Files
llgo/internal/runtime/z_face.go
2024-12-21 20:07:28 +08:00

640 lines
15 KiB
Go

/*
* Copyright (c) 2024 The GoPlus Authors (goplus.org). All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package runtime
import (
"unsafe"
"github.com/goplus/llgo/c"
"github.com/goplus/llgo/internal/abi"
)
type eface struct {
_type *_type
data unsafe.Pointer
}
type iface struct {
tab *itab
data unsafe.Pointer
}
type interfacetype = abi.InterfaceType
// layout of Itab known to compilers
// allocated in non-garbage-collected memory
// Needs to be in sync with
// ../cmd/compile/internal/reflectdata/reflect.go:/^func.WriteTabs.
type itab struct {
inter *interfacetype
_type *_type
hash uint32 // copy of _type.hash. Used for type switches.
_ [4]byte
fun [1]uintptr // variable sized. fun[0]==0 means _type does not implement inter.
}
// -----------------------------------------------------------------------------
type (
Eface = eface
Iface = iface
Itab = itab
)
type Imethod = abi.Imethod
type Method = abi.Method
type FuncType = abi.FuncType
type InterfaceType = abi.InterfaceType
// ToEface converts an iface to an eface.
func ToEface(i Iface) Eface {
return Eface{i.tab._type, i.data}
}
// -----------------------------------------------------------------------------
const (
typeHdrSize = unsafe.Sizeof(abi.Type{})
arrayTypeHdrSize = unsafe.Sizeof(abi.ArrayType{})
chanTypeHdrSize = unsafe.Sizeof(abi.ChanType{})
funcTypeHdrSize = unsafe.Sizeof(abi.FuncType{})
interfaceTypeHdrSize = unsafe.Sizeof(abi.InterfaceType{})
mapTypeHdrSize = unsafe.Sizeof(abi.MapType{})
ptrTypeHdrSize = unsafe.Sizeof(abi.PtrType{})
sliceTypeHdrSize = unsafe.Sizeof(abi.SliceType{})
structTypeHdrSize = unsafe.Sizeof(abi.StructType{})
uncommonTypeHdrSize = unsafe.Sizeof(abi.UncommonType{})
methodSize = unsafe.Sizeof(abi.Method{})
pointerSize = unsafe.Sizeof(uintptr(0))
itabHdrSize = unsafe.Sizeof(itab{}) - pointerSize
)
func hdrSizeOf(kind abi.Kind) uintptr {
switch kind {
case abi.Array:
return arrayTypeHdrSize
case abi.Chan:
return chanTypeHdrSize
case abi.Func:
return funcTypeHdrSize
case abi.Interface:
return interfaceTypeHdrSize
case abi.Map:
return mapTypeHdrSize
case abi.Pointer:
return ptrTypeHdrSize
case abi.Slice:
return sliceTypeHdrSize
case abi.Struct:
return structTypeHdrSize
default:
return typeHdrSize
}
}
// NewNamed returns an uninitialized named type.
func NewNamed(pkgPath string, name string, kind abi.Kind, size uintptr, methods, ptrMethods int) *Type {
if pkgPath != "" {
name = pkgName(pkgPath) + "." + name
}
if t := rtypeList.findNamed(pkgPath, name); t != nil {
return t
}
ret := allocUncommonType(kind, size, methods, abi.TFlagUninited|abi.TFlagNamed|abi.TFlagUncommon, pkgPath)
ret.Str_ = name
ret.Hash = 9157 + hashString(pkgPath) + hashString(name)
if ptrMethods == 0 {
ret.PtrToThis_ = newPointer(ret)
} else {
ret.PtrToThis_ = allocUncommonType(abi.Pointer, pointerSize, ptrMethods, abi.TFlagUncommon, pkgPath)
setPointer((*abi.PtrType)(unsafe.Pointer(ret.PtrToThis_)), ret)
}
rtypeList.addType(ret)
return ret
}
func lastSlash(s string) int {
i := len(s) - 1
for i >= 0 && s[i] != '/' {
i--
}
return i
}
func pkgName(path string) string {
i := lastSlash(path)
return path[i+1:]
}
// InitNamed initializes an uninitialized named type.
