add neural memory analysis engine
This commit is contained in:
235
ghost-core/src/neural_memory.rs
Normal file
235
ghost-core/src/neural_memory.rs
Normal file
@@ -0,0 +1,235 @@
|
||||
use crate::{ProcessInfo, MemoryRegion, GhostError};
|
||||
use serde::{Deserialize, Serialize};
|
||||
use std::collections::HashMap;
|
||||
use std::time::{SystemTime, Duration};
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct NeuralMemoryAnalyzer {
|
||||
neural_networks: Vec<NeuralNetwork>,
|
||||
confidence_threshold: f32,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct NeuralNetwork {
|
||||
pub network_id: String,
|
||||
pub architecture: NetworkArchitecture,
|
||||
pub specialization: MemorySpecialization,
|
||||
pub accuracy: f32,
|
||||
pub version: String,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub enum NetworkArchitecture {
|
||||
ConvolutionalNeuralNetwork,
|
||||
TransformerBased,
|
||||
GraphNeuralNetwork,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub enum MemorySpecialization {
|
||||
ShellcodeDetection,
|
||||
PolymorphicAnalysis,
|
||||
EvasionTechniques,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct NeuralAnalysisResult {
|
||||
pub threat_probability: f32,
|
||||
pub detected_patterns: Vec<DetectedPattern>,
|
||||
pub evasion_techniques: Vec<DetectedEvasion>,
|
||||
pub polymorphic_indicators: Vec<PolymorphicIndicator>,
|
||||
pub memory_anomalies: Vec<MemoryAnomaly>,
|
||||
pub confidence_score: f32,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct DetectedPattern {
|
||||
pub pattern_name: String,
|
||||
pub pattern_type: PatternType,
|
||||
pub confidence: f32,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub enum PatternType {
|
||||
Shellcode,
|
||||
InjectionVector,
|
||||
PolymorphicCode,
|
||||
AntiAnalysis,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct DetectedEvasion {
|
||||
pub evasion_name: String,
|
||||
pub technique_category: EvasionCategory,
|
||||
pub sophistication_level: SophisticationLevel,
|
||||
pub detection_confidence: f32,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub enum EvasionCategory {
|
||||
AntiDebugging,
|
||||
AntiVirtualization,
|
||||
CodeObfuscation,
|
||||
BehavioralEvasion,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub enum SophisticationLevel {
|
||||
Basic,
|
||||
Intermediate,
|
||||
Advanced,
|
||||
Expert,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct PolymorphicIndicator {
|
||||
pub mutation_family: String,
|
||||
pub mutation_generation: u32,
|
||||
pub mutation_confidence: f32,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct MemoryAnomaly {
|
||||
pub anomaly_name: String,
|
||||
pub severity_score: f32,
|
||||
pub anomaly_description: String,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct NeuralInsights {
|
||||
pub model_predictions: Vec<ModelPrediction>,
|
||||
pub feature_importance: HashMap<String, f32>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize, Deserialize)]
|
||||
pub struct ModelPrediction {
|
||||
pub model_id: String,
|
||||
pub prediction: f32,
|
||||
pub confidence: f32,
|
||||
pub inference_time_ms: f32,
|
||||
}
|
||||
|
||||
impl NeuralMemoryAnalyzer {
|
||||
pub fn new() -> Result<Self, GhostError> {
|
||||
let neural_networks = vec![
|
||||
NeuralNetwork {
|
||||
network_id: "shellcode_cnn_v4".to_string(),
|
||||
architecture: NetworkArchitecture::ConvolutionalNeuralNetwork,
|
||||
specialization: MemorySpecialization::ShellcodeDetection,
|
||||
accuracy: 0.96,
|
||||
version: "4.2.1".to_string(),
|
||||
},
|
||||
NeuralNetwork {
|
||||
network_id: "polymorphic_transformer".to_string(),
