- Completely rewrite README.md with comprehensive project overview and technical details - Add detailed explanation of antivirus engine architecture and detection strategies - Implement multi-stage malware detection with machine learning, sandbox, and PE structure analysis - Update project configuration and add new source files for enhanced detection capabilities - Integrate XGBoost machine learning model with C++ export functionality - Improve sandbox environment with advanced module and LDR data table handling - Remove legacy Python prediction and training scripts in favor of C++ implementation
118 lines
3.7 KiB
Python
118 lines
3.7 KiB
Python
import pandas as pd
|
||
import numpy as np
|
||
import xgboost as xgb
|
||
from sklearn.model_selection import train_test_split
|
||
from sklearn.metrics import accuracy_score
|
||
import m2cgen as m2c
|
||
from xgboost import XGBClassifier
|
||
import csv
|
||
|
||
malware_csv = 'data/malware_features.csv'
|
||
whitelist_csv = 'data/whitelist_features.csv'
|
||
|
||
# 手动读取CSV文件并自动填充缺失字段
|
||
def read_csv_with_padding(file_path):
|
||
print(f"开始读取 {file_path}...")
|
||
max_cols = 0
|
||
rows = []
|
||
|
||
# 首先确定最大列数
|
||
with open(file_path, 'r', encoding='latin1', errors='replace') as f:
|
||
csv_reader = csv.reader(f)
|
||
for row in csv_reader:
|
||
max_cols = max(max_cols, len(row))
|
||
rows.append(row)
|
||
|
||
print(f"文件 {file_path} 最大列数: {max_cols}")
|
||
|
||
# 为每一行填充缺失的字段
|
||
padded_rows = []
|
||
for row in rows:
|
||
# 如果行长度小于最大列数,用'0'填充
|
||
padded_row = row + ['0'] * (max_cols - len(row))
|
||
padded_rows.append(padded_row)
|
||
|
||
# 转换为DataFrame
|
||
df = pd.DataFrame(padded_rows)
|
||
print(f"读取 {file_path} 完成,形状: {df.shape}")
|
||
return df
|
||
|
||
# 读取CSV文件
|
||
malware_data = read_csv_with_padding(malware_csv)
|
||
whitelist_data = read_csv_with_padding(whitelist_csv)
|
||
|
||
# 删除第一列(路径列)
|
||
malware_data = malware_data.iloc[:, 1:]
|
||
whitelist_data = whitelist_data.iloc[:, 1:]
|
||
|
||
# 将所有列转换为数值类型,非数值将转为NaN
|
||
for col in malware_data.columns:
|
||
malware_data[col] = pd.to_numeric(malware_data[col], errors='coerce')
|
||
for col in whitelist_data.columns:
|
||
whitelist_data[col] = pd.to_numeric(whitelist_data[col], errors='coerce')
|
||
|
||
# 用0填充NaN值
|
||
malware_data.fillna(0, inplace=True)
|
||
whitelist_data.fillna(0, inplace=True)
|
||
|
||
# 找到最大列数(最长的特征向量)
|
||
max_cols = max(malware_data.shape[1], whitelist_data.shape[1])
|
||
|
||
# 用 0 填充(Padding)数据,使所有样本的列数相同
|
||
malware_data = malware_data.reindex(columns=range(max_cols), fill_value=0)
|
||
whitelist_data = whitelist_data.reindex(columns=range(max_cols), fill_value=0)
|
||
|
||
# 添加标签
|
||
malware_data['label'] = 1 # 恶意软件
|
||
whitelist_data['label'] = 0 # 白名单(正常)
|
||
print(malware_data.head())
|
||
print(whitelist_data.head())
|
||
|
||
# 合并数据
|
||
combined_data = pd.concat([malware_data, whitelist_data], ignore_index=True)
|
||
print(f"合并后数据形状: {combined_data.shape}")
|
||
|
||
# 分离特征和标签
|
||
X = combined_data.drop('label', axis=1)
|
||
y = combined_data['label']
|
||
|
||
# 分割数据集
|
||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
||
print(f"训练集形状: {X_train.shape}, 测试集形状: {X_test.shape}")
|
||
|
||
# 创建 XGBoost 数据集
|
||
dtrain = xgb.DMatrix(X_train, label=y_train)
|
||
dtest = xgb.DMatrix(X_test, label=y_test)
|
||
|
||
# 训练 XGBoost 模型
|
||
num_rounds = 30
|
||
# 创建watchlist来监控训练和验证集的性能
|
||
watchlist = [(dtrain, '训练集'), (dtest, '验证集')]
|
||
pos_ratio = np.mean(y_train) # 计算 1 的比例
|
||
|
||
clf = XGBClassifier(
|
||
base_score=pos_ratio, #
|
||
|
||
objective='binary:logistic', # 适用于二分类
|
||
max_depth=6, # 树的最大深度
|
||
learning_rate=0.1, # 学习率
|
||
n_estimators=100, # 迭代轮数
|
||
subsample=0.8, # 采样比例,防止过拟合
|
||
colsample_bytree=0.8,
|
||
use_label_encoder=False, # 关闭 XGBoost 的 label 编码 (适用于新版本)
|
||
eval_metric='logloss' # 交叉熵损失
|
||
)
|
||
clf.fit(X_train, y_train)
|
||
|
||
# 预测
|
||
y_pred_prob = clf.predict(X_test)
|
||
y_pred = [1 if prob > 0.5 else 0 for prob in y_pred_prob]
|
||
|
||
# 计算准确率
|
||
accuracy = accuracy_score(y_test, y_pred)
|
||
print(f'XGBoost 分类准确率: {accuracy:.4f}')
|
||
code = m2c.export_to_c(clf)
|
||
output_file = "malware_detector.cpp"
|
||
with open(output_file, "w") as f:
|
||
f.write(code)
|