func InitNamed(ret *Type, underlying *Type, methods, ptrMethods []Method) {
// skip initialized
if ret.TFlag&abi.TFlagUninited == 0 {
return
}
setUnderlying(ret, underlying)
if len(methods) > 0 {
setUncommon(ret, methods)
}
if len(ptrMethods) > 0 {
setUncommon(ret.PtrToThis_, ptrMethods)
}
}
func allocUncommonType(kind abi.Kind, size uintptr, methods int, tflag abi.TFlag, pkgPath string) *Type {
baseSize := hdrSizeOf(kind)
allocSize := baseSize + uncommonTypeHdrSize + uintptr(methods)*methodSize
ret := (*Type)(AllocU(allocSize))
ret.Size_ = size
ret.Kind_ = uint8(kind)
ret.TFlag = tflag
uncommon := (*abi.UncommonType)(c.Advance(unsafe.Pointer(ret), int(baseSize)))
uncommon.PkgPath_ = pkgPath
uncommon.Moff = uint32(uncommonTypeHdrSize)
return ret
}
func setUnderlying(ret *Type, underlying *Type) {
str := ret.Str_
ptr := ret.PtrToThis_
baseSize := hdrSizeOf(ret.Kind())
c.Memcpy(unsafe.Pointer(ret), unsafe.Pointer(underlying), baseSize)
ret.Str_ = str
ret.PtrToThis_ = ptr
ret.TFlag = underlying.TFlag | abi.TFlagNamed | abi.TFlagUncommon
}
func setUncommon(ret *Type, methods []Method) {
ptr := unsafe.Pointer(ret)
baseSize := hdrSizeOf(ret.Kind())
n := len(methods)
xcount := uint16(0)
for _, m := range methods {
if !m.Exported() {
break
}
xcount++
}
uncommon := (*abi.UncommonType)(c.Advance(ptr, int(baseSize)))
uncommon.Mcount = uint16(n)
uncommon.Xcount = xcount
uncommon.Moff = uint32(uncommonTypeHdrSize)
extraOff := int(baseSize + uncommonTypeHdrSize)
data := (*abi.Method)(c.Advance(ptr, extraOff))
copy(unsafe.Slice(data, n), methods)
}
// Func returns a function type.
func Func(in, out []*Type, variadic bool) *FuncType {
if t := rtypeList.findFunc(in, out, variadic); t != nil {
return t
}
ret := &FuncType{
Type: Type{
Size_: 2 * unsafe.Sizeof(uintptr(0)),
PtrBytes: 2 * pointerSize,
Align_: uint8(pointerAlign),
FieldAlign_: uint8(pointerAlign),
Kind_: uint8(abi.Func),
},
In: in,
Out: out,
}
var hash uint32 = 9091
if variadic {
hash *= 8863
ret.TFlag |= abi.TFlagVariadic
}
hash += 3*hashTuple(in) + 5*hashTuple(out)
ret.Hash = hash
ret.Str_ = funcStr(ret)
rtypeList.addType(&ret.Type)
return ret
}
// NewNamedInterface returns an interface type.
// Don't call NewNamed for named interface type.
func NewNamedInterface(pkgPath, name string) *InterfaceType {
if pkgPath != "" {
name = pkgName(pkgPath) + "." + name
}
if t := rtypeList.findNamed(pkgPath, name); t != nil {
return t.InterfaceType()
}
ret := &struct {
abi.InterfaceType
u abi.UncommonType
}{
abi.InterfaceType{
Type: Type{
Size_: unsafe.Sizeof(eface{}),
PtrBytes: 2 * pointerSize,
Hash: 9157 + hashString(pkgPath) + hashString(name),
Align_: uint8(pointerAlign),
FieldAlign_: uint8(pointerAlign),
Kind_: uint8(abi.Interface),
Str_: name,
TFlag: abi.TFlagNamed | abi.TFlagUncommon,
},
PkgPath_: pkgPath,
},
abi.UncommonType{
PkgPath_: pkgPath,
},
}
rtypeList.addType(&ret.Type)
return &ret.InterfaceType
}
func InitNamedInterface(ret *InterfaceType, methods []Imethod) {
ret.Methods = methods
if len(methods) == 0 {
ret.Equal = nilinterequal
} else {
ret.Equal = interequal
}
}
func Interface(pkgPath string, methods []Imethod) *InterfaceType {
if t := rtypeList.findInterface(pkgPath, methods); t != nil {
return t
}
ret := &abi.InterfaceType{
Type: Type{
Size_: unsafe.Sizeof(eface{}),
PtrBytes: 2 * pointerSize,
Align_: uint8(pointerAlign),
FieldAlign_: uint8(pointerAlign),
Kind_: uint8(abi.Interface),
},
PkgPath_: pkgPath,
Methods: methods,
}
if len(methods) == 0 {
ret.Equal = nilinterequal
} else {
ret.Equal = interequal
}
ret.Str_ = interfaceStr(ret)
var hash uint32 = 9103
// Hash methods.
