]` function that takes a function that accepts a `resolve` function to produce a value of type `T`.
|
|
|
|
### Future chaining (asynchronous callbacks style)
|
|
|
|
`async.Future[T]` can be chained with `Then` method to add multiple callbacks to be executed when the operation is completed, it just runs once and calls every callbacks. Currently `Then` method can't be chained multiple times because Go doesn't support generics method (Need support `func (f Future[T]) Then[U any](f func(T) Future[U]) Future[U]`) and function overload currently, maybe implements in Go+.
|
|
|
|
### Future waiting (synchronous style)
|
|
|
|
`async.Await[T]` function can be used to wait for the completion of a `Future[T]` and return the value produced by the operation. In LLGo, `async.Await[T]` is a blocking function that waits for the completion of the `Future[T]` and returns the value synchronously, it would be transformed to `Future.Then` callback in the frontend.
|
|
|
|
### `async.Run[T]` function
|
|
|
|
`async.Run[T]` function can be used to create an global asynchronous context and run async functions, and it would be hidden by the compiler in the future.
|
|
|
|
Currently it will switch the callbacks to the goroutine that calls `async.Run[T]` function, this maybe changed in the future to reduce the overhead of switching goroutines and make it more parallel.
|
|
|
|
### Prototype
|
|
|
|
```go
|
|
package async
|
|
|
|
type Future[T any] interface {
|
|
Then(f func(T))
|
|
}
|
|
|
|
func Async[T any](f func(resolve func(T))) Future[T]
|
|
|
|
func Await[T any](future Future[T]) T
|
|
```
|
|
|
|
### Some async functions
|
|
|
|
```go
|
|
package async
|
|
|
|
|
|
func Race[T1 any](futures ...Future[T1]) Future[T1]
|
|
|
|
func All[T1 any](futures ...Future[T1]) Future[[]T1]
|
|
|
|
```
|
|
|
|
### Example
|
|
|
|
```go
|
|
package main
|
|
|
|
func main() {
|
|
async.Run(func() {
|
|
hello := func() async.Future[string] {
|
|
return async.Async(func(resolve func(string)) {
|
|
resolve("Hello, World!")
|
|
})
|
|
}
|
|
|
|
future := hello()
|
|
future.Then(func(value string) {
|
|
println("first callback:", value)
|
|
})
|
|
future.Then(func(value string) {
|
|
println("second callback:", value)
|
|
})
|
|
|
|
println("first await:", async.Await(future))
|
|
println("second await:", async.Await(future))
|
|
})
|
|
}
|
|
```
|