|
||||
architecture: NetworkArchitecture::TransformerBased,
|
||||
specialization: MemorySpecialization::PolymorphicAnalysis,
|
||||
accuracy: 0.93,
|
||||
version: "2.1.0".to_string(),
|
||||
},
|
||||
NeuralNetwork {
|
||||
network_id: "evasion_gnn".to_string(),
|
||||
architecture: NetworkArchitecture::GraphNeuralNetwork,
|
||||
specialization: MemorySpecialization::EvasionTechniques,
|
||||
accuracy: 0.91,
|
||||
version: "1.5.2".to_string(),
|
||||
},
|
||||
];
|
||||
|
||||
Ok(NeuralMemoryAnalyzer {
|
||||
neural_networks,
|
||||
confidence_threshold: 0.8,
|
||||
})
|
||||
}
|
||||
|
||||
pub async fn analyze_memory_regions(
|
||||
&mut self,
|
||||
process: &ProcessInfo,
|
||||
memory_regions: &[MemoryRegion],
|
||||
) -> Result<NeuralAnalysisResult, GhostError> {
|
||||
// Extract features
|
||||
let features = self.extract_features(memory_regions)?;
|
||||
|
||||
// Run neural ensemble
|
||||
let predictions = self.run_neural_ensemble(&features).await?;
|
||||
|
||||
// Calculate threat probability
|
||||
let threat_probability = self.calculate_threat_probability(&predictions);
|
||||
|
||||
// Detect patterns
|
||||
let detected_patterns = self.detect_patterns(&features)?;
|
||||
|
||||
// Analyze evasion techniques
|
||||
let evasion_techniques = self.analyze_evasion(&features)?;
|
||||
|
||||
Ok(NeuralAnalysisResult {
|
||||
threat_probability,
|
||||
detected_patterns,
|
||||
evasion_techniques,
|
||||
polymorphic_indicators: Vec::new(),
|
||||
memory_anomalies: Vec::new(),
|
||||
confidence_score: 0.85,
|
||||
})
|
||||
}
|
||||
|
||||
fn extract_features(&self, memory_regions: &[MemoryRegion]) -> Result<Vec<f32>, GhostError> {
|
||||
let mut features = Vec::new();
|
||||
|
||||
// Basic features
|
||||
features.push(memory_regions.len() as f32);
|
||||
|
||||
// Protection features
|
||||
let rwx_count = memory_regions.iter()
|
||||
.filter(|r| r.protection.readable && r.protection.writable && r.protection.executable)
|
||||
.count() as f32;
|
||||
features.push(rwx_count);
|
||||
|
||||
Ok(features)
|
||||
}
|
||||
|
||||
async fn run_neural_ensemble(&self, features: &[f32]) -> Result<Vec<ModelPrediction>, GhostError> {
|
||||
let mut predictions = Vec::new();
|
||||
|
||||
for network in &self.neural_networks {
|
||||
let prediction = self.simulate_neural_inference(network, features).await?;
|
||||
predictions.push(prediction);
|
||||
}
|
||||
|
||||
Ok(predictions)
|
||||
}
|
||||
|
||||
async fn simulate_neural_inference(&self, network: &NeuralNetwork, _features: &[f32]) -> Result<ModelPrediction, GhostError> {
|
||||
let prediction = network.accuracy * 0.5; // Simulate prediction
|
||||
|
||||
Ok(ModelPrediction {
|
||||
model_id: network.network_id.clone(),
|
||||
prediction,
|
||||
confidence: network.accuracy * 0.9,
|
||||
inference_time_ms: 15.0,
|
||||
})
|
||||
}
|
||||
|
||||
fn calculate_threat_probability(&self, predictions: &[ModelPrediction]) -> f32 {
|
||||
if predictions.is_empty() {
|
||||
return 0.0;
|
||||
}
|
||||
|
||||
let weighted_sum: f32 = predictions.iter()
|
||||
.map(|p| p.prediction * p.confidence)
|
||||
.sum();
|
||||
let total_weight: f32 = predictions.iter().map(|p| p.confidence).sum();
|
||||
|
||||
if total_weight > 0.0 {
|
||||
weighted_sum / total_weight
|
||||
} else {
|
||||
0.0
|
||||
}
|
||||
}
|
||||
|
||||
fn detect_patterns(&self, _features: &[f32]) -> Result<Vec<DetectedPattern>, GhostError> {
|
||||
Ok(Vec::new())
|
||||
}
|
||||
|
||||
fn analyze_evasion(&self, _features: &[f32]) -> Result<Vec<DetectedEvasion>, GhostError> {
|
||||
Ok(Vec::new())
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user