for _, m := range methods {
// Use shallow hash on method signature to
// avoid anonymous interface cycles.
hash += 3*hashString(m.Name()) + 5*shallowHash(&m.Typ_.Type)
}
ret.Hash = hash
rtypeList.addType(&ret.Type)
return ret
}
// NewItab returns a new itab.
func NewItab(inter *InterfaceType, typ *Type) *Itab {
if typ == nil {
return nil
}
n := len(inter.Methods)
size := itabHdrSize + uintptr(n)*pointerSize
ptr := AllocU(size)
ret := (*itab)(ptr)
ret.inter = inter
ret._type = typ
ret.hash = typ.Hash
u := typ.Uncommon()
if u == nil {
ret.fun[0] = 0
} else {
data := (*uintptr)(c.Advance(ptr, int(itabHdrSize)))
mthds := methods(u, inter.PkgPath_)
for i, m := range inter.Methods {
fn := findMethod(mthds, m)
if fn == nil {
ret.fun[0] = 0
break
}
*c.Advance(data, i) = uintptr(fn)
}
}
return ret
}
func findMethod(mthds []abi.Method, im abi.Imethod) abi.Text {
imName := im.Name_
for _, m := range mthds {
mName := m.Name_
if mName >= imName {
if mName == imName && m.Mtyp_ == im.Typ_ {
return m.Ifn_
}
break
}
}
return nil
}
func methods(u *abi.UncommonType, from string) []abi.Method {
if u.PkgPath_ == from {
return u.Methods()
}
return u.ExportedMethods()
}
func IfaceType(i iface) *abi.Type {
if i.tab == nil {
return nil
}
return i.tab._type
}
func IfacePtrData(i iface) unsafe.Pointer {
if i.tab == nil {
panic(errorString("invalid memory address or nil pointer dereference").Error())
}
switch i.tab._type.Kind() {
case abi.Bool, abi.Int, abi.Int8, abi.Int16, abi.Int32, abi.Int64,
abi.Uint, abi.Uint8, abi.Uint16, abi.Uint32, abi.Uint64, abi.Uintptr,
abi.Float32, abi.Float64, abi.Array, abi.Struct:
if isDirectIface(i.tab._type) {
return unsafe.Pointer(&i.data)
}
}
return i.data
}
// Implements reports whether the type V implements the interface type T.
func Implements(T, V *abi.Type) bool {
if V == nil {
return false
}
if T.Kind() != abi.Interface {
return false
}
t := (*abi.InterfaceType)(unsafe.Pointer(T))
if len(t.Methods) == 0 {
return true
}
// The same algorithm applies in both cases, but the
// method tables for an interface type and a concrete type
// are different, so the code is duplicated.
// In both cases the algorithm is a linear scan over the two
// lists - T's methods and V's methods - simultaneously.
// Since method tables are stored in a unique sorted order
// (alphabetical, with no duplicate method names), the scan
// through V's methods must hit a match for each of T's
// methods along the way, or else V does not implement T.
// This lets us run the scan in overall linear time instead of
// the quadratic time a naive search would require.
// See also ../runtime/iface.go.
if V.Kind() == abi.Interface {
v := (*abi.InterfaceType)(unsafe.Pointer(V))
i := 0
for j := 0; j < len(v.Methods); j++ {
tm := &t.Methods[i]
vm := &v.Methods[j]
if vm.Name_ == tm.Name_ && vm.Typ_ == tm.Typ_ {
if i++; i >= len(t.Methods) {
return true
}
}
}
return false
}
v := V.Uncommon()
if v == nil {
return false
}
i := 0
vmethods := v.Methods()
for j := 0; j < int(v.Mcount); j++ {
tm := &t.Methods[i]
vm := vmethods[j]
if vm.Name_ == tm.Name_ && vm.Mtyp_ == tm.Typ_ {
if i++; i >= len(t.Methods) {
return true
}
}
}
return false
}
func EfaceEqual(v, u eface) bool {
if v._type == nil || u._type == nil {
return v._type == u._type
}
if v._type != u._type {
return false
}
if isDirectIface(v._type) {
return v.data == u.data
}
if equal := v._type.Equal; equal != nil {
return equal(v.data, u.data)
}
panic(errorString("comparing uncomparable type " + v._type.String()).Error())
}
func (v eface) Kind() abi.Kind {
if v._type == nil {
return abi.Invalid
}
return v._type.Kind()
}
func (v eface) Elem() eface {
switch v.Kind() {
case abi.Interface:
var i any
tt := (*abi.InterfaceType)(unsafe.Pointer(v._type))
if len(tt.Methods) == 0 {
i = *(*any)(v.data)
} else {
i = (any)(*(*interface {
M()
})(v.data))
}
return *(*eface)(unsafe.Pointer(&i))
case abi.Pointer:
ptr := v.data
if isDirectIface(v._type) {
ptr = *(*unsafe.Pointer)(ptr)
}
if ptr == nil {
return eface{}
}
return eface{v._type.Elem(), ptr}
}
panic("invalid eface elem")
}
func SetDirectIface(t *abi.Type) {
t.Kind_ |= abi.KindDirectIface
}
func isDirectIface(t *_type) bool {
return t.Kind_&abi.KindDirectIface != 0
}
func SetClosure(t *abi.Type) {
t.TFlag |= abi.TFlagClosure
}
func interfaceStr(ft *abi.InterfaceType) string {
repr := make([]byte, 0, 64)
repr = append(repr, "interface {"...)
for i, t := range ft.Methods {
if i > 0 {
repr = append(repr, ';')
}
repr = append(repr, ' ')
repr = append(repr, t.Name_...)
repr = append(repr, t.Typ_.String()[4:]...)
}
if len(ft.Methods) > 0 {
repr = append(repr, ' ')
}
repr = append(repr, '}')
return string(repr)
}
func funcStr(ft *abi.FuncType) string {
repr := make([]byte, 0, 64)
repr = append(repr, "func("...)
for i, t := range ft.In {
if i > 0 {
repr = append(repr, ", "...)
}
if ft.Variadic() && i == len(ft.In)-1 {
repr = append(repr, "..."...)
repr = append(repr, (*abi.SliceType)(unsafe.Pointer(t)).Elem.String()...)
} else {
repr = append(repr, t.String()...)
}
}
repr = append(repr, ')')
out := ft.Out
if len(out) == 1 {
repr = append(repr, ' ')
} else if len(out) > 1 {
repr = append(repr, " ("...)
}
for i, t := range out {
if i > 0 {
repr = append(repr, ", "...)
}
repr = append(repr, t.String()...)
}
if len(out) > 1 {
repr = append(repr, ')')
}
return string(repr)
}
func hashTuple(tuple []*Type) uint32 {
// See go/types.identicalTypes for rationale.
n := len(tuple)
hash := 9137 + 2*uint32(n)
for i := 0; i < n; i++ {
hash += 3 * tuple[i].Hash
}
return hash
}
// shallowHash computes a hash of t without looking at any of its
// element Types, to avoid potential anonymous cycles in the types of
// interface methods.
//
// When an unnamed non-empty interface type appears anywhere among the
// arguments or results of an interface method, there is a potential
// for endless recursion. Consider:
//
// type X interface { m() []*interface { X } }
//
// The problem is that the Methods of the interface in m's result type
// include m itself; there is no mention of the named type X that
// might help us break the cycle.
// (See comment in go/types.identical, case *Interface, for more.)
func shallowHash(t *abi.Type) uint32 {
// t is the type of an interface method (Signature),
// its params or results (Tuples), or their immediate
// elements (mostly Slice, Pointer, Basic, Named),
// so there's no need to optimize anything else.
if t.HasName() {
return 9157 + hashString(t.Uncommon().PkgPath_) + hashString(t.Str_)
}
switch t.Kind() {
case abi.Bool, abi.Int, abi.Int8, abi.Int16, abi.Int32, abi.Int64,
abi.Uint, abi.Uint8, abi.Uint16, abi.Uint32, abi.Uint64, abi.Uintptr,
abi.Float32, abi.Float64, abi.Complex64, abi.Complex128, abi.String, abi.UnsafePointer:
return 45212177 * uint32(t.Kind())
case abi.Func:
t := t.FuncType()
var hash uint32 = 604171
if t.Variadic() {
hash *= 971767
}
// The Signature/Tuple recursion is always finite
// and invariably shallow.
return hash + 1062599*shallowHashTuple(t.In) + 1282529*shallowHashTuple(t.Out)
case abi.Array:
return 1524181 + 2*uint32(t.ArrayType().Len)
case abi.Slice:
return 2690201
case abi.Struct:
return 3326489
case abi.Pointer:
return 4393139
case abi.Interface:
return 2124679 // no recursion here
case abi.Map:
return 9109
case abi.Chan:
return 9127
}
panic("shallowHash:" + t.String())
}
func shallowHashTuple(tuple []*Type) uint32 {
n := len(tuple)
hash := 9137 + 2*uint32(n)
for i := 0; i < n; i++ {
hash += 53471161 * shallowHash(tuple[i])
}
return hash
}
// -----------------------------------------------------------